Incremental updates using browser cache - ajax

The client (an AngularJS application) gets rather big lists from the server. The lists may have hundreds or thousands of elements, which can mean a few megabytes uncompressed (and some users (admins) get much more data).
I'm not planning to let the client get partial results as sorting and filtering should not bother the server.
Compression works fine (factor of about 10) and as the lists don't change often, 304 NOT MODIFIED helps a lot, too. But another important optimization is missing:
As a typical change of the lists are rather small (e.g., modifying two elements and adding a new one), transferring the changes only sounds like a good idea. I wonder how to do it properly.
Something like GET /offer/123/items should always return all the items in the offer number 123, right? Compression and 304 can be used here, but no incremental update. A request like GET /offer/123/items?since=1495765733 sounds like the way to go, but then browser caching does not get used:
either nothing has changed and the answer is empty (and caching it makes no sense)
or something has changed, the client updates its state and does never ask for changes since 1495765733 anymore (and caching it makes even less sense)
Obviously, when using the "since" query, nothing will be cached for the "resource" (the original query gets used just once or not at all).
So I can't rely on the browser cache and I can only use localStorage or sessionStorage, which have a few downsides:
it's limited to a few megabytes (the browser HTTP cache may be much bigger and gets handled automatically)
I have to implement some replacement strategy when I hit the limit
the browser cache stores already compressed data which I don't get (I'd have to re-compress them)
it doesn't work for the users (admins) getting bigger lists as even a single list may already be over limit
it gets emptied on logout (a customer's requirement)
Given that there's HTML 5 and HTTP 2.0, that's pretty unsatisfactory. What am I missing?
Is it possible to use the browser HTTP cache together with incremental updates?

I think there is one thing you are missing: in short, headers. What I'm thinking you could do and that would match (most) of your requirements, would be to:
First GET /offer/123/items is done normally, nothing special.
Subsequents GET /offer/123/items will be sent with a Fetched-At: 1495765733 header, indicating your server when the initial request has been sent.
From this point on, two scenarios are possible.
Either there is no change, and you can send the 304.
If there is a change however, return the new items since the time stamp previously sent has headers, but set a Cache-Control: no-cache from your response.
This leaves you to the point where you can have incremental updates, with caching of the initial megabytes-sized elements.
There is still one drawback though, that the caching is only done once, it won't cache updates. You said that your lists are not updated often so it might already work for you, but if you really want to push this further, I could think of one more thing.
Upon receiving an incremental update, you could trigger in the background another request without the Fetched-At header that won't be used at all by your application, but will just be there to update your http cache. It should not be as bad as it sounds performance-wise since your framework won't update its data with the new one (and potentially trigger re-renders), the only notable drawback would be in term of network and memory consumption. On mobile it might be problematic, but it doesn't sounds like an app intended to be displayed on them anyway.
I absolutely don't know your use-case and will just throw that out there, but are you really sure that doing some sort of pagination won't work? Megabytes of data sounds a lot to display and process for normal humans ;)

I would ditch the request/response cycle entirely and move to a push model.
Specifically, WebSockets.
This is the standard technology used on financial trading websites serving tables of real-time ticker data. Here is one such production application demonstrating the power of WebSockets:
https://www.poloniex.com/exchange#btc_eth
WebSocket applications have two types of state: global and user. The above link will show three tables of global data. When you're logged in, two aditional tables of user data are displayed at the bottom.
This is not HTTP; you won't be able to just slap this into a Java Servlet. You'll need to run a separate process on your server which communicates over TCP. The good news is, there are mature solutions readily available. A Java-based solution with a very decent free licensing option, which includes both client and server APIs (and does integrate with Angular2) is Lightstreamer. They have a well-organized demo page too. There are also adapters available to integrate with your data sources.
You may be hesitant to ditch your existing servlet approach, but this will be less headaches in the long run, and scales marvelously. HTTP polling, even with well-designed header-only requests, do not scale well with large lists which update frequently.
---------- EDIT ----------
Since the list updates are infrequent, WebSockets are probably overkill. Based on the further details provided by comments on this answer, I would recommend a DOM-based, AJAX-updated sorter and filterer such as DataTables, which has some built-in options for caching. In order to reuse client data across sessions, ajax requests in the previous link should be modified to save the current data in the table to localStorage after every ajax request, and when the client starts a new session, populate the table with this data. This will allow the plugin to manage the filtering, sorting, caching and browser-based persistence.

I'm thinking about something similar to Aperçu's idea, but using two requests. The idea is yet incomplete, so bear with me...
The client asks for GET /offer/123/items, possibly with the ETag and Fetched-At headers.
The server answers with
200 and a full list if either header is missing, or when there are too many changes since the Fetched-At timestamp
304 if nothing has changed since then
304 and a special Fetch-More header telling the client that more data is to be fetched otherwise
The last case is violating how HTTP should work, but AFAIK it's the only way letting the browser cache everything what I want it to cache. Since the whole communication is encrypted, proxies can't punish me for violating the spec.
The client reacts to Fetch-Errata by requesting GET /offer/123/items/errata. This way, the resource has got split into two requests. The split is ugly, but an angular $http interceptor can hide the ugliness from the application.
The second request is cacheable, too, and there can be also a Fetched-At header. The details are unclear, but some strong handwavium makes me believe that it can work. Actually, the errata could itself be inaccurate but still useful and get an errata itself.... etc.
With HTTP/1.1, more requests may mean more latency, but having a couple of them should still be profitable because of the saved bandwidth. The server can decide when to stop.
With HTTP/2, multiple requests could be send at once. The server could be make to handle them efficiently as it knows that they belong together. Some more handwavium...
I find the idea strange, but interesting and I'm looking forward to comments. Feel free to downvote me, but please leave an explanation.

Related

REST API for main page - one JSON or many?

I'm providing RESTful API to my (JS) client from (Java Spring) server.
Main site page contains a number of logical blocks (news, last comments, some trending stuff), each of them has a corresponding entity on server. Which way is a right one to go, handle one request like
/api/main_page/ ->
{
news: {...}
comments: {...}
...
}
or let the client do a few requests like
/api/news/
/api/comments/
...
I know in general it's better to have one large request/response, but is this an answer to this situation as well?
Ideally, you should have different API calls for fetching individual configurable content blocks of the page from the same API.
This way your content blocks are loosely bounded to each other.
You
can extend, port(to a new framework) and modify them independently at
anytime you want.
This comes extremely useful when application grows.
Switching off a feature is fairly easy in this
case.
A/B testing is also easy in this case.
Writing automation is
also very easy.
Overall it helps in reducing the testing efforts.
But if you really want to fetch this in one call. Then you should add additional params in request and when the server sees that additional param it adds the additional independent JSON in the response by calling it's own method from BL layer.
And, if speed is your concern then try caching these calls on server for some time(depends on the type of application).
I think in general multiple requests can be justified, when the requested resources reflect parts of the system state. (my personal rule of thumb, still WIP).
i.e. if a news gets displayed in your client application a lot, I would request it once and reuse it wherever I can. If you aggregate here, you would need to request for it later, maybe some of them never get actually displayed, and you have some magic to do if the representation of a news differs in the aggregation and /news/{id}-resource.
This approach would increase communication if the page gets loaded for the first time, but decrease communication throughout your client application the longer it runs.
The state on the server gets copied request by request to your client or updated when needed (Etags, last-modified, etc.).
In your example it looks like /news and /comments are some sort of latest or since last visit, but not all.
If this is true, I would design them to be a resurce as well, like /comments/latest or similar.
But in any case I would them only have self-links to the /news/{id} or /comments/{id} respectively. Then you would have a request to /comments/latest, what results in a list of news-self-links, for what I would start a request only if I don't already have that news (maybe I want to check if the cached copy is still up to date).
It is also possible to trigger the request to a /news/{id} only if it gets actually displayed (scrolling, swiping).
Probably the lifespan of a news or a comment is a criterion to answer this question. Meaning the caching in the client it is not that vital to the system, in opposite of a book in an Book store app.

Should requests contain unnecessary parameters which are sent if manually browsing the application

I'm currently testing a asp.net application. I have recorded all the steps i need and i have noticed that if i remove some of the parameters that i'm sending with the request the scripts still work and the desired outcome still happens. Anyway i couldn't find difference in the response time with them or without them, and i was wondering can i remove those parameters which are not needed and is this going to impact the performance in any way? I understand that the most realistic way of executing the scripts should be to do it like a normal user does (send all which is sent with normal usage) but this would really improve the readability of my scripts, any idea?
Thank you in advance and here is a picture which shows for example some parameters which i can remove and the scripts still work this is from a document management system and i'm performing step which doesn't direct the document as the parameters say but the normal usage records those :
Although it may be something very trivial like pre-populating date and time in calendar in user's time zone I believe you shouldn't be omitting any request parameters.
I strongly believe that load testing should mimic real user as close as possible so if it is not a big deal to send these extra parameters and perform their correlation - I would leave them.
Few other tips:
Embedded Resources (scripts, styles, images). Real-browsers download these entities so
Make sure you have "Retrieve All Embedded Resources" box checked
Make sure you "Use concurrent pool" size 3-5 threads
Filter out any "external" stuff via "URLs must match" input
Well-behaved browsers download embedded resources but do it only once. On subsequent requests they're being returned from browser's cache. Add HTTP Cache Manager to your Test Plan to simulate browser cache.
Add HTTP Cookie Manager to represent browser cookies and deal with cookie-based authentication.
See How To Make JMeter Behave More Like A Real Browser article for above tips explained just in case you want to dive into details
Less data to send, faster response time (normally).
Like you said, it's more realistic to test with all data from the recorded case, but if these parameters really doesn't impact your result and measured time, you can remove them for a better readability.
Sometimes jmeter records not necessary parameters because they are only needed for brower compability.

Large number of concurrent ajax calls and ways to deal with it

I have a web page which, upon loading, needs to do a lot of JSON fetches from the server to populate various things dynamically. In particular, it updates parts of a large-ish data structure from which I derive a graphical representation of the data.
So it works great in Chrome; however, Safari and Firefox appear to suffer somewhat. Upon the querying of the numerous JSON requests, the browsers become sluggish and unusable. I am under the assumption that this is due to the rather expensive iteration of said data structure. Is this a valid assumption?
How can I mitigate this without changing the query language so that it's a single fetch?
I was thinking of applying a queue that could limit the number of concurrent Ajax queries (and hence also limit the number of concurrent updates to the data structure)... Any thoughts? Useful pointers? Other suggestions?
In browser-side JS, create a wrapper around jQuery.post() (or whichever method you are using)
that appends the requests to a queue.
Also create a function 'queue_send' that will actually call jQuery.post() passing the entire queue structure.
On server create a proxy function called 'queue_receive' that replays the JSON to your server interfaces as though it came from the browser, collects the results into a single response, sends back to browser.
Browser-side queue_send_success() (success handler for queue_send) must decode this response and populate your data structure.
With this, you should be able to reduce your initialization traffic to one actual request, and maybe consolidate some other requests on your website as well.
in particular, it updates parts of a largish data structure from which i derive a graphical representation of the data.
I'd try:
Queuing responses as they come in, then update the structure once
Hiding the representation invisible until the responses are in
Magicianeer's answer is also good - but I'm not sure if it fits your definition of "without changing the query language so that it's a single fetch" - it would avoid re-engineering existing logic.

Ajax use on website design

I just want to ask for your experience. I'm designing a public website, using jQuery Ajax in most of operations. I'm having some timeouts, and I think it should be for hosting provider cause. Any of you have expirience in this case and may advise me on some hints (especially on timeouts handling)?
Thanks in advance to all.
Esteve
If you have a half-decent host, chances are these aren't network timeouts but are rather due to insufficient hardware which causes your server-side scripts to take too long to answer. For example if you have an autocomplete field and the script goes through a database of 100,000 entries, this is a breeze for newer servers but older "budget" servers or overcrowded shared hosting servers might croak on it.
Depending on what your Ajax operations are, you may be able to break them down in shorter chunks. If you're doing database queries for example, use LIMIT and OFFSET and only return say, 5 entries at a time. When those 5 entries arrive on the client, make another Ajax call for 5 more, so from the user's point of view the entries will keep coming in and it will look fluid (instead of waiting 30s and possibly timing out before they see all entries at once). If you do this make sure you display a spiffy web 2.0 turning wheel to let the user know if they should be waiting some more or if it's done.

Send data to browser

An example:
Say, I have an AJAX chat on a page where people can talk to each other.
How is it possible to display (send) the message sent by person A to persons B, C and D while they have the chat opened?
I understand that technically it works a bit different: the chat(ajax) is reading from DB (or other source), say every second, to find out if there are new messages to display.
But I wonder if there is a method to send the new message to the rest of the people just when it is sent, and not to load the DB with 1000s of reads every second.
Please note that the AJAX chat example is just an example to explain what I want, and is not something I want to realize. I just need to know if there is a method to let all the opened browser at a specific page(ajax) that there is new content on the server that should be gathered.
{sorry for my English}
Since the server cannot respond to a client without a corresponding request, you need to keep state for each user's queued message. However, this is exactly what the database accomplishes. You cannot get around this by replacing the database with something that doesn't just accomplish the same thing in a different way. That said, there are surely optimizations you could do. Keep in mind, however, that you shouldn't prematurely optimize situations like this; databases are designed to handle extremely high traffic, and it's very possible (and in fact, likely), that the scenario described will be handled just fine by the database out of the box.
What you're describing is generally referred to as the 'Comet' concept. See the Wikipedia article for details, especially implementation options (long polling, etc.).
Another answer is to have the server push changes to connected clients, that way there is just one call to the database and then the server pushes the change to all the clients. This article indicates it is possible, however I have never tried this myself.
It's very basic, but if you want to stick with a standard AJAX solution, a simple means of reducing load on the server when polling would be to get the AJAX call to forward the last collected comment ID for that client - you then use that (with the appropriate escaping) in the lookup query on the server side to ensure you only return new comments.

Resources