I am working on Word2Vec model. Is there any way to get the ideal value for one of its parameter i.e iter. Like the way we used do in K-Means (Elbo curve plot) to get the K value.Or is there any other way for parameter tuning on this model.
There's no one ideal set of parameters for a word2vec session – it depends on your intended usage of the word-vectors.
For example, some research has suggested that using a larger window tends to position the final vectors in a way that's more sensitive to topical/domain similarity, while a smaller window value shifts the word-neighborhoods to be more syntactic/functional drop-in replacements for each other. So depending on your particular project goals, you'd want a different value here.
(Similarly, because the original word2vec paper evaluated models, & tuned model meta-parameters, based on the usefulness of the word-vectors to solve a set of English-language analogy problems, many have often tuned their models to do well on the same analogy task. But I've seen cases where the model that scores best on those analogies does worse when contributing to downstream classification tasks.)
So what you really want is a project-specific way to score a set of word-vectors, well-matched to your goals. Then, you run many alternate word2vec training sessions, and pick the parameters that do best on your score.
The case of iter/epochs is special, in that by the logic of the underlying stochastic-gradient-descent optimization method, you'd ideally want to use as many training-epochs as necessary for the per-epoch running 'loss' to stop improving. At that point, the model is plausibly as good as it can be – 'converged' – given its inherent number of free-parameters and structure. (Any further internal adjustments that improve it for some examples worsen it for others, and vice-versa.)
So potentially, you'd watch this 'loss', and choose a number of training-iterations that's just enough to show the 'loss' stagnating (jittering up-and-down in a tight window) for a few passes. However, the loss-reporting in gensim isn't yet quite optimal – see project bug #2617 – and many word2vec implementations, including gensim and going back to the original word2vec.c code released by Google researchers, just let you set a fixed count of training iterations, rather than implement any loss-sensitive stopping rules.
Related
We aim to identify predictors that may influence the risk of a relatively rare outcome.
We are using a semi-large clinical dataset, with data on nearly 200,000 patients.
The outcome of interest is binary (i.e. yes/no), and quite rare (~ 5% of the patients).
We have a large set of nearly 1,200 mostly dichotomized possible predictors.
Our objective is not to create a prediction model, but rather to use the boosted trees algorithm as a tool for variable selection and for examining high-order interactions (i.e. to identify which variables, or combinations of variables, that may have some influence on the outcome), so we can target these predictors more specifically in subsequent studies. Given the paucity of etiological information on the outcome, it is somewhat possible that none of the possible predictors we are considering have any influence on the risk of developing the condition, so if we were aiming to develop a prediction model it would have likely been a rather bad one. For this work, we use the R implementation of XGBoost/lightgbm.
We have been having difficulties tuning the models. Specifically when running cross validation to choose the optimal number of iterations (nrounds), the CV test score continues to improve even at very high values (for example, see figure below for nrounds=600,000 from xgboost). This is observed even when increasing the learning rate (eta), or when adding some regularization parameters (e.g. max_delta_step, lamda, alpha, gamma, even at high values for these).
As expected, the CV test score is always lower than the train score, but continuous to improve without ever showing a clear sign of over fitting. This is true regardless of the evaluation metrics that is used (example below is for logloss, but the same is observed for auc/aucpr/error rate, etc.). Relatedly, the same phenomenon is also observed when using a grid search to find the optimal value of tree depth (max_depth). CV test scores continue to improve regardless of the number of iterations, even at depth values exceeding 100, without showing any sign of over fitting.
Note that owing to the rare outcome, we use a stratified CV approach. Moreover, the same is observed when a train/test split is used instead of CV.
Are there situations in which over fitting happens despite continuous improvements in the CV-test (or test split) scores? If so, why is that and how would one choose the optimal values for the hyper parameters?
Relatedly, again, the idea is not to create a prediction model (since it would be a rather bad one, owing that we don’t know much about the outcome), but to look for a signal in the data that may help identify a set of predictors for further exploration. If boosted trees is not the optimal method for this, are there others to come to mind? Again, part of the reason we chose to use boosted trees was to enable the identification of higher (i.e. more than 2) order interactions, which cannot be easily assessed using more conventional methods (including lasso/elastic net, etc.).
welcome to Stackoverflow!
In the absence of some code and representative data it is not easy to make other than general suggestions.
Your descriptive statistics step may give some pointers to a starting model.
What does existing theory (if it exists!) suggest about the cause of the medical condition?
Is there a male/female difference or old/young age difference that could help get your foot in the door?
Your medical data has similarities to the fraud detection problem where one is trying to predict rare events usually much rarer than your cases.
It may pay you to check out the use of xgboost/lightgbm in the fraud detection literature.
I have a model tuning object that fits multiple models and tunes each one of them to find the best hyperparameter combination for each of the models. I want to perform cross-validation on the model tuning part and this is where I am facing a dilemma.
Let's assume that I am fitting just the one model- a random forest classifier and performing a 5 fold cross-validation. Currently, for the first fold that I leave out, I fit the random forest model and perform the model tuning. I am performing model tuning using the dlib package. I calculate the evaluation metric(accuracy, precision, etc) and select the best hyper-parameter combination.
Now when I am leaving out the second fold, should I be tuning the model again? Because if I do, I will get a different combination of hyperparameters than I did in the first case. If I do this across the five folds, what combination do I select?
The cross validators present in spark and sklearn use grid search so for each fold they have the same hyper-parameter combination and don't have to bother about hyper-parameter combinations changing across folds
Choosing the best hyper-parameter combination that I get when I leave out the first fold and using it for the subsequent folds doesn't sound right because then my entire model tuning is dependent on which fold got left out first. However, if I am getting different hyperparameters each time, which one do I settle on?
TLDR:
If you are performing let's say a derivative based model tuning along with cross-validation, your hyper-parameter combination changes as you iterate over folds. How do you select the best combination then? Generally speaking, how do you use cross-validation with derivative-based model tuning methods.
PS: Please let me know if you need more details
This is more of a comment, but it is too long for this, so I post it as an answer instead.
Cross-validation and hyperparameter tuning are two separate things. Cross Validation is done to get a sense of the out-of-sample prediction error of the model. You can do this by having a dedicated validation set, but this raises the question if you are overfitting to this particular validation data. As a consequence, we often use cross-validation where the data are split in to k folds and each fold is used once for validation while the others are used for fitting. After you have done this for each fold, you combine the prediction errors into a single metric (e.g. by averaging the error from each fold). This then tells you something about the expected performance on unseen data, for a given set of hyperparameters.
Once you have this single metric, you can change your hyperparameter, repeat, and see if you get a lower error with the new hyperparameter. This is the hpyerparameter tuning part. The CV part is just about getting a good estimate of the model performance for the given set of hyperparameters, i.e. you do not change hyperparameters 'between' folds.
I think one source of confusion might be the distinction between hyperparameters and parameters (sometimes also referred to as 'weights', 'feature importances', 'coefficients', etc). If you use a gradient-based optimization approach, these change between iterations until convergence or a stopping rule is reached. This is however different from hyperparameter search (e.g. how many trees to plant in the random forest?).
By the way, I think questions like these should better be posted to the Cross-Validated or Data Science section here on StackOverflow.
I was reading about cross validation and about how it it is used to select the best model and estimate parameters , I did not really understand the meaning of it.
Suppose I build a Linear regression model and go for a 10 fold cross validation, I think each of the 10 will have different coefficiant values , now from 10 different which should I pick as my final model or estimate parameters.
Or do we use Cross Validation only for the purpose of finding an average error(average of 10 models in our case) and comparing against another model ?
If your build a Linear regression model and go for a 10 fold cross validation, indeed each of the 10 will have different coefficient values. The reason why you use cross validation is that you get a robust idea of the error of your linear model - rather than just evaluating it on one train/test split only, which could be unfortunate or too lucky. CV is more robust as no ten splits can be all ten lucky or all ten unfortunate.
Your final model is then trained on the whole training set - this is where your final coefficients come from.
Cross-validation is used to see how good your models prediction is. It's pretty smart making multiple tests on the same data by splitting it as you probably know (i.e. if you don't have enough training data this is good to use).
As an example it might be used to make sure you aren't overfitting the function. So basically you try your function when you've finished it with Cross-validation and if you see that the error grows a lot somewhere you go back to tweaking the parameters.
Edit:
Read the wikipedia for deeper understanding of how it works: https://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
You are basically confusing Grid-search with cross-validation. The idea behind cross-validation is basically to check how well a model will perform in say a real world application. So we basically try randomly splitting the data in different proportions and validate it's performance. It should be noted that the parameters of the model remain the same throughout the cross-validation process.
In Grid-search we try to find the best possible parameters that would give the best results over a specific split of data (say 70% train and 30% test). So in this case, for different combinations of the same model, the dataset remains constant.
Read more about cross-validation here.
Cross Validation is mainly used for the comparison of different models.
For each model, you may get the average generalization error on the k validation sets. Then you will be able to choose the model with the lowest average generation error as your optimal model.
Cross-Validation or CV allows us to compare different machine learning methods and get a sense of how well they will work in practice.
Scenario-1 (Directly related to the question)
Yes, CV can be used to know which method (SVM, Random Forest, etc) will perform best and we can pick that method to work further.
(From these methods different models will be generated and evaluated for each method and an average metric is calculated for each method and the best average metric will help in selecting the method)
After getting the information about the best method/ or best parameters we can train/retrain our model on the training dataset.
For parameters or coefficients, these can be determined by grid search techniques. See grid search
Scenario-2:
Suppose you have a small amount of data and you want to perform training, validation and testing on data. Then dividing such a small amount of data into three sets reduce the training samples drastically and the result will depend on the choice of pairs of training and validation sets.
CV will come to the rescue here. In this case, we don't need the validation set but we still need to hold the test data.
A model will be trained on k-1 folds of training data and the remaining 1 fold will be used for validating the data. A mean and standard deviation metric will be generated to see how well the model will perform in practice.
I currently am working on a time series witch 430 attributes and approx. 80k instances. Now I would like to binary classify each instance (not the whole ts). Everything I found about classifying TS talked about labeling the whole thing.
Is it possible to classify each instance with something like a SVM completely disregarding the sequential nature of the data or would that only result in a really bad classifier?
Which other options are there which classify each instance but still look at the data as a time series?
If the data is labeled, you may have luck by concatenating attributes together, so each instance becomes a single long time series, and by applying the so-called Shapelet Transform. This would result in a vector of values for each of time series which can be fed into SVM, Random Forest, or any other classifier. It could be that picking a right shapelets will allow you to focus on a single attribute when classifying instances.
If it is not labeled, you may try the unsupervised shapelets application first to explore your data and proceed with aforementioned shapelet transform after.
It certainly depends on the data within the 430 attributes,
data types, and especially the problem you want to solve.
In time series analysis, you usually want to exploit the dependencies between the neighboring points, i.e., how they change in time. The examples you may find in books usually talk about a single function f(t): Time -> Real. If I understand it correctly, you want to focus just on the dependencies among the 430 attributes (vertical dependencies) and disregard the horizontal dependencies.
If I were you, I would first try to train multiple classifiers (SVM, Maximum entropy model, Multi-layer perceptron, Random forest, Probabilistic Neural Network, ...) and compare their prediction performance in the frame of your problem.
For training, you can start by feeding all 430 attributes as features to Maxent classifier (can easily handle millions of features).
You also need to perform some N-fold cross-validation to see whether the classifiers are not overfitted. Then pick the best that solves your problem "good enough".
Other ideas if this approach does not perform well:
include features from t-1, t-2...
perform feature selection by trying different subsets of features
derive new time series such as moving averages, wavelet spectrum ... and use them as new features
A nice implementation of Maxent classifier can be found in openNLP.
Is Latent Semantic Indexing (LSI) a Statistical Classification algorithm? Why or why not?
Basically, I'm trying to figure out why the Wikipedia page for Statistical Classification does not mention LSI. I'm just getting into this stuff and I'm trying to see how all the different approaches for classifying something relate to one another.
No, they're not quite the same. Statistical classification is intended to separate items into categories as cleanly as possible -- to make a clean decision about whether item X is more like the items in group A or group B, for example.
LSI is intended to show the degree to which items are similar or different and, primarily, find items that show a degree of similarity to an specified item. While this is similar, it's not quite the same.
LSI/LSA is eventually a technique for dimensionality reduction, and usually is coupled with a nearest neighbor algorithm to make it a into classification system. Hence in itself, its only a way of "indexing" the data in lower dimension using SVD.
Have you read about LSI on Wikipedia ? It says it uses matrix factorization (SVD), which in turn is sometimes used in classification.
The primary distinction in machine learning is between "supervised" and "unsupervised" modeling.
Usually the words "statistical classification" refer to supervised models, but not always.
With supervised methods the training set contains a "ground-truth" label that you build a model to predict. When you evaluate the model, the goal is to predict the best guess at (or probability distribution of) the true label, which you will not have at time of evaluation. Often there's a performance metric and it's quite clear what the right vs wrong answer is.
Unsupervised classification methods attempt to cluster a large number of data points which may appear to vary in complicated ways into a smaller number of "similar" categories. Data in each category ought to be similar in some kind of 'interesting' or 'deep' way. Since there is no "ground truth" you can't evaluate 'right or wrong', but 'more' vs 'less' interesting or useful.
Similarly evaluation time you can place new examples into potentially one of the clusters (crisp classification) or give some kind of weighting quantifying how similar or different looks like the "archetype" of the cluster.
So in some ways supervised and unsupervised models can yield something which is a "prediction", prediction of class/cluster label, but they are intrinsically different.
Often the goal of an unsupervised model is to provide more intelligent and powerfully compact inputs for a subsequent supervised model.