How to work with multidimensional data in Halide - halide

I started working with Halide. I know it is explicitly an Image Processing framework, but is there a way to handle multidimensional array ( > 3D ) in it without doing any complex steps like Dimensionality Reduction or Separating the mathematical equations in lower dimensional spaces?
Thanks,
Karnajit

Currently, I believe there is an absolute limitation of 4 dimensions for Buffer: https://github.com/halide/Halide/blob/master/src/Buffer.cpp#L149
Then there seem to be further limitations depending on the target backend:
https://github.com/halide/Halide#limitations

Related

How to minimize a cost function with Matlab when input variable is a large image: increase speed and prevent memory crash

I am trying to implement a differential phase integration method described in this paper:
Thüring, Thomas, et al. "Non-linear regularized phase retrieval for unidirectional X-ray differential phase contrast radiography." Optics express 19.25 (2011): 25545-25558.
Basically, it's a way to integrate a differential image across the columns only, while imposing some constraints on continuity across the rows to prevent stripe noise.
From a mathematical point of view, I want to minimize the following equation:
where ||.|| is the L2 norm, Dx is the derivative along the columns, Dy is the derivative across the rows, A is the unknown integrated matrix, lambda is a user-defined parameter and phi is the differential profile I measured. Note that for the Dy operator the L1 norm can also be used.
I wrote down a code using fminunc as Matlab solver
pdiff=imresize(diff(padarray(p,[0,1],'replicate','post'),1,2),[128,128]);
noise = 0.02 * randn(size(pdiff));
pdiff_noise = pdiff + noise ;
% normal integration
integratedProfile=cumsum(pdiff_noise,2);
options=optimoptions(#fminunc,'Display','iter-detailed','UseParallel',true,'MaxIterations',35);
% regularized integration
startingPoint=zeros(size(pdiff_noise));
fun=#(x)costFunction(pdiff_noise,x);
integratedProfile_optmized=fminunc(fun,startingPoint,options);
function difference=costFunction(ep,op)
L=0.2;
dep_o=diff(padarray(op,[0,1],'replicate','post'),1,2);
dep_v=diff(padarray(op,[1,0],'replicate','post'),1,1);
difference=sum(sum((ep-dep_o).^2))+L*sum(sum(dep_v.^2));
end
It works using a 128x128 differential image.
The problem arises as soon as I try to work with a larger image. In particular, when I use a 256x256 matrix takes forever to make each iteration even using the parallel option and takes almost the entire RAM.
When I move to a matrix that is 512x512 I get this error
Requested 262144x262144 (512.0GB) array exceeds maximum
array size preference.
Error in fminusub (line 165)
H = eye(sizes.nVar);
Error in fminunc (line 446)
[x,FVAL,GRAD,HESSIAN,EXITFLAG,OUTPUT] =
fminusub(funfcn,x, ...
Error in Untitled (line 13)
integratedProfile_optmized=fminunc(fun,startingPoint,options);
Unfortunately, my final goal is to process approximately 3000 images of 500x500 size.
I think I have understood that the crash problem is related to the size of the matrix and to the fact that each pixel is a variable. Therefore, Matlab needs to calculate a huge hessian that doesn't fit into the memory.
However, I don't really know how to solve it while also speeding up the processing.
Do you have any suggestions on how to work with large images? Is there another solver that may work in a faster way? Any mathematical approach to making the problem easier?
Thanks!

Can we convert every Algorithm in fixed point?

I have developed a Algorithm in MATLAB using floating point variable. In my algortihm I am doing eigen value decomposition ,rotation, transformation of matrices, inverse of matrices, division , addition and multipications of matrices several times.(So it is kind of processing of the the signal). I tried to convert it into the fixed point but I am unable to do because my variables and matrices changes it values every time. So for me it is very difficult to handle the overflow problem as I can not make any routine to handle the overflow. Can any one tell me how to handle this problem or is it not possible to convert the algorithm into fixed point.
I need a concerte reason to justify that I can not convert my Algorithm into fixed point(As it is my master thesis!)
P.S:- This algorithm is developed for the controller of the Analog to digital converter, which utilizes the Statistics of the signal and gives the effective decision threshold. I have just written the mathemetical operations.
the answer is YES and NO. it depends on the processed data dynamic range
if you are processing numbers/signal in specified range then YES
but if the numbers/signal has very high dynamic range then NO
you should use more fixed point formats for different stage of signal processing
for example ADC gives you values in exact defined range
so you have to use fixed format such that does not loss precision and have not many unused bits
after that you apply some filter or what ever the range changes
so you need to get bound of possible number ranges per stage and use the best suited fixed point format you have at disposal
This means you need some number of fixed point formats
and also the operations between them
you can have fixed number of bits and just change the position of decimal point...
To be more specific then you need add the block diagram of your processing pipeline
with the number ranges included
and list of used operations
matrix operations and integrals/sums are tricky because they can change the dynamic range considerably
The real question always stays if such implementation is faster then floating point ...
because sometimes the transition between different fixed point stages can be slower then direct floating point implementation ...

How to efficiently store and manipulate sparse binary matrices in Octave?

I'm trying to manipulate sparse binary matrices in GNU Octave, and it's using way more memory than I expect, and relevant sparse-matrix functions don't behave the way I want them to. I see this question about higher-than-expected sparse-matrix storage in MATLAB, which suggests that this matrix should consume even more memory, but helped explain (only) part of this situation.
For a sparse, binary matrix, I can't figure out any way to get Octave to NOT STORE the array of values (they're always implicitly 1, so need not be stored). Can this be done? Octave always seems to consume memory for a values array.
A trimmed-down example demonstrating the situation: create random sparse matrix, turn it into "binary":
mys=spones(sprandn(1024,1024,.03)); nnz(mys), whos mys
Shows the situation. The consumed size is consistent with the storage mechanism outlined in aforementioned SO answer and expanded below, if spones() creates an array of storage-class double and if all indices are 32-bit (i.e., TotalStorageSize - rowIndices - columnIndices == NumNonZero*sizeof(double) -- unnecessarily storing these values (all 1s as doubles) is over half of the total memory consumed by this 3%-sparse object.
After messing with this (for too long) while composing this question, I discovered some partial workarounds, so I'm going to "self-answer" (only) part of the question for continuity (hopefully), but I didn't figure out an adequate answer to main question:
How do I create an efficiently-stored ("no-/implicit-values") binary matrix in Octave?
Additional background on storage format follows...
The Octave docs say the storage format for sparse matrices uses format Compressed Sparse Column (CSC). This seems to imply storing the following arrays (expanding on aforementioned SO answer, with canonical Yale format labels and tweaks for column-major order):
values (A), number-of-nonzeros (NNZ) entries of storage-class size;
row numbers (IA), NNZ entries of index size (hopefully int64 but maybe int32);
start of each column (JA), number-of-columns-plus-1 entries of index size)
In this case, for binary-only storage, I hope there's a way to completely avoid storing array (A), but I can't figure it out.
Full disclosure: As noted above, as I was composing this question, I discovered a workaround to reduce memory usage, so I'm "self-answering" part of this here, but it still isn't fully satisfying, so I'm still listening for a better actual answer to storage of a sparse binary matrix without a trivial, bloated, unnecessary values array...
To get a binary-like value out of a number-like value and reduce the memory usage in this case, use "logical" storage, created by logical(X). For example, building from above,
logicalmys = logical(mys);
creates a sparse bool matrix, that takes up less memory (1-byte logical rather than 8-byte double for the values array).
Adding more information to the whos information using whos_line_format helps illuminate the situation: The default string includes 5 of the 7 properties (see docs for more). I'm using the format string
whos_line_format(" %a:4; %ln:6; %cs:16:6:1; %rb:12; %lc:8; %e:10; %t:20;\n")
to add display of "elements", and "type" (which is distinct from "class").
With that, whos mys logicalmys shows something like
Attr Name Size Bytes Class Elements Type
==== ==== ==== ===== ===== ======== ====
mys 1024x1024 391100 double 32250 sparse matrix
logicalmys 1024x1024 165350 logical 32250 sparse bool matrix
So this shows a distinction between sparse matrix and sparse bool matrix. However, the total memory consumed by logicalmys is consistent with actually storing an array of NNZ booleans (1-byte) -- That is:
totalMemory minus rowIndices minus columnOffsets leaves NNZ bytes left;
in numbers,
165350 - 32250*4 - 1025*4 == 32250.
So we're still storing 32250 elements, all of which are 1. Further, if you set one of the 1-elements to zero, it reduces the reported storage! For a good time, try: pick a nonzero element, e.g., (42,1), then zero it: logicalmys(42,1) = 0; then whos it!
My hope is that this is correct, and that this clarifies some things for those who might be interested. Comments, corrections, or actual answers welcome!

Ising 2D Optimization

I have implemented a MC-Simulation of the 2D Ising model in C99.
Compiling with gcc 4.8.2 on Scientific Linux 6.5.
When I scale up the grid the simulation time increases, as expected.
The implementation simply uses the Metropolis–Hastings algorithm.
I tried to find out a way to speed up the algorithm, but I haven't any good idea ?
Are there some tricks to do so ?
As jimifiki wrote, try to do a profiling session.
In order to improve on the algorithmic side only, you could try the following:
Lookup Table:
When calculating the energy difference for the Metropolis criteria you need to evaluate the exponential exp[-K / T * dE ] where K is your scaling constant (in units of Boltzmann's constant) and dE the energy-difference between the original state and the one after a spin-flip.
Calculating exponentials is expensive
So you simply build a table beforehand where to look up the possible values for the dE. There will be (four choose one plus four choose two plus four choose three plus four choose four) possible combinations for a nearest-neightbour interaction, exploit the problem's symmetry and you get five values fordE: 8, 4, 0, -4, -8. Instead of using the exp-function, use the precalculated table.
Parallelization:
As mentioned before, it is possible to parallelize the algorithm. To preserve the physical correctness, you have to use a so-called checkerboard concept. Consider the two-dimensional grid as a checkerboard and compute only the white cells parallel at once, then the black ones. That should be clear, considering the nearest-neightbour interaction which introduces dependencies of the values.
Use GPGPU:
You can also implement the simulation on a GPGPU, e.g. using CUDA, if you're already working on C99.
Some tips:
- Don't forget to align C99-structs properly.
- Use linear Arrays, not that nested ones. Aligned memory is normally faster to access, if done properly.
- Try to let the compiler do loop-unrolling, etc. (gcc special options, not default on O2)
Some more information:
If you look for an efficient method to calculate the critical point of the system, the method of choice would be finite-size scaling where you simulate at different system-sizes and different temperature, then calculate a value which is system-size independet at the critical point, therefore an intersection point of the corresponding curves (please see the theory to get a detailed explaination)
I hope I was helpful.
Cheers...
It's normal that your simulation times scale at least with the square of the size. Isn't it?
Here some subjestions:
If you are concerned with thermalization issues, try to use parallel tempering. It can be of help.
The Metropolis-Hastings algorithm can be made parallel. You could try to do it.
Check you are not pessimizing the code.
Are your spin arrays of ints? You could put many spins on the same int. It's a lot of work.
Moreover, remember what Donald taught us:
premature optimisation is the root of all evil
Before optimising you should first understand where your program is slow. This is called profiling.

How to implement a part of histogram equalization in matlab without using for loops and influencing speed and performance

Suppose that I have these Three variables in matlab Variables
I want to extract diverse values in NewGrayLevels and sum rows of OldHistogram that are in the same rows as one diverse value is.
For example you see in NewGrayLevels that the six first rows are equal to zero. It means that 0 in the NewGrayLevels has taken its value from (0 1 2 3 4 5) of OldGrayLevels. So the corresponding rows in OldHistogram should be summed.
So 0+2+12+38+113+163=328 would be the frequency of the gray level 0 in the equalized histogram and so on.
Those who are familiar with image processing know that it's part of the histogram equalization algorithm.
Note that I don't want to use built-in function "histeq" available in image processing toolbox and I want to implement it myself.
I know how to write the algorithm with for loops. I'm seeking if there is a faster way without using for loops.
The code using for loops:
for k=0:255
Condition = NewGrayLevels==k;
ConditionMultiplied = Condition.*OldHistogram;
NewHistogram(k+1,1) = sum(ConditionMultiplied);
end
I'm afraid if this code gets slow for high resolution big images.Because the variables that I have uploaded are for a small image downloaded from the internet but my code may be used for sattellite images.
I know you say you don't want to use histeq, but it might be worth your time to look at the MATLAB source file to see how the developers wrote it and copy the parts of their code that you would like to implement. Just do edit('histeq') or edit('histeq.m'), I forget which.
Usually the MATLAB code is vectorized where possible and runs pretty quick. This could save you from having to reinvent the entire wheel, just the parts you want to change.
I can't think a way to implement this without a for loop somewhere, but one optimisation you could make would be using indexing instead of multiplication:
for k=0:255
Condition = NewGrayLevels==k; % These act as logical indices to OldHistogram
NewHistogram(k+1,1) = sum(OldHistogram(Condition)); % Removes a vector multiplication, some additions, and an index-to-double conversion
end
Edit:
On rereading your initial post, I think that the way to do this without a for loop is to use accumarray (I find this a difficult function to understand, so read the documentation and search online and on here for examples to do so):
NewHistogram = accumarray(1+NewGrayLevels,OldHistogram);
This should work so long as your maximum value in NewGrayLevels (+1 because you are starting at zero) is equal to the length of OldHistogram.
Well I understood that there's no need to write the code that #Hugh Nolan suggested. See the explanation here:
%The green lines are because after writing the code, I understood that
%there's no need to calculate the equalized histogram in
%"HistogramEqualization" function and after gaining the equalized image
%matrix you can pass it to the "ExtractHistogram" function
% (which there's no loops in it) to acquire the
%equalized histogram.
%But I didn't delete those lines of code because I had tried a lot to
%understand the algorithm and write them.
For more information and studying the code, please see my next question.

Resources