Which is a better input for an autoencoder, one with correlated features or one with uncorrelated features? - correlation

I am trying to visualise my data in 2D in order to detect fraud (outliers), all my features are likely to take bigger values in case of a fraud. But I was careful not to include redundant features,
for example the features :
Activity (a score that is higher for active users who use the service everyday) and Money-earned both tend to take higher values in case of fraud, but one can't be deduced from the other.
I figured that choosing features in this way will translate to bigger coordinates in the 2D representation and would make fraudulent points distant/stand out from the rest of my data.
I also feel like having correlated features would make it easier for autoencoder to reconstruct the data. But I read many times that having correlated features isn’t efficient in machine learning.
Should I make an effort to make my features less correlated ? For example replacing the Activity score (higher for active users) with the times between two uses (lower for active users)?
Or maybe this isn't important for the autoencoder?

You are right about your understanding that "having correlated features would make it easier for autoencoder to reconstruct the data".
For example, in case all your data points are i.i.d. Gaussian it would make data compression very difficult for autoencoders since they would fail to learn a low dimensional representation of the data.
Please refer to this Stanford UFLDL Tutorial link for details.

Related

XGBOOST/lLightgbm over-fitting despite no indication in cross-validation test scores?

We aim to identify predictors that may influence the risk of a relatively rare outcome.
We are using a semi-large clinical dataset, with data on nearly 200,000 patients.
The outcome of interest is binary (i.e. yes/no), and quite rare (~ 5% of the patients).
We have a large set of nearly 1,200 mostly dichotomized possible predictors.
Our objective is not to create a prediction model, but rather to use the boosted trees algorithm as a tool for variable selection and for examining high-order interactions (i.e. to identify which variables, or combinations of variables, that may have some influence on the outcome), so we can target these predictors more specifically in subsequent studies. Given the paucity of etiological information on the outcome, it is somewhat possible that none of the possible predictors we are considering have any influence on the risk of developing the condition, so if we were aiming to develop a prediction model it would have likely been a rather bad one. For this work, we use the R implementation of XGBoost/lightgbm.
We have been having difficulties tuning the models. Specifically when running cross validation to choose the optimal number of iterations (nrounds), the CV test score continues to improve even at very high values (for example, see figure below for nrounds=600,000 from xgboost). This is observed even when increasing the learning rate (eta), or when adding some regularization parameters (e.g. max_delta_step, lamda, alpha, gamma, even at high values for these).
As expected, the CV test score is always lower than the train score, but continuous to improve without ever showing a clear sign of over fitting. This is true regardless of the evaluation metrics that is used (example below is for logloss, but the same is observed for auc/aucpr/error rate, etc.). Relatedly, the same phenomenon is also observed when using a grid search to find the optimal value of tree depth (max_depth). CV test scores continue to improve regardless of the number of iterations, even at depth values exceeding 100, without showing any sign of over fitting.
Note that owing to the rare outcome, we use a stratified CV approach. Moreover, the same is observed when a train/test split is used instead of CV.
Are there situations in which over fitting happens despite continuous improvements in the CV-test (or test split) scores? If so, why is that and how would one choose the optimal values for the hyper parameters?
Relatedly, again, the idea is not to create a prediction model (since it would be a rather bad one, owing that we don’t know much about the outcome), but to look for a signal in the data that may help identify a set of predictors for further exploration. If boosted trees is not the optimal method for this, are there others to come to mind? Again, part of the reason we chose to use boosted trees was to enable the identification of higher (i.e. more than 2) order interactions, which cannot be easily assessed using more conventional methods (including lasso/elastic net, etc.).
welcome to Stackoverflow!
In the absence of some code and representative data it is not easy to make other than general suggestions.
Your descriptive statistics step may give some pointers to a starting model.
What does existing theory (if it exists!) suggest about the cause of the medical condition?
Is there a male/female difference or old/young age difference that could help get your foot in the door?
Your medical data has similarities to the fraud detection problem where one is trying to predict rare events usually much rarer than your cases.
It may pay you to check out the use of xgboost/lightgbm in the fraud detection literature.

Gensim Word2vec model parameter tuning

I am working on Word2Vec model. Is there any way to get the ideal value for one of its parameter i.e iter. Like the way we used do in K-Means (Elbo curve plot) to get the K value.Or is there any other way for parameter tuning on this model.
There's no one ideal set of parameters for a word2vec session – it depends on your intended usage of the word-vectors.
For example, some research has suggested that using a larger window tends to position the final vectors in a way that's more sensitive to topical/domain similarity, while a smaller window value shifts the word-neighborhoods to be more syntactic/functional drop-in replacements for each other. So depending on your particular project goals, you'd want a different value here.
(Similarly, because the original word2vec paper evaluated models, & tuned model meta-parameters, based on the usefulness of the word-vectors to solve a set of English-language analogy problems, many have often tuned their models to do well on the same analogy task. But I've seen cases where the model that scores best on those analogies does worse when contributing to downstream classification tasks.)
So what you really want is a project-specific way to score a set of word-vectors, well-matched to your goals. Then, you run many alternate word2vec training sessions, and pick the parameters that do best on your score.
The case of iter/epochs is special, in that by the logic of the underlying stochastic-gradient-descent optimization method, you'd ideally want to use as many training-epochs as necessary for the per-epoch running 'loss' to stop improving. At that point, the model is plausibly as good as it can be – 'converged' – given its inherent number of free-parameters and structure. (Any further internal adjustments that improve it for some examples worsen it for others, and vice-versa.)
So potentially, you'd watch this 'loss', and choose a number of training-iterations that's just enough to show the 'loss' stagnating (jittering up-and-down in a tight window) for a few passes. However, the loss-reporting in gensim isn't yet quite optimal – see project bug #2617 – and many word2vec implementations, including gensim and going back to the original word2vec.c code released by Google researchers, just let you set a fixed count of training iterations, rather than implement any loss-sensitive stopping rules.

Random Forests with correlated features

In my dataset, I have 2 features that are not only correlated but that makes sense only in the presence of each other. For instance, one would be the number of times a task was attempted and the other one would be the number of successes.
As mentioned, it seems to be me that taken one of the 2 individually does not give any information. Should I do a scheme where if I pick one of them in a tree of my RF, I automatically include the other one?
And if so, is it possible to do so using the RF class from scikit-learn?
Thanks!
Introduce a new feature for the success ratio which is successes / attempts. Now this possibly important concept is more available to the classifier/regressor.
The Random Forest algorithm is robust towards redundant features, so you should try to leave the original features in, it may add predictive information. Look at the feature importance scores of the trained forest to understand which features were chosen.

Differences in FP and FN rates between two algorithems

I am conducting binary classification using logistic regression with and without applying PCA. The application of PCA before logistic regression gives a higher accuracy and lower FNs in comparison to logistic regression alone. I would like to find out why this is happening, specifically why PCA produces less FNs. I have read that cost sensitivity analysis could help explain this, but I am not sure if this is correct. Any suggestions?
There is no need of fancy analysis to explain this behavior.
PCA is used just for "clean" the data by limiting its variance. Let me explain this concept with an example, and then I will turn back to your question.
In general, in any ML problem, the available samples are never sufficient in number to cover all the possible variety of the sample space. You can never have a dataset with all the possible human faces, with all the possible expressions, etc.
So, instead of using all the available features you engineer the features (the pixels, in this example) in a way that you get more meaningful higher level features. You can reduce the resolution of the pictures, as easy example; you will loose the informations on the pictures background, but your model will focus better on the most important part of the picture, i.e. the faces.
When you deal with tabular data, a technique similar to the resolution lowering is cutting off parts of the original features, and that's what PCA do: it keeps the most important components of the features, the "Principal Components", dropping the less important ones.
So, the model trained with PCA gives better results because, by cutting off part of the features, your model focus better on the most important part of your samples, and so it gains robustness against overfitting.
cheers

What are good algorithms for detecting abnormality?

Background
Here is the problem:
A black box outputs a new number each day.
Those numbers have been recorded for a period of time.
Detect when a new number from the black box falls outside the pattern of numbers established over the time period.
The numbers are integers, and the time period is a year.
Question
What algorithm will identify a pattern in the numbers?
The pattern might be simple, like always ascending or always descending, or the numbers might fall within a narrow range, and so forth.
Ideas
I have some ideas, but am uncertain as to the best approach, or what solutions already exist:
Machine learning algorithms?
Neural network?
Classify normal and abnormal numbers?
Statistical analysis?
Cluster your data.
If you don't know how many modes your data will have, use something like a Gaussian Mixture Model (GMM) along with a scoring function (e.g., Bayesian Information Criterion (BIC)) so you can automatically detect the likely number of clusters in your data. I recommend this instead of k-means if you have no idea what value k is likely to be. Once you've constructed a GMM for you data for the past year, given a new datapoint x, you can calculate the probability that it was generated by any one of the clusters (modeled by a Gaussian in the GMM). If your new data point has low probability of being generated by any one of your clusters, it is very likely a true outlier.
If this sounds a little too involved, you will be happy to know that the entire GMM + BIC procedure for automatic cluster identification has been implemented for you in the excellent MCLUST package for R. I have used it several times to great success for such problems.
Not only will it allow you to identify outliers, you will have the ability to put a p-value on a point being an outlier if you need this capability (or want it) at some point.
You could try line fitting prediction using linear regression and see how it goes, it would be fairly easy to implement in your language of choice.
After you fitted a line to your data, you could calculate the mean standard deviation along the line.
If the novel point is on the trend line +- the standard deviation, it should not be regarded as an abnormality.
PCA is an other technique that comes to mind, when dealing with this type of data.
You could also look in to unsuperviced learning. This is a machine learning technique that can be used to detect differences in larger data sets.
Sounds like a fun problem! Good luck
There is little magic in all the techniques you mention. I believe you should first try to narrow the typical abnormalities you may encounter, it helps keeping things simple.
Then, you may want to compute derived quantities relevant to those features. For instance: "I want to detect numbers changing abruptly direction" => compute u_{n+1} - u_n, and expect it to have constant sign, or fall in some range. You may want to keep this flexible, and allow your code design to be extensible (Strategy pattern may be worth looking at if you do OOP)
Then, when you have some derived quantities of interest, you do statistical analysis on them. For instance, for a derived quantity A, you assume it should have some distribution P(a, b) (uniform([a, b]), or Beta(a, b), possibly more complex), you put a priori laws on a, b and you ajust them based on successive information. Then, the posterior likelihood of the info provided by the last point added should give you some insight about it being normal or not. Relative entropy between posterior and prior law at each step is a good thing to monitor too. Consult a book on Bayesian methods for more info.
I see little point in complex traditional machine learning stuff (perceptron layers or SVM to cite only them) if you want to detect outliers. These methods work great when classifying data which is known to be reasonably clean.

Resources