Can we convert every Algorithm in fixed point? - algorithm

I have developed a Algorithm in MATLAB using floating point variable. In my algortihm I am doing eigen value decomposition ,rotation, transformation of matrices, inverse of matrices, division , addition and multipications of matrices several times.(So it is kind of processing of the the signal). I tried to convert it into the fixed point but I am unable to do because my variables and matrices changes it values every time. So for me it is very difficult to handle the overflow problem as I can not make any routine to handle the overflow. Can any one tell me how to handle this problem or is it not possible to convert the algorithm into fixed point.
I need a concerte reason to justify that I can not convert my Algorithm into fixed point(As it is my master thesis!)
P.S:- This algorithm is developed for the controller of the Analog to digital converter, which utilizes the Statistics of the signal and gives the effective decision threshold. I have just written the mathemetical operations.

the answer is YES and NO. it depends on the processed data dynamic range
if you are processing numbers/signal in specified range then YES
but if the numbers/signal has very high dynamic range then NO
you should use more fixed point formats for different stage of signal processing
for example ADC gives you values in exact defined range
so you have to use fixed format such that does not loss precision and have not many unused bits
after that you apply some filter or what ever the range changes
so you need to get bound of possible number ranges per stage and use the best suited fixed point format you have at disposal
This means you need some number of fixed point formats
and also the operations between them
you can have fixed number of bits and just change the position of decimal point...
To be more specific then you need add the block diagram of your processing pipeline
with the number ranges included
and list of used operations
matrix operations and integrals/sums are tricky because they can change the dynamic range considerably
The real question always stays if such implementation is faster then floating point ...
because sometimes the transition between different fixed point stages can be slower then direct floating point implementation ...

Related

MSE giving negative results in High-Level Synthesis

I am trying to calculate the Mean Squared Error in Vitis HLS. I am using hls::pow(...,2) and divide by n, but all I receive is a negative value for example -0.004. This does not make sense to me. Could anyone point the problem out or have a proper explanation for this??
Besides calculating the mean squared error using hls::pow does not give the same results as (a - b) * (a - b) and for information I am using ap_fixed<> types and not normal float or double precision
Thanks in advance!
It sounds like an overflow and/or underflow issue, meaning that the values reach the sign bit and are interpreted as negative while just be very large.
Have you tried tuning the representation precision or the different saturation/rounding options for the fixed point class? This tuning will depend on the data you're processing.
For example, if you handle data that you know will range between -128.5 and 1023.4, you might need very few fractional bits, say 3 or 4, leaving the rest for the integer part (which might roughly be log2((1023+128)^2)).
Alternatively, if n is very large, you can try a moving average and calculate the mean in small "chunks" of length m < n.
p.s. Getting the absolute value of a - b and store it into an ap_ufixed before the multiplication can already give you one extra bit, but adds an instruction/operation/logic to the algorithm (which might not be a problem if the design is pipelined, but require space if the size of ap_ufixed is very large).

Make a previously unknown number of parallel operations. In VHDL

Im working on a project for which I need to make calculations with vectors (orthogonalizing a matrix using gram schmidt method). The length of this vectors is unknown now, the program must be able to adapt to different lengths. One of such calculations is calculating a new vector (C) which is the result of adding A and B. Each element of the vectors is a number in fixed-point.
I want C(i)=A(i)+B(i). For all the elements of the vector (for i=0 to N, where N is the vector length).
I can find 2 solutions for this but both present some problems:
1- I can declare in the entity, vectors whose length changes according to a generic and then just create a for loop which goes through all the vector.
for I in 0 to N loop
C(I)<=A(I)+B(I);
end loop;
The problem with this solution is that the execution would be sequential, and therefore slow. Im not completly sure about this and I dont know how to check it but I guess that the compiler is not smart enough to notice that it can be processed in parallel. In this application speed is a key factor.
2- I can declare vectors which are as long as the maximum possible length for the actual data and fill them with zeroes. Then I could just assign:
C(0)<=A(0)+B(0);
C(1)<=A(1)+B(1);
C(2)<=A(2)+B(2);
...
C(Nmax)<=A(Nmax)+B(Nmax);
This is not an elegant solution and in this application N can be between 3 and 300 therefore it could be a complete waste and tedious to program.
3- I want to find a third solution which could be able to create a number (asigned by the generic) of combinational calculations following a template such as C(i)=A(i)+B(i). Is there any solution like this? It is actually creating a loop which would not be executed sequentially but instead all at the same time.
I know that similar stuff can be done using CUDA but this project is actually a comparison between GPUs and FPGAs, so changing the platform is not a suitable solution either.
Thank you in advance
Edit: I have tought of another unsatisfactory solution but I want to share it in case it is helpful for somebody else checking this in the future. Given that A and B have the same length, you can write them in a 1-D format, that is: A(normal)=[1001,1100,0011], A(1-D)=100111000011. The same would be done with B.
If you know before hand that the sum of any two possible numbers can be expressed with the same amount of bits, there will be no problems. So with 4 unsigned bits you should make sure that in any possible case the numbers in A or B are !>0111 (not higher than 0111). You could just write C(1-D)=A(1-D)+B(1-D) and then just asign C(0)=C(1-D)(3 downto 0), C(1)=C(1-D)(7 downto 4) etc.
If you cannot make sure that the numbers are not higher than 0111 (in the 4 bit case) it wont work.
You might be able to use the length attribute to create a loop depending on the size of your vector.
https://www.csee.umbc.edu/portal/help/VHDL/attribute.html
As mentioned in the comment to the question the loop should be unrolled as long as it is not synchronized to the clock.

Generate a Random number in Uppaal

My question is Can I generate a random number in Uppaal?
I would like to generate a number from a range of values. Even more, I would like to generate not just integers I would like to generate double values as well.
for example: double [7.25,18.3]
I found this question that were talking about the same. I tried it.
However, I got this error: syntax error unexpected T_SELECT.
It doesn't work. I'm pretty new in Uppaal world, I would appreciate any help that you can provide me.
Regards,
This is a common and misunderstood question in Uppaal.
Simple answer:
double val; // declaration
val = random(18.3-7.25)+7.25; // use in update, works in SMC (Uppaal v4.1)
Verbose answer:
Uppaal supports symbolic analysis as well as statistical and the treatment and possibilities are radically different. So one has to decide first what kind of analysis is needed. Usually one starts with simple symbolic analysis and then augment with stochastic features, sometimes stochastic behavior needs also to be checked symbolically.
In symbolic analysis (queries A[], A<>, E<>, E[] etc), random is synonymous with non-deterministic, i.e. if the model contains some "random" behavior, then verification should check all of them any way. Therefore such behavior is modelled as non-deterministic choices between edges. It is easy to setup a set of edges over an integer range by using select statement on the edge where a temporary variable is declared and its value can be used in guards, synchronization and update. Symbolic analysis supports only integer data types (no floating point types like double) and continuous ranges over clocks (specified by constraints in guards and invariants).
Statistical analysis (via Monte-Carlo simulations, queries like Pr[...](<> p), E[...](max: var), simulate, etc) supports double types and floating point functions like sin, cos, sqrt, random(MAX) (uniform distribution over [0, MAX)), random_normal(mean, dev) etc. in addition to int data types. Clock variables can also be treated as floating point type, except that their derivative is set to 1 by default (can be changed in the invariants which allow ODEs -- ordinary differential equations).
It is possible to create models with floating point operations (including random) and still apply symbolic analysis provided that the floating point variables do not influence/constrain the model behavior, and act merely as a cost function over the state space. Here are systematic rules to achieve this:
a) the clocks used in ODEs must be declared of hybrid clock type.
b) hybrid clock and double type variables cannot appear in guard and invariant constraints. Only ODEs are allowed over the hybrid clocks in the invariant.

Ising 2D Optimization

I have implemented a MC-Simulation of the 2D Ising model in C99.
Compiling with gcc 4.8.2 on Scientific Linux 6.5.
When I scale up the grid the simulation time increases, as expected.
The implementation simply uses the Metropolis–Hastings algorithm.
I tried to find out a way to speed up the algorithm, but I haven't any good idea ?
Are there some tricks to do so ?
As jimifiki wrote, try to do a profiling session.
In order to improve on the algorithmic side only, you could try the following:
Lookup Table:
When calculating the energy difference for the Metropolis criteria you need to evaluate the exponential exp[-K / T * dE ] where K is your scaling constant (in units of Boltzmann's constant) and dE the energy-difference between the original state and the one after a spin-flip.
Calculating exponentials is expensive
So you simply build a table beforehand where to look up the possible values for the dE. There will be (four choose one plus four choose two plus four choose three plus four choose four) possible combinations for a nearest-neightbour interaction, exploit the problem's symmetry and you get five values fordE: 8, 4, 0, -4, -8. Instead of using the exp-function, use the precalculated table.
Parallelization:
As mentioned before, it is possible to parallelize the algorithm. To preserve the physical correctness, you have to use a so-called checkerboard concept. Consider the two-dimensional grid as a checkerboard and compute only the white cells parallel at once, then the black ones. That should be clear, considering the nearest-neightbour interaction which introduces dependencies of the values.
Use GPGPU:
You can also implement the simulation on a GPGPU, e.g. using CUDA, if you're already working on C99.
Some tips:
- Don't forget to align C99-structs properly.
- Use linear Arrays, not that nested ones. Aligned memory is normally faster to access, if done properly.
- Try to let the compiler do loop-unrolling, etc. (gcc special options, not default on O2)
Some more information:
If you look for an efficient method to calculate the critical point of the system, the method of choice would be finite-size scaling where you simulate at different system-sizes and different temperature, then calculate a value which is system-size independet at the critical point, therefore an intersection point of the corresponding curves (please see the theory to get a detailed explaination)
I hope I was helpful.
Cheers...
It's normal that your simulation times scale at least with the square of the size. Isn't it?
Here some subjestions:
If you are concerned with thermalization issues, try to use parallel tempering. It can be of help.
The Metropolis-Hastings algorithm can be made parallel. You could try to do it.
Check you are not pessimizing the code.
Are your spin arrays of ints? You could put many spins on the same int. It's a lot of work.
Moreover, remember what Donald taught us:
premature optimisation is the root of all evil
Before optimising you should first understand where your program is slow. This is called profiling.

DSP - Converting a sampled signal from real samples to complex samples and vice versa

How can I convert baseband sampled signal from real-valued samples to complex-valued samples (real,imaginary) and vice-versa.
My samples are integers, and I'm looking for a fast (but accurate) conversion algorithms.
A C++ sample code (real, not complex ;-) would be more than welcome.
Edit: IPP code will be much welcome.
Edit: I'm looking for a method that will convert n real-samples to n/2 complex-samples and vice-versa, without affecting the bandwidth.
Adding zeros as the imaginary is conceptually the first step in what you want to do. Initially you have a real only signal that looks like this in the frequency domain:
[r0, r1, r2, r3, ...]
/-~--------\
DC +Fs/2
If you stuff it with zeros for the imaginary value, you'll see that you really have both positive and negative frequencies as mirror images:
[r0 + 0i, r1 + 0i, r2 + 0i, r3 + 0i, ...]
/--------~-\ /-~--------\
-Fs/2 DC +Fs/2
Next, you multiply that signal in the time domain by a complex tone at -Fs/4 (tuning the signal). Your signal will look like
----~-\ /-~--------\ /------
DC
So now, you filter out the center half and you get:
________/-~--------\________
DC
Then you decimate by two and you end up with:
/-~--------\
Which is what you want.
All of these steps can be performed efficiently in the time domain. If you pay attention to all of the intermediate steps, you'll notice that there are many places where you're multiplying by 0, +1, -1, +i, or -i. Furthermore, the half band low pass filter will have a lot of zeros and some symmetry to exploit. Since you know you're going to decimate by 2, you only have to calculate the samples you intend to keep. If you work through the algebra, you'll find a lot of places to simplify it for a clean and fast implementation.
Ultimately, this is all equivalent to a Hilbert transform, but I think it's much easier to understand when you decompose it into pieces like this.
Converting back to real from complex is similar. You'll stuff it with zeroes for every other sample to undo the decimation. You'll filter the complex signal to remove an alias you just introduced. You'll tune it up by Fs/4, and then throw away the imaginary component. (Sorry, I'm all ascii-arted out... :-)
Note that this conversion is lossy near the boundaries. You'd have to use an infinite length filter to do it perfectly.
If you want to create a complex vector with a strictly real spectrum, just add an imaginary component of 0.0 to every sample. Depending on your data format, this may be as easy as creating a double length memory array, zeroing it, and copying from every element of the source into every other element of the destination.
If you want to convert a complex vector containing complex data (non-zero imaginary components above your required minimum noise floor) into a real vector, you will need to double your bandwidth in order to not lose information, which may or may not make sense, unless you are modulating, demodulating or filtering the signal.
If you want to produce a one-sided signal with a complex spectrum from a real vector, you can use a Hilbert transform (or filter) to create an imaginary component with the same spectrum but conjugate phase (except for DC). This would probably not be both fast and accurate.
I'm not sure if that is what you're looking for but you might want to check the Hilbert Transform, which can be used to find the analytic representation of real-valued signals, i.e., a signal with the same amount of information but with no negative frequency components.
Such representation is mostly useful in Digital Signal Processing techniques employing Spectral Shifting such as Single Sideband Modulation, an efficient form of Amplitude Modulation (AM) that uses half the bandwidth used by the raw AM.
I don't have enough points to vote zml up yet, but his is clearly the right answer. The Hilbert transform essentially converts your real-valued signal into its more natural domain, where the components of sound are complex "phasors" rather than sine waves. It does this by essentially chopping of half of the Fourier spectrum, which involves a single choice of "helicity" (i.e. cw vs ccw) but allows you to do things like perfectly pitch shift by multiplying by a single phasor. The possibilities are endless, and I hope this complex representation of audio catches on!
Intel Performance Primitives (IPP) has a function which does exactly this.
From their documentation:
The ippsHilbert function computes a complex analytic signal,
which contains the original real signal as its real part and
computed Hilbert transform as its imaginary part.
https://software.intel.com/content/www/us/en/develop/documentation/ipp-dev-reference/top/volume-1-signal-and-data-processing/transform-functions/hilbert-transform-functions/hilbert.html#hilbert

Resources