Recursion, inner loop and time complexity - algorithm

Consider the following function:
int testFunc(int n){
if(n < 3) return 0;
int num = 7;
for(int j = 1; j <= n; j *= 2) num++;
for(int k = n; k > 1; k--) num++;
return testFunc(n/3) + num;
}
I get that the first loop is O(logn) while the second loop gives O(n) which gives a time complexity of O(n) in total. But due to the recursive calls I thought the time complexity would be O(nlogn), but apperantly it is only O(n). Can anyone explain why?

The recursive call pretty much gives the following for the complexity(denoting the complexity for input n by T(n)):
T(n) = log(n) + n + T(n/3)
First observation as you correctly noted is that you can ignore the logarithm as it is dominated by n. Now we are only left with T(n) = n + T(n/3). Try writing this up to 0 for instance. We have:
T(n) = n + n/3 + n/9+....
You can easily prove that the above sum is always less than 2*n. In fact better limits can be proven but this one is enough to state that overall complexity is O(n).

For procedures using a recursive algorithm such as the following:
procedure T( n : size of problem ) defined as:
if n < base_case then exit
Do work of amount f(n) // In this case, the O(n) for loop
T(n/b)
T(n/b)
... a times... // In this case, b = 3, and a = 1
T(n/b)
end procedure
Applying the Master theorem to find the time complexity, the f(n) in this case is O(n) (due to the second for loop, like you said). This makes c = 1.
Now, logba = log31 = 0, making this the 3rd case of the theorem, according to which the time complexity T(n) = Θ(f(n)) = Θ(n).

Related

Time complexity of nested for loop with inner iteration variable dependent on the outer one

This is the loop structure :
for (int i = 1 ; i < n ; i++) {
for (int j = 0 ; j < n ; j += i) {
// do stuff
}
}
My guess was O(nlogn) as it clearly cannot be O(n^2) since the increment in j is increasing and it clearly cannot be O(n sqrt(n)) since the increment is not that high. But I have no idea how to prove it formally.
Each time complexity of the inner loop is based on the value of i is n/i. Hence, total time would be n + n/2 + n/3 + ... + n/n = n(1+1/2+1/3+...+1/n).
As we know 1+1/2+1/3+...+1/n is a harmonic sereis and asymptotically is log(n). Hence, the algorithm is run in O(nlog(n)).

how i can find the time complexity of the above code

for(i=0; i<n; i++) // time complexity n+1
{
k=1; // time complexity n
while(k<=n) // time complexity n*(n+1)
{
for(j=0; j<k; j++) // time complexity ??
printf("the sum of %d and %d is: %d\n",j,k,j+k); time complexity ??
k++;
}
What is the time complexity of the above code? I stuck in the second (for) and i don't know how to find the time complexity because j is less than k and not less than n.
I always having problems related to time complexity, do you guys got some good article on it?
especially about the step count and loops.
From the question :
because j is less than k and not less than n.
This is just plain wrong, and I guess that's the assumption that got you stuck. We know what values k can take. In your code, it ranges from 1 to n (included). Thus, if j is less than k, it is also less than n.
From the comments :
i know the the only input is n but in the second for depends on k an not in n .
If a variable depends on anything, it's on the input. j depends on k that itself depends on n, which means j depends on n.
However, this is not enough to deduce the complexity. In the end, what you need to know is how many times printf is called.
The outer for loop is executed n times no matter what. We can factor this out.
The number of executions of the inner for loop depends on k, which is modified within the while loop. We know k takes every value from 1 to n exactly once. That means the inner for loop will first be executed once, then twice, then three times and so on, up until n times.
Thus, discarding the outer for loop, printf is called 1+2+3+...+n times. That sum is very well known and easy to calculate : 1+2+3+...+n = n*(n+1)/2 = (n^2 + n)/2.
Finally, the total number of calls to printf is n * (n^2 + n)/2 = n^3/2 + n^2/2 = O(n^3). That's your time complexity.
A final note about this kind of codes. Once you see the same patterns a few times, you quickly start to recognize the kind of complexity involved. Then, when you see that kind of nested loops with dependent variables, you immediately know that the complexity for each loop is linear.
For instance, in the following, f is called n*(n+1)*(n+2)/6 = O(n^3) times.
for (i = 1; i <= n; ++i) {
for (j = 1; j <= i; ++j) {
for (k = 1; k <= j; ++k) {
f();
}
}
}
First, simplify the code to show the main loops. So, we have a structure of:
for(int i = 0; i < n; i++) {
for(int k = 1; k <= n; k++) {
for(int j = 0; j < k; j++) {
}
}
}
The outer-loops run n * n times but there's not much you can do with this information because the complexity of the inner-loop changes based on which iteration of the outer-loop you're on, so it's not as simple as calculating the number of times the outer loops run and multiplying by some other value.
Instead, I would find it easier to start with the inner-loop, and then add the outer-loops from the inner-most to outer-most.
The complexity of the inner-most loop is k.
With the middle loop, it's the sum of k (the complexity above) where k = 1 to n. So 1 + 2 + ... + n = (n^2 + n) / 2.
With the outer loop, it's done n times so another multiplication by n. So n * (n^2 + n) / 2.
After simplifying, we get a total of O(n^3)
The time complexity for the above code is : n x n x n = n^3 + 1+ 1 = n^3 + 2 for the 3 loops plus the two constants. Since n^3 carries the heaviest growing rate the constant values can be ignored, so the Time complexity would be n^3.
Note: Take each loop as (n) and to obtained the total time, multiple the (n) values in each loop.
Hope this will help !

Big O of this code

I am doing the exercise of Skiena's book on algorithms and I am stuck in this question:
I need to calculate the big O of the following algorithm:
function mystery()
r=0
for i=1 to n-1 do
for j=i+1 to n do
for k=1 to j do
r=r+1
Here, the big O of the outermost loop will be O(n-1) and the middle loop will be O(n!). Please tell me if I am wrong here.
I am not able to calculate the big O of the innermost loop.
Can anyone please help me with this?
Here's a more rigorous way to approach solving this problem:
Define the run-time of the algorithm to be f(n) since n is our only input. The outer loop tells us this
f(n) = Sum(g(i,n), 1, n-1)
where Sum(expression, min, max) is the sum of expression from i = min to i = max. Notice that, the expression in this case is an evaluation of g(i, n) with a fixed i (the summation index) and n (the input to f(n)). And we can peel another layer and defineg(i, n):
g(i, n) = Sum(h(j), i+1, n), where i < n
which is the sum of h(j) where j ranges of i+1 to n. Finally we can just define
h(j) = Sum(O(1), 1, j)
since we've assumed that r = r+1 takes time O(1).
Notice at this point that we haven't done any hand-waving, saying stuff like "oh you can just multiply the loops together. The 'innermost operation' is the only one that counts." That statement isn't even true for all algorithms. Here's an example:
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
Solve_An_NP_Complete_Problem(n);
for (k = 0; k < n; k++)
{
count++;
}
}
}
The above algorithm isn't O(n^3)... it's not even polynomial.
Anyways, now that I've established the superiority of a rigorous evaluation (:D) we need to work our way upwards so we can figure out what the upper bound is for f(n). First, it's easy to see that h(j) is O(j) (just use the definition of Big-Oh). From that we can now rewrite g(i, n) as:
g(i, n) = Sum(O(j), i+1, n)
=> g(i, n) = O(i+1) + O(i+2) + ... O(n-1) + O(n)
=> g(i, n) = O(n^2 - i^2 - 2i - 1) (because we can sum Big-Oh functions
in this way using lemmas based on
the definition of Big-Oh)
=> g(i, n) = O(n^2) (because g(i, n) is only defined for i < n. Also, note
that before this step we had a Theta bound, which is
stronger!)
And so we can rewrite f(n) as:
f(n) = Sum(O(n^2), 1, n-1)
=> f(n) = (n-1)*O(n^2)
=> f(n) = O(n^3)
You might consider proving the lower bound to show that f(n) = Theta(n^3). The trick there is note simplifying g(i, n) = O(n^2) but keeping the tight bound when computing f(n). It requires some ugly algebra, but I'm pretty sure (i.e. I haven't actually done it) that you will be able to prove f(n) = Omega(n^3) as well (or just Theta(n^3) directly if you're really meticulous).
The analysis takes place as follows:
the outer loop goes from i = [1, n - 1], so the program would have linear complexity O(i) = O(n) if, inside this loop, only constant operations were performed;
however, inside the first loop, for each i, some operation is executed n times -- starting from j = [i + 1, n - 1]. This gives a total complexity of O(i * j) = O(n * n) = O(n^2);
finally, the innermost loop will be executed, for each i, and for each j, k times, with k ranging from k = [j, n - 1]. As j begins with i + 1 = 1 + 1, k is assymptotically equal to n, which gives you O(i * j * k) = O(n * n * n) = O(n^3).
The complexity of the program itself corresponds to the number of iterations of your innermost operations -- or the sums of complexities of innermost operations. If you had:
for i = 1:n
for j = 1:n
--> innermost operation (executed n^2 times)
for k = 1:n
--> innermost operation (executed n^3 times)
endfor
for l = 1:n
--> innermost operation (executed n^3 times)
endfor
endfor
endfor
The total complexity would be given as O(n^2) + O(n^3) + O(n^3), which is equal to max(O(n^2), O(n^3), O(n^3)), or O(n^3).
It cannot be factorial. For example if u have two nested cycles the big O will be n^2, not n^n. So three cycles cannot give more than n^3. Keep digging ;)

What is the asymptotic running time for variance?

As you can see I'm still pretty new with all these run time analyses and want to make sure each step I'm calculating is right..
Also I hate writing in pseudocode form so I did this in Python instead.. here goes
def mean(n):
sum = 0 #cost = 1
for i in n: #cost = n
sum += i #cost = n
return sum/len(n) #cost = 1
Therefore overall running time for mean (correct me if im wrong) = O(1) + O(n) + O(n) + O(1) = O(n)
def variance(n):
var = 0 #cost = 1
for i in n: #cost = n
var += (i-mean(n))**2 #cost = n*n or n+n ??
return var / len(n) #cost = 1
Question is what is the overall running time for variance? Can you show all workings please?
O(N^2), since you're performing an O(N) operation N times.
In general, loops are multiplicative when determining runtime; had your variance loop been "for i in lg(n)" then your runtime would be O(N * lg(N)) since you'd be performing an O(N) operation lg(N) times; likewise had your inner operation been O(2^N) with an outer loop of "for i in n" then your runtime would be O(N * 2^N)
Another common loop format is
for(int i = 0; i < N; i++) {
for(int j = i; j < N; j++) {
// O(1) operation
}
}
This is still O(N^2), but the analysis is a bit trickier: you need to take the sum of the arithmetic series "1 + 2 + 3 + ... + n-1 + n" which is n * (n - 1) / 2, or O(N^2)

Complexity of algorithm

What is the complexity given for the following problem is O(n). Shouldn't it be
O(n^2)? That is because the outer loop is O(n) and inner is also O(n), therefore n*n = O(n^2)?
The answer sheet of this question states that the answer is O(n). How is that possible?
public static void q1d(int n) {
int count = 0;
for (int i = 0; i < n; i++) {
count++;
for (int j = 0; j < n; j++) {
count++;
}
}
}
The complexity for the following problem is O(n^2), how can you obtain that? Can someone please elaborate?
public static void q1E(int n) {
int count = 0;
for (int i = 0; i < n; i++) {
count++;
for (int j = 0; j < n/2; j++) {
count++;
}
}
}
Thanks
The first example is O(n^2), so it seems they've made a mistake. To calculate (informally) the second example, we can do n * (n/2) = (n^2)/2 = O(n^2). If this doesn't make sense, you need to go and brush up what the meaning of something being O(n^k) is.
The complexity of both code is O(n*n)
FIRST
The outer loop runs n times and the inner loop varies from 0 to n-1 times
so
total = 1 + 2 + 3 + 4 ... + n
which if you add the arithmetic progression is n * ( n + 1 ) / 2 is O(n*n)
SECOND
The outer loop runs n times and the inner loop varies from 0 to n-1/2 times
so
total = 1 + 1/2 + 3/2 + 4/2 ... + n/2
which if you add the arithmetic progression is n * ( n + 1 ) / 4 is also O(n*n)
First case is definitely O(n^2)
The second is O(n^2) as well because you omit constants when calculate big O
Your answer sheet is wrong, the first algorithm is clearly O(n^2).
Big-Oh notation is "worst case" so when calculating the Big-Oh value, we generally ignore multiplications / divisions by constants.
That being said, your second example is also O(n^2) in the worst case because, although the inner loop is "only" 1/2 n, the n is the clear bounding factor. In practice the second algorithm will be less than O(n^2) operations -- but Big-Oh is intended to be a "worst case" (ie. maximal bounding) measurement, so the exact number of operations is ignored in favor of focusing on how the algorithm behaves as n approaches infinity.
Both are O(n^2). Your answer is wrong. Or you may have written the question incorrectly.

Resources