How to call MmGetPhysicalMemoryRanges in driver to get memory range? - windows

I am writing a driver in which i want the exact range of RAM. I came to know about memory manager routines inside windows kernel. I am planning to include MmGetPhysicalMemoryRanges routine in my driver also to get memory range.
I don't know how to add these routines into driver..
Anyone please tell me how to write this routine??What is its syntax???

NTKERNELAPI
PPHYSICAL_MEMORY_RANGE
MmGetPhysicalMemoryRanges (
VOID
);
Where PHYSICAL_MEMORY_RANGE is:
typedef struct _PHYSICAL_MEMORY_RANGE {
PHYSICAL_ADDRESS BaseAddress;
LARGE_INTEGER NumberOfBytes;
} PHYSICAL_MEMORY_RANGE, *PPHYSICAL_MEMORY_RANGE;

Related

Using Thrust Functions with raw pointers: Controlling the allocation of memory

I have a question regarding the thrust library when using CUDA.
I am using a thrust function, i.e. exclusive_scan, and I want to use raw pointers. I am using raw (device) pointers because I want to have full control of when the memory is allocated and deallocated.
After the function call, I will hand over the pointer to another data structure and then free the memory in either the destructor of this data structure, or in the next function call, when I recompute my (device) pointers. I came across for example this problem here now, which recommends to wrap the data structure in a device_vector. But then I run into the problem that the memory is freed once my device_vector goes out of scope, which I do not want. Having the device pointer globally is also not an option, since I am hacking code, i.e. it is used as a buffer and I would have to rewrite a lot if I wanted to do something like that.
Does anyone have a good workaround regarding this? The only chance I do see right now is to rewrite the thrust-function on my own, only using raw device-pointers.
EDIT: I misread, I can wrap it in a device_ptr instead of a device_vector.
Asking further though, how could I solve this if there wasn't the option of using a device_ptr?
There is no problem using plain pointers in thrust methods.
For data on the device do:
....
struct DoSomething {
__device__ int operator()(int item) { return 1; }
};
int* IntData;
cudaMalloc(&IntData, sizeof(int) * count);
auto dev_data = device_pointer_cast(IntData);
thrust::generate(dev_data, dev_data + count, DoSomething());
thrust::sort(dev_data, dev_data + count);
....
cudaFree(IntData);
For data on the host use plain malloc/free and raw_pointer_cast instead of device_pointer_cast.
See: thrust: Memory management

Size limits on stringstream for embedded

Keen to use stringstream on an STM32 for handling data that gets sent over various UART connections to radio modules (wifi, BLE, Zigbee, etc). I am running FreeRTOS, if that matters.
Very concerned about the dynamic memory allocation in the STL lib causing unhandled overflows (I have to have "-fno-exceptions").
I can handle buffer overruns myself in a simple writer method, so that isn't an issue, but I want to be certain that the stringstream never tries to increase it's memory beyond a pre-set limit.
Currently I just use char* buffers, but, I want to find a better solution.
I want to be able to do something like this.
#include <sstream> // std::stringstream
class Wifi
{
public:
std::stringstream* ss;
Wifi()
{
ss.set_max_size(1024); // 1kB
}
};
TIA

Which suspend/resume pointer is the right one to use?

I am working on power management on an i2c driver and noticed something odd.
include/linux/i2c.h
struct i2c_driver {
//...
int (*suspend)(struct i2c_client *, pm_message_t mesg);
int (*resume)(struct i2c_client *);
//...
struct device_driver driver;
//...
}
include/linux/device.h
struct device_driver {
//...
int (*suspend) (struct device *dev, pm_message_t state);
int (*resume) (struct device *dev);
//...
const struct dev_pm_ops *pm;
//...
}
include/linux/pm.h
struct dev_pm_ops {
//...
int (*suspend)(struct device *dev);
int (*resume)(struct device *dev);
//...
}
Why are there so many suspend and resume function pointers? Some kind of legacy thing? Which one should I use for my driver?
I am on an old kernel (2.6.35)
Thanks!
Why are there so many suspend and resume function pointers?
i2c_driver - legacy support.
device_driver - standard support.
dev_pm_ops - extended power management.
Notice that they are all function pointers. There is sequencing for the suspend and resume. For instance, the i2c controller must be suspended after the devices but resumed before.
Some kind of legacy thing?
The struct i2c_driver is a legacy mechism. It existed before the entire power infrastructure was created. As well, some configurations may exclude the full struct dev_pm_ops pointer, but have the suspend and resume driver hooks. The full struct dev_pm_ops supports suspend to disk and other features. Suspend to memory is more common and is given pointers space in struct device_driver. If struct dev_pm_ops is non-NULL, the two pointer will be the same. These two should call the same routine in your driver.
Which one should I use for my driver?
You probably shouldn't use any of them. It is probably more likely that your driver is part of some other sub-system. see Note For instance, the i2c is used in codecs like the wm8940.c. Generally, i2c is not the central controlling sub-system. It is a driver that is used by something else to control a chip-set. The sound sub-system will be suspended before i2c and it is better to put your hooks there. If your driver is pure i2c, then use the macros in pm.h, like SET_SYSTEM_SLEEP_PM_OPS to conditionalize the setting of dev_pm_ops; so set both of them. Most likely the device_driver will be copied to dev_pm_ops if it exists, but doing it explicitly is better.
The driver-model, i2c power management and power driver documentation have more information on the structure and overviews.
Note: In this case, there are multiple device_driver structures. Usually the i2c_driver is managed by a controlling driver. The controlling driver should implement a suspend/resume for it's sub-system, which uses the i2c_driver interface.

Linux Device Driver Program, where the program starts?

I've started to learn Linux driver programs, but I'm finding it a little difficult.
I've been studying the i2c driver, and I got quite confused regarding the entry-point of the driver program. Does the driver program start at the MOUDULE_INIT() macro?
And I'd also like to know how I can know the process of how the driver program runs. I got the book, Linux Device Driver, but I'm still quite confused. Could you help me? Thanks a lot.
I'll take the i2c driver as an example. There are just so many functions in it, I just wanna know how I can get coordinating relation of the functions in the i2c drivers?
A device driver is not a "program" that has a main {} with a start point and exit point. It's more like an API or a library or a collection of routines. In this case, it's a set of entry points declared by MODULE_INIT(), MODULE_EXIT(), perhaps EXPORT_SYMBOL() and structures that list entry points for operations.
For block devices, the driver is expected to provide the list of operations it can perform by declaring its functions for those operations in (from include/linux/blkdev.h):
struct block_device_operations {
int (*open) ();
int (*release) ();
int (*ioctl) ();
int (*compat_ioctl) ();
int (*direct_access) ();
unsigned int (*check_events) ();
/* ->media_changed() is DEPRECATED, use ->check_events() instead */
int (*media_changed) ();
void (*unlock_native_capacity) ();
int (*revalidate_disk) ();
int (*getgeo)();
/* this callback is with swap_lock and sometimes page table lock held */
void (*swap_slot_free_notify) ();
struct module *owner;
};
For char devices, the driver is expected to provide the list of operations it can perform by declaring its functions for those operations in (from include/linux/fs.h):
struct file_operations {
struct module *owner;
loff_t (*llseek) ();
ssize_t (*read) ();
ssize_t (*write) ();
ssize_t (*aio_read) ();
ssize_t (*aio_write) ();
int (*readdir) ();
unsigned int (*poll) ();
long (*unlocked_ioctl) ();
long (*compat_ioctl) ();
int (*mmap) ();
int (*open) ();
int (*flush) ();
int (*release) ();
int (*fsync) ();
int (*aio_fsync) ();
int (*fasync) ();
int (*lock) ();
ssize_t (*sendpage) ();
unsigned long (*get_unmapped_area)();
int (*check_flags)();
int (*flock) ();
ssize_t (*splice_write)();
ssize_t (*splice_read)();
int (*setlease)();
long (*fallocate)();
};
For platform devices, the driver is expected to provide the list of operations it can perform by declaring its functions for those operations in (from include/linux/platform_device.h):
struct platform_driver {
int (*probe)();
int (*remove)();
void (*shutdown)();
int (*suspend)();
int (*resume)();
struct device_driver driver;
const struct platform_device_id *id_table;
};
The driver, especially char drivers, does not have to support every operation listed. Note that there are macros to facilitate the coding of these structures by naming the structure entries.
Does the driver program starts at the MOUDLUE_INIT() macro?
The driver's init() routine specified in MODULE_INIT() will be called during boot (when statically linked in) or when the module is dynamically loaded. The driver passes its structure of operations to the device's subsystem when it registers itself during its init().
These device driver entry points, e.g. open() or read(), are typically executed when the user app invokes a C library call (in user space) and after a switch to kernel space. Note that the i2c driver you're looking at is a platform driver for a bus that is used by leaf devices, and its functions exposed by EXPORT_SYMBOL() would be called by other drivers.
Only the driver's init() routine specified in MODULE_INIT() is guaranteed to be called. The driver's exit() routine specified in MODULE_EXIT() would only be executed if/when the module is dynamically unloaded. The driver's op routines will be called asynchronously (just like its interrupt service routine) in unknown order. Hopefully user programs will invoke an open() before issuing a read() or an ioctl() operation, and invoke other operations in a sensible fashion. A well-written and robust driver should accommodate any order or sequence of operations, and produce sane results to ensure system integrity.
It would probably help to stop thinking of a device driver as a program. They're completely different. A program has a specific starting point, does some stuff, and has one or more fairly well defined (well, they should, anyway) exit point. Drivers have some stuff to do when the first get loaded (e.g. MODULE_INIT() and other stuff), and may or may not ever do anything ever again (you can forcibly load a driver for hardware your system doesn't actually have), and may have some stuff that needs to be done if the driver is ever unloaded. Aside from that, a driver generally provides some specific entry points (system calls, ioctls, etc.) that user-land applications can access to request the driver to do something.
Horrible analogy, but think of a program kind of like a car - you get in, start it up, drive somewhere, and get out. A driver is more like a vending machine - you plug it in and make sure it's stocked, but then people just come along occasionaly and push buttons to make it do something.
Actually you are taking about (I2C) platform (Native)driver first you need to understand how MOUDULE_INIT() of platform driver got called versus other loadable modules.
/*
* module_init() - driver initialization entry point
* #x: function to be run at kernel boot time or module insertion
* module_init() will either be called during do_initcalls() (if
* builtin) or at module insertion time (if a module). There can only
* be one per module.*/
and for i2c driver you can refer this link http://www.linuxjournal.com/article/7136 and
http://www.embedded-bits.co.uk/2009/i2c-in-the-2632-linux-kernel/
Begin of a kernel module is starting from initialization function, which mainly addressed with macro __init just infront of the function name.
The __init macro indicate to linux kernel that the following function is an initialization function and the resource that will use for this initialization function will be free once the code of initialization function is executed.
There are other marcos, used for detect initialization and release function, named module_init() and module_exit() [as described above].
These two macro are used, if the device driver is targeted to operate as loadable and removeable kernel module at run time [i.e. using insmod or rmmod command]
IN short and crisp way : It starts from .probe and go all the way to init as soon you do insmod .This also registers the driver with the driver subsystem and also initiates the init.
Everytime the driver functionalities are called from the user application , functions are invoked using the call back.
"Linux Device Driver" is a good book but it's old!
Basic example:
#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Name and e-mail");
MODULE_DESCRIPTION("my_first_driver");
static int __init insert_mod(void)
{
printk(KERN_INFO "Module constructor");
return 0;
}
static void __exit remove_mod(void)
{
printk(KERN_INFO "Module destructor");
}
module_init(insert_mod);
module_exit(remove_mod);
An up-to-date tutorial, really well written, is "Linux Device Drivers Series"

getloadavg() within kernel

Is there an equivalent api like getloadavg() that can be used within the kernel i.e. for my own driver ?
I have a driver that is thrashing and I would like to throttle it, and i am looking for a kernel-api to find about the cpu usage.
Thank you.
You're probably looking for the get_avenrun() function in kernel/sched.c. An example of how to use it is in fs/proc/loadavg.c:
static int loadavg_proc_show(struct seq_file *m, void *v)
{
unsigned long avnrun[3];
get_avenrun(avnrun, FIXED_1/200, 0);
seq_printf(m, "%lu.%02lu %lu.%02lu %lu.%02lu %ld/%d %d\n",
LOAD_INT(avnrun[0]), LOAD_FRAC(avnrun[0]),
LOAD_INT(avnrun[1]), LOAD_FRAC(avnrun[1]),
LOAD_INT(avnrun[2]), LOAD_FRAC(avnrun[2]),
nr_running(), nr_threads,
task_active_pid_ns(current)->last_pid);
return 0;
}
Though I'm a little skeptical of how you can use the load average to modify a driver -- the load average is best treated as a heuristic for system administrators to gauge how their system changes over time, not necessarily how "healthy" it might be at any given moment -- what specifically in the driver is causing troubles? There's probably a better mechanism to make it play nicely with the rest of the system.

Resources