How to get Time Complexity(Big-O) on this recursive function? - algorithm

How to get Time Complexity this function?
fun(int n){
for(int i=0; i<n; i++){
for(int j=0; j<n; j++){
print(" ");
}
}
fun(n-3)
}

Suppose the run time of f(n) is T(n). You have to loops in each function call. so The compelxity of the loops are O(n^2).
the f(n) has 2 loops ( O(n^2) ) and one f(n-3). so we come up to the equation below:
T(n) = T(n-3) + O(n^2)
which also can be written as:
T(n) = T(n-3) + (n^2)*(1^n)
So the equal equation to a above is: (r^3 - 1 )[(r-1)^3]=0
so we have r=1 ( 6th degree) so the T(n) will be like this:
T(n) = [a1 + a2*n + a3*n^2 + a4*n^3 + a5*n^4 + a6*n^5 ]*(1^n)
So at last it is obvious that for a1,a2,a3,a4,a4,a5,a6!=0 (which only can be found by initial value of f(n), the result is
T(n) = O(n^5)

There is no bottom to the recursion, so it will run infinitely long. Since the growth rate of the function is independent of the input (n), it is an O(1) function (no matter how big n is, the execution time is always the same, which is to say, infinite).
If there were a bottom to the recursion, we can see how fast the function grows for higher values of n. Each n adds another pass through the inner loop, multiplied by another pass through the outer loop, multiplied by the recursion depth, so that is n*n*n = O(n^3).
It is true that the recursion grows a little bit more slowly than the two loops, but in the end it does grow linearly with n, which means it counts as O(n) in its own right.

Related

proving the big-oh etc for an algorithm

I'm learning how to prove/disprove big-Oh, big-Omega, and little-oh, and I have the following algorithm f(n). However I'm unsure how to prove this f(n) as it has an if statement which I've never come across before. How can I prove, for example, that this f(n) is O( n^2 )?
if n is even
4 sum(n/2,n)
else
2n-1 sum(n−3,n)
where sum(j,k) is a ‘partial arithmetic sum’ of the integers from j up to k, that is sum(j,k)=
if j > k
0
else
j+(j+1)+(j+2)+...+j
e.g. sum(3,4) = 3 + 4 = 7, etc.
Note that sum(j,k) = sum(1,k) – sum(1,j-1).
ok. Got it no worries. I'll try to help you understand this.
Big O notation is used to define an upper limit on how much time a program will take in term of its input size.
Let's try to see how much time each statement will take in this function
f(n) {
if n is even // O(1) .....#1
4 * sum(n/2,n) // O(n) .....#2
else // O(1) ................#3
(2n-1) * sum(n−3,n) // O(n) .......#4
}
if n is even
This can be done by a check like if ((n%2) == 0)) As you can see that this is a constant time operation. no loop nothing just one computation.
sum(j, k) function is being computated by iterating from j to k whenever j <= k. So, it will run (k - j + 1) times which is linear time
So, total complexity will be summation of complexity of the if block or the else block
For analyzing complexity, one needs to take care of worst time.
Complexity of if block = #1 + #2 = O(1) + O(n) = O(n)
Similarly for else block = #3 + #4 = O(1) + O(n) = O(n)
Max of both = maximum of(O(n), O(n)) = O(n)
Thus, the overall complexity = O(n)

What is the Big-O of this Code?

I thought the Big-O notation will be n^3, but the output does not even closely match my Big O:
int bigO(int [] myArray, int x) {
int count = 0;
for (int i = 0; i < x; i++)
for (int j = i+1; j < x; j++)
for (int k = j+1; k < x; k++) {
System.out.println(myArray[i] + ", " + myArray[j] + ", " +
myArray[k]);
count++;
}
return count;
}
My Apologies, I should have "x" instead of "n"
That's because your function does not perform exactly n^3 operations.
Actually, it does f(n) = (1/6)*n^3 - (1/2)*n^2 + (1/3)*n operations (found it using polynomial fitting).
But, by the definition, f(n) is O(n^3). The intuition behind this is:
(1/6)*n^3 is the dominant factor
(1/6)*n^3 grows within a constant factor of n^3.
Here's a static analysis for your code. Because the loops have all different iteration ranges, it's best if you start with the most inner loop and work your way from inner to outer loop.
The most inner for loop has n-j-1 iterations.
So if you look at the 2 inner loops, you have Sum (n-j-1) iterations (for j in the interval [i+1; n-1]). So you have (n-(i+1)-1) + (n-(i+2)-1) + ... + (n-(n-1)-1) iterations, which equals to (n-i-2) + (n-i-3) + ... + 1 + 0, which is an arithmetic series and the result is: (n-i-2)*(n-i-1)/2.
And now we loop over the outer loop and get Sum (n-i-2)*(n-i-1)/2 iterations (for i in the interval [0; n-1]). This is equal to 1/2*Sum(i^2) + (-n+3/2)*Sum(i) + (n^2/2-3n/2+1)*Sum(1). These sums are easy to calculate and after a bit of rearranging you receive: n^3/6 -n^2/2+n/3, which is the same formula as the one of #JuanLopes.
Since your functions is O(n^3) (n^3/6 -n^2/2+n/3 = O(n^3)), your code doesn't have exactly n^3 iterations. The dominant factor is n^3/6, and you will have about this many iterations.
Big-O notation is not a per-se feature of an algorithm! It describes how the output "grows" over time/space with respect to the size of the input. Define the "size" of your input and you can compute the Big-O complexity of it.
As soon as you change the definition of "size" of your input, you get totally different complexities.
Example:
Algorithm to apply a gaussian filter to a set of images of size X*Y
With respect the no. of images the algorithm operates in linear time
With respect the global no. of pixels to process the algorithm is quadratic
So the answer is: you didn't define your N :-)

Recursion, inner loop and time complexity

Consider the following function:
int testFunc(int n){
if(n < 3) return 0;
int num = 7;
for(int j = 1; j <= n; j *= 2) num++;
for(int k = n; k > 1; k--) num++;
return testFunc(n/3) + num;
}
I get that the first loop is O(logn) while the second loop gives O(n) which gives a time complexity of O(n) in total. But due to the recursive calls I thought the time complexity would be O(nlogn), but apperantly it is only O(n). Can anyone explain why?
The recursive call pretty much gives the following for the complexity(denoting the complexity for input n by T(n)):
T(n) = log(n) + n + T(n/3)
First observation as you correctly noted is that you can ignore the logarithm as it is dominated by n. Now we are only left with T(n) = n + T(n/3). Try writing this up to 0 for instance. We have:
T(n) = n + n/3 + n/9+....
You can easily prove that the above sum is always less than 2*n. In fact better limits can be proven but this one is enough to state that overall complexity is O(n).
For procedures using a recursive algorithm such as the following:
procedure T( n : size of problem ) defined as:
if n < base_case then exit
Do work of amount f(n) // In this case, the O(n) for loop
T(n/b)
T(n/b)
... a times... // In this case, b = 3, and a = 1
T(n/b)
end procedure
Applying the Master theorem to find the time complexity, the f(n) in this case is O(n) (due to the second for loop, like you said). This makes c = 1.
Now, logba = log31 = 0, making this the 3rd case of the theorem, according to which the time complexity T(n) = Θ(f(n)) = Θ(n).

Why Bubble sort complexity is O(n^2)?

As I understand, the complexity of an algorithm is a maximum number of operations performed while sorting. So, the complexity of Bubble sort should be a sum of arithmmetic progression (from 1 to n-1), not n^2.
The following implementation counts number of comparisons:
public int[] sort(int[] a) {
int operationsCount = 0;
for (int i = 0; i < a.length; i++) {
for(int j = i + 1; j < a.length; j++) {
operationsCount++;
if (a[i] > a[j]) {
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
}
System.out.println(operationsCount);
return a;
}
The ouput for array with 10 elements is 45, so it's a sum of arithmetic progression from 1 to 9.
So why Bubble sort's complexity is n^2, not S(n-1) ?
This is because big-O notation describes the nature of the algorithm. The major term in the expansion (n-1) * (n-2) / 2 is n^2. And so as n increases all other terms become insignificant.
You are welcome to describe it more precisely, but for all intents and purposes the algorithm exhibits behaviour that is of the order n^2. That means if you graph the time complexity against n, you will see a parabolic growth curve.
Let's do a worst case analysis.
In the worst case, the if (a[i] > a[j]) test will always be true, so the next 3 lines of code will be executed in each loop step. The inner loop goes from j=i+1 to n-1, so it will execute Sum_{j=i+1}^{n-1}{k} elementary operations (where k is a constant number of operations that involve the creation of the temp variable, array indexing, and value copying). If you solve the summation, it gives a number of elementary operations that is equal to k(n-i-1). The external loop will repeat this k(n-i-1) elementary operations from i=0 to i=n-1 (ie. Sum_{i=0}^{n-1}{k(n-i-1)}). So, again, if you solve the summation you see that the final number of elementary operations is proportional to n^2. The algorithm is quadratic in the worst case.
As you are incrementing the variable operationsCount before running any code in the inner loop, we can say that k (the number of elementary operations executed inside the inner loop) in our previous analysis is 1. So, solving Sum_{i=0}^{n-1}{n-i-1} gives n^2/2 - n/2, and substituting n with 10 gives a final result of 45, just the same result that you got by running the code.
Worst case scenario:
indicates the longest running time performed by an algorithm given any input of size n
so we will consider the completely backward list for this worst-case scenario
int[] arr= new int[]{9,6,5,3,2};
Number of iteration or for loops required to completely sort it = n-1 //n - number of elements in the list
1st iteration requires (n-1) swapping + 2nd iteration requires (n-2) swapping + ……….. + (n-1)th iteration requires (n-(n-1)) swapping
i.e. (n-1) + (n-2) + ……….. +1 = n/2(a+l) //sum of AP
=n/2((n-1)+1)=n^2/2
so big O notation = O(n^2)

Worst Case Time Complexity for an algorithm

What is the Worst Case Time Complexity t(n) :-
I'm reading this book about algorithms and as an example
how to get the T(n) for .... like the selection Sort Algorithm
Like if I'm dealing with the selectionSort(A[0..n-1])
//sorts a given array by selection sort
//input: An array A[0..n - 1] of orderable elements.
//output: Array A[0..n-1] sorted in ascending order
let me write a pseudocode
for i <----0 to n-2 do
min<--i
for j<--i+1 to n-1 do
ifA[j]<A[min] min <--j
swap A[i] and A[min]
--------I will write it in C# too---------------
private int[] a = new int[100];
// number of elements in array
private int x;
// Selection Sort Algorithm
public void sortArray()
{
int i, j;
int min, temp;
for( i = 0; i < x-1; i++ )
{
min = i;
for( j = i+1; j < x; j++ )
{
if( a[j] < a[min] )
{
min = j;
}
}
temp = a[i];
a[i] = a[min];
a[min] = temp;
}
}
==================
Now how to get the t(n) or as its known the worst case time complexity
That would be O(n^2).
The reason is you have a single for loop nested in another for loop. The run time for the inner for loop, O(n), happens for each iteration of the outer for loop, which again is O(n). The reason each of these individually are O(n) is because they take a linear amount of time given the size of the input. The larger the input the longer it takes on a linear scale, n.
To work out the math, which in this case is trivial, just multiple the complexity of the inner loop by the complexity of the outer loop. n * n = n^2. Because remember, for each n in the outer loop, you must again do n for the inner. To clarify: n times for each n.
O(n * n).
O(n^2)
By the way, you shouldn't mix up complexity (denoted by big-O) and the T function. The T function is the number of steps the algorithm has to go through for a given input.
So, the value of T(n) is the actual number of steps, whereas O(something) denotes a complexity. By the conventional abuse of notation, T(n) = O( f(n) ) means that the function T(n) is of at most the same complexity as another function f(n), which will usually be the simplest possible function of its complexity class.
This is useful because it allows us to focus on the big picture: We can now easily compare two algorithms that may have very different-looking T(n) functions by looking at how they perform "in the long run".
#sara jons
The slide set that you've referenced - and the algorithm therein
The complexity is being measured for each primitive/atomic operation in the for loop
for(j=0 ; j<n ; j++)
{
//...
}
The slides rate this loop as 2n+2 for the following reasons:
The initial set of j=0 (+1 op)
The comparison of j < n (n ops)
The increment of j++ (n ops)
The final condition to check if j < n (+1 op)
Secondly, the comparison within the for loop
if(STudID == A[j])
return true;
This is rated as n ops. Thus the result if you add up +1 op, n ops, n ops, +1 op, n ops = 3n+2 complexity. So T(n) = 3n+2
Recognize that T(n) is not the same as O(n).
Another doctoral-comp flashback here.
First, the T function is simply the amount of time (usually in some number of steps, about which more below) an algorithm takes to perform a task. What a "step" is, is somewhat defined by the use; for example, it's conventional to count the number of comparisons in sorting algorithms, but the number of elements searched in search algorithms.
When we talk about the worst-case time of an algorithm, we usually express that with "big-O notation". Thus, for example, you hear that bubble sort takes O(n²) time. When we use big O notation, what we're really saying is that the growth of some function -- in this case T -- is no faster than the growth of some other function times a constant. That is
T(n) = O(n²)
means for any n, no matter how large, there is a constant k for which T(n) ≤ kn². A point of some confustion here is that we're using the "=" sign in an overloaded fashion: it doesn't mean the two are equal in the numerical sense, just that we are saying that T(n) is bounded by kn².
In the example in your extended question, it looks like they're counting the number of comparisons in the for loop and in the test; it would help to be able to see the context and the question they're answering. In any case, though, it shows why we like big-O notation: W(n) here is O(n). (Proof: there exists a constant k, namely 5, for which W(n) ≤ k(3n)+2. It follows by the definition of O(n).)
If you want to learn more about this, consult any good algorithms text, eg, Introduction to Algorithms, by Cormen et al.
write pseudo codes to search, insert and remove student information from the hash table. calculate the best and the worst case time complexities
3n + 2 is the correct answer as far as the loop is concerned. At each step of the loop, 3 atomic operations are done. j++ is actually two operations, not one. and j

Resources