What is the Big-O of this Code? - algorithm

I thought the Big-O notation will be n^3, but the output does not even closely match my Big O:
int bigO(int [] myArray, int x) {
int count = 0;
for (int i = 0; i < x; i++)
for (int j = i+1; j < x; j++)
for (int k = j+1; k < x; k++) {
System.out.println(myArray[i] + ", " + myArray[j] + ", " +
myArray[k]);
count++;
}
return count;
}
My Apologies, I should have "x" instead of "n"

That's because your function does not perform exactly n^3 operations.
Actually, it does f(n) = (1/6)*n^3 - (1/2)*n^2 + (1/3)*n operations (found it using polynomial fitting).
But, by the definition, f(n) is O(n^3). The intuition behind this is:
(1/6)*n^3 is the dominant factor
(1/6)*n^3 grows within a constant factor of n^3.

Here's a static analysis for your code. Because the loops have all different iteration ranges, it's best if you start with the most inner loop and work your way from inner to outer loop.
The most inner for loop has n-j-1 iterations.
So if you look at the 2 inner loops, you have Sum (n-j-1) iterations (for j in the interval [i+1; n-1]). So you have (n-(i+1)-1) + (n-(i+2)-1) + ... + (n-(n-1)-1) iterations, which equals to (n-i-2) + (n-i-3) + ... + 1 + 0, which is an arithmetic series and the result is: (n-i-2)*(n-i-1)/2.
And now we loop over the outer loop and get Sum (n-i-2)*(n-i-1)/2 iterations (for i in the interval [0; n-1]). This is equal to 1/2*Sum(i^2) + (-n+3/2)*Sum(i) + (n^2/2-3n/2+1)*Sum(1). These sums are easy to calculate and after a bit of rearranging you receive: n^3/6 -n^2/2+n/3, which is the same formula as the one of #JuanLopes.
Since your functions is O(n^3) (n^3/6 -n^2/2+n/3 = O(n^3)), your code doesn't have exactly n^3 iterations. The dominant factor is n^3/6, and you will have about this many iterations.

Big-O notation is not a per-se feature of an algorithm! It describes how the output "grows" over time/space with respect to the size of the input. Define the "size" of your input and you can compute the Big-O complexity of it.
As soon as you change the definition of "size" of your input, you get totally different complexities.
Example:
Algorithm to apply a gaussian filter to a set of images of size X*Y
With respect the no. of images the algorithm operates in linear time
With respect the global no. of pixels to process the algorithm is quadratic
So the answer is: you didn't define your N :-)

Related

Determining the big-O of three nested for loops with if statment

What is the big-O for the following code :
y=1;
x=3;
for(int i =1 ; i < =n ; i*=2)
for(int j =1; j<= i * i; j++)
if (i % j == 0)
for(int k = 1; k<=j; k++)
y=y*x;
My Thoughts :
Looking at another similar questions I think the inner most loop is O(n) and the first loop is O(log (n))..as for the middle its O(n^2)
so the overall result would be O(log(n)*n^3)
Is my answer and way of thinking right ? I'm new to this so i hope i can get some help explaning how this loops work.
the most inner loop will run j time if i % j == 0. As the middle loop will run i^2 times, only when j < i it will be possible to satisfy the specified condition. Hence, among i^2 iteration of the middle loop, at least i^2 - i times, the condition will not be satisfied.
Suppose we denote the number of divisors of i with tau(i), among j < i only tau(i) times the condition will satisfy that means the total complexity of the most inner loop is equal to the sum of divisions of i which is at most 77/16 i (see this post for the proof).
Hence, the total complexity of the middle loop with the inner loop is at most (i^2 - i) + (i - tau(i)) + 77/16 i = i^2 + 77/16 i - tau(i).
We also know that the tau(i) is in O(i^(1/loglog(i))) (see the proof here). Now, to find the complexity of the whole loop, we need to sum the last expression for i = 1, 2, 4, ..., n. As we desire to find the asymptotic complexity and we have a sum here, we can ignore the lower powers of i. Therefore, the time complexity of the whole loop is 1 + 2^2 + (2^2)^2 + ... + (2^2)^log(n) = ((2^2)^(log(n)+1)-1)/(2^2-1) = Theta(n^2) (a geometric sum with factor of 2^2 and log(n) items).
In sum, the higher time complexity analysis for the specified code is Theta(n^2) which is also in O(n^2) as well.

how i can find the time complexity of the above code

for(i=0; i<n; i++) // time complexity n+1
{
k=1; // time complexity n
while(k<=n) // time complexity n*(n+1)
{
for(j=0; j<k; j++) // time complexity ??
printf("the sum of %d and %d is: %d\n",j,k,j+k); time complexity ??
k++;
}
What is the time complexity of the above code? I stuck in the second (for) and i don't know how to find the time complexity because j is less than k and not less than n.
I always having problems related to time complexity, do you guys got some good article on it?
especially about the step count and loops.
From the question :
because j is less than k and not less than n.
This is just plain wrong, and I guess that's the assumption that got you stuck. We know what values k can take. In your code, it ranges from 1 to n (included). Thus, if j is less than k, it is also less than n.
From the comments :
i know the the only input is n but in the second for depends on k an not in n .
If a variable depends on anything, it's on the input. j depends on k that itself depends on n, which means j depends on n.
However, this is not enough to deduce the complexity. In the end, what you need to know is how many times printf is called.
The outer for loop is executed n times no matter what. We can factor this out.
The number of executions of the inner for loop depends on k, which is modified within the while loop. We know k takes every value from 1 to n exactly once. That means the inner for loop will first be executed once, then twice, then three times and so on, up until n times.
Thus, discarding the outer for loop, printf is called 1+2+3+...+n times. That sum is very well known and easy to calculate : 1+2+3+...+n = n*(n+1)/2 = (n^2 + n)/2.
Finally, the total number of calls to printf is n * (n^2 + n)/2 = n^3/2 + n^2/2 = O(n^3). That's your time complexity.
A final note about this kind of codes. Once you see the same patterns a few times, you quickly start to recognize the kind of complexity involved. Then, when you see that kind of nested loops with dependent variables, you immediately know that the complexity for each loop is linear.
For instance, in the following, f is called n*(n+1)*(n+2)/6 = O(n^3) times.
for (i = 1; i <= n; ++i) {
for (j = 1; j <= i; ++j) {
for (k = 1; k <= j; ++k) {
f();
}
}
}
First, simplify the code to show the main loops. So, we have a structure of:
for(int i = 0; i < n; i++) {
for(int k = 1; k <= n; k++) {
for(int j = 0; j < k; j++) {
}
}
}
The outer-loops run n * n times but there's not much you can do with this information because the complexity of the inner-loop changes based on which iteration of the outer-loop you're on, so it's not as simple as calculating the number of times the outer loops run and multiplying by some other value.
Instead, I would find it easier to start with the inner-loop, and then add the outer-loops from the inner-most to outer-most.
The complexity of the inner-most loop is k.
With the middle loop, it's the sum of k (the complexity above) where k = 1 to n. So 1 + 2 + ... + n = (n^2 + n) / 2.
With the outer loop, it's done n times so another multiplication by n. So n * (n^2 + n) / 2.
After simplifying, we get a total of O(n^3)
The time complexity for the above code is : n x n x n = n^3 + 1+ 1 = n^3 + 2 for the 3 loops plus the two constants. Since n^3 carries the heaviest growing rate the constant values can be ignored, so the Time complexity would be n^3.
Note: Take each loop as (n) and to obtained the total time, multiple the (n) values in each loop.
Hope this will help !

Time complexity of nested for loops

the following sample loops have O(n^2) time complexity
Can anyone explain me why it is O(n^2)? As it depends on the value of c...
loop 1---
for (int i = 1; i <=n; i += c)
{
for (int j = 1; j <=n; j += c)
{
// some O(1) expressions
}
}
loop 2---
for (int i = n; i > 0; i -= c)
{
for (int j = i+1; j <=n; j += c)
{
// some O(1) expressions
}
}
If c=0 ; then it runs infinite number of times , in the similar way if c value is increased then the number of times the inner loops run will be decreased
Can anyone explain it to me?
Each of these parts of code takes a time O(n^2/c^2). c is probably considered a strictly positive constant here and therefore O(n^2/c^2) = O(n^2). But it all depends on the context...
Big-O notation is a relative representation of the complexity of an algorithm.
Big-O does not says anything about how many iterations your algorithm will make in any case .
It says in worst case your algorithm will be making n squared computations. Which is useful if you have to compare 2 algorithms.
In your code if we assume c to be a constant then it could be ignored from Big-O notation because Big-O is all about comparison and how thing scale. where constants play no role.
But when c is not a constant the correct Big-O notation would be O(n^2/c^2).
Read this awesome explanation of Big-O by cletus .
For every FIXED c, the time is O (n^2). The number of iterations is roughly max (n^2 / c^2, n^2) unless c = 0. n^2 / c^2 is O (n^2) for every fixed n.
If you had code where c was changed during the loop, you might get a different answer.

Why Bubble sort complexity is O(n^2)?

As I understand, the complexity of an algorithm is a maximum number of operations performed while sorting. So, the complexity of Bubble sort should be a sum of arithmmetic progression (from 1 to n-1), not n^2.
The following implementation counts number of comparisons:
public int[] sort(int[] a) {
int operationsCount = 0;
for (int i = 0; i < a.length; i++) {
for(int j = i + 1; j < a.length; j++) {
operationsCount++;
if (a[i] > a[j]) {
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
}
System.out.println(operationsCount);
return a;
}
The ouput for array with 10 elements is 45, so it's a sum of arithmetic progression from 1 to 9.
So why Bubble sort's complexity is n^2, not S(n-1) ?
This is because big-O notation describes the nature of the algorithm. The major term in the expansion (n-1) * (n-2) / 2 is n^2. And so as n increases all other terms become insignificant.
You are welcome to describe it more precisely, but for all intents and purposes the algorithm exhibits behaviour that is of the order n^2. That means if you graph the time complexity against n, you will see a parabolic growth curve.
Let's do a worst case analysis.
In the worst case, the if (a[i] > a[j]) test will always be true, so the next 3 lines of code will be executed in each loop step. The inner loop goes from j=i+1 to n-1, so it will execute Sum_{j=i+1}^{n-1}{k} elementary operations (where k is a constant number of operations that involve the creation of the temp variable, array indexing, and value copying). If you solve the summation, it gives a number of elementary operations that is equal to k(n-i-1). The external loop will repeat this k(n-i-1) elementary operations from i=0 to i=n-1 (ie. Sum_{i=0}^{n-1}{k(n-i-1)}). So, again, if you solve the summation you see that the final number of elementary operations is proportional to n^2. The algorithm is quadratic in the worst case.
As you are incrementing the variable operationsCount before running any code in the inner loop, we can say that k (the number of elementary operations executed inside the inner loop) in our previous analysis is 1. So, solving Sum_{i=0}^{n-1}{n-i-1} gives n^2/2 - n/2, and substituting n with 10 gives a final result of 45, just the same result that you got by running the code.
Worst case scenario:
indicates the longest running time performed by an algorithm given any input of size n
so we will consider the completely backward list for this worst-case scenario
int[] arr= new int[]{9,6,5,3,2};
Number of iteration or for loops required to completely sort it = n-1 //n - number of elements in the list
1st iteration requires (n-1) swapping + 2nd iteration requires (n-2) swapping + ……….. + (n-1)th iteration requires (n-(n-1)) swapping
i.e. (n-1) + (n-2) + ……….. +1 = n/2(a+l) //sum of AP
=n/2((n-1)+1)=n^2/2
so big O notation = O(n^2)

Complexity of algorithm

What is the complexity given for the following problem is O(n). Shouldn't it be
O(n^2)? That is because the outer loop is O(n) and inner is also O(n), therefore n*n = O(n^2)?
The answer sheet of this question states that the answer is O(n). How is that possible?
public static void q1d(int n) {
int count = 0;
for (int i = 0; i < n; i++) {
count++;
for (int j = 0; j < n; j++) {
count++;
}
}
}
The complexity for the following problem is O(n^2), how can you obtain that? Can someone please elaborate?
public static void q1E(int n) {
int count = 0;
for (int i = 0; i < n; i++) {
count++;
for (int j = 0; j < n/2; j++) {
count++;
}
}
}
Thanks
The first example is O(n^2), so it seems they've made a mistake. To calculate (informally) the second example, we can do n * (n/2) = (n^2)/2 = O(n^2). If this doesn't make sense, you need to go and brush up what the meaning of something being O(n^k) is.
The complexity of both code is O(n*n)
FIRST
The outer loop runs n times and the inner loop varies from 0 to n-1 times
so
total = 1 + 2 + 3 + 4 ... + n
which if you add the arithmetic progression is n * ( n + 1 ) / 2 is O(n*n)
SECOND
The outer loop runs n times and the inner loop varies from 0 to n-1/2 times
so
total = 1 + 1/2 + 3/2 + 4/2 ... + n/2
which if you add the arithmetic progression is n * ( n + 1 ) / 4 is also O(n*n)
First case is definitely O(n^2)
The second is O(n^2) as well because you omit constants when calculate big O
Your answer sheet is wrong, the first algorithm is clearly O(n^2).
Big-Oh notation is "worst case" so when calculating the Big-Oh value, we generally ignore multiplications / divisions by constants.
That being said, your second example is also O(n^2) in the worst case because, although the inner loop is "only" 1/2 n, the n is the clear bounding factor. In practice the second algorithm will be less than O(n^2) operations -- but Big-Oh is intended to be a "worst case" (ie. maximal bounding) measurement, so the exact number of operations is ignored in favor of focusing on how the algorithm behaves as n approaches infinity.
Both are O(n^2). Your answer is wrong. Or you may have written the question incorrectly.

Resources