I'm kind of confused to conclude the Big-O notation for this while loop, where N is the input size:
int array[0][(N-1)/2] = 1;
int key = 2,k,l;
i = 0;
int j = (N-1)/2;
while(key <= N*N)
{
if(i <= 0)
k = N-1;
else
k = i-1;
if(j <= 0)
l = N-1;
else
l = j-1;
if(array[k][l])
i = (i+1)%N;
else
{
i = k;
j = l;
}
array[i][j] = key;
key++;
}
I concluded it as O(N2)
because when N=5 it iterates until N*N i.e 5*5=25 times but I'm still confused regarding the rest of the code inside the loop. would really appreciate it if someone could give a step by step explanation of the code, and this loop is just part of a bigger function which has 4 more loops which i understood but not this loop.
What you should actually care about is, how k changes. It grows by one in each iteration, and there are no shortcuts here.
So it's just O(N2).
Related
I want to find the time complexity for this below code. Here's my understanding-
The outer for loop will loop 2n times and in the worst case when i==n, we will enter the if block where the nested for loops have complexity of O(n^2), counting the outer for loop, the time complexity for the code block will be O(n^3).
In best case when i!=n, else has complexity of O(n) and the outer for loop is O(n) which makes the complexity, in best case as O(n^2).
Am I correct or am I missing something here?
for (int i = 0; i < 2*n; i++)
{
if (i == n)
{
for (int j = 0; j < i; j++)
for (int k = 0; k < i; k++)
O(1)
}
else
{
for (int j = 0; j < i; j++)
O(1)
}
}
No.
The question "what is T(n)?".
What you are saying is "if i=n, then O(n^3), else O(n^2)".
But there is no i in the question, only n.
Think of a similar question:
"During a week, Pete works 10 hours on Wednesday, and 1 hour on every other day, what is the total time Pete works in a week?".
You don't really answer "if the week is Wednesday, then X, otherwise Y".
Your answer has to include the work time on Wednesday and on every other day as well.
Back in your original question, Wednesday is the case when i=n, and all other days are the case when i!=n.
We have to sum them all up to find the answer.
This is a question of how many times O(1) is executed per loop. The time complexity is a function of n, not i. That is, "How many times is O(1) executed at n?"
There is one run of a O(n^2) loop when i == n.
There are (2n - 2) instances of the O(n) loop in all other cases.
Therefore, the time complexity is O((2n - 2) * n + 1 * n^2) = O(3n^2 - 2*n) = O(n^2).
I've written a C program to spit out the first few values of n^2, the actual value, and n^3 to illustrate the difference:
#include <stdio.h>
int count(int n){
int ctr = 0;
for (int i = 0; i < 2*n; i++){
if (i == n)
for (int j = 0; j < i; j++)
for (int k = 0; k < i; k++)
ctr++;
else
for (int j = 0; j < i; j++)
ctr++;
}
return ctr;
}
int main(){
for (int i = 1; i <= 20; i++){
printf(
"%d\t%d\t%d\t%d\n",
i*i, count(i), 3*i*i - 2*i, i*i*i
);
}
}
Try it online!
(You can paste it into Excel to plot the values.)
The First loop is repeated 2*n times:
for (int i = 0; i < 2*n; i++)
{
// some code
}
This part Just occur once, when i == n and time complexity is : O(n^2):
if (i == n)
{
for (int j = 0; j < i; j++)
for (int k = 0; k < i; k++)
O(1)
}
And this part is depends on i.
else
{
for (int j = 0; j < i; j++)
O(1)
}
Consider i when:
i = 0 the loop is repeated 0 times
i = 1 the loop is repeated 1 times
i = 2 the loop is repeated 2 times
.
.
i = n the loop is repeated n times. (n here is 2*n)
So the loop repeated (n*(n+1)) / 2 times But when i == n else part is not working so (n*(n+1)) / 2 - n and time complexity is O(n^2).
Now we sum all of these parts: O(n^2) (first part) + O(n^2) (second part) because the first part occurs once so it's not O(n^3). Time complaxity is: O(n^2).
Based on #Gassa answer lets sum up all:
O(n^3) + O((2n)^2) = O(n^3) + O(4n^2) = O(n^3) + 4*O(n^2) = O(n^3)
Big O notation allows us throw out 4*O(n^2) because O(n^3) "eats" it
I want to understand the time complexity of my below algorithm, which is an acceptable answer for the famous first missing integer problem:
public int firstMissingPositive(int[] A) {
int l = A.length;
int i = 0;
while (i < l) {
int j = A[i];
while (j > 0 && j <= l) {
int k = A[j - 1];
A[j - 1] = Integer.MAX_VALUE;
j = k;
}
i++;
}
for (i = 0; i < l; i++) {
if (A[i] != Integer.MAX_VALUE)
break;
}
return i + 1;
}
Observations and findings:
Looking at the loop structure I thought that the complexity should be more than n as I may visit every element more than twice in some cases. But to my surprise, the solution got accepted. I am not able to understand the complexity.
You are probably looking at the nested loops and thinking O(N2), but it's not that simple.
Every iteration of the inner loop changes an item in A to Integer.MAX_VALUE, and there are only N items, so there cannot be more than N iterations of the inner loop in total.
The total time is therefore O(N).
I believe that the following code is big theta of n^3, is this correct?
for (int i = 0; i < n; i ++)
{ // A is an array of integers
if (A[i] == 0) {
for (int j = 0; j <= i; j++) {
if (A[i] == 0) {
for (int k = 0; k <= j; k++) {
A[i] = 1;
}
}
}
}
}
And that the following is big theta of nlog(n)
for (int i = 1; i < n; i *= 2)
{
func(i);
}
void func(int x) {
if (x <= 1) return;
func(x-1);
}
because the for loop would run log(n) times, and func runs at most n recursive calls.
Thanks for the help!
Your intuition looks correct. Note that for the first bit if the input contains non-zero elements the time complexity drops down to big-theta(n). If you remove the checks it would definitely be big-theta(n^3).
You are correct about the second snippet, however the first is not Big-Theta(n^3). It is not even O(n^3)! The key observation is: for each i, the innermost loop will execute at most once.
Obviously, the worst-case is when the array contains only zeros. However, A[i] will be set to 1 in the first pass of the inner-most loop, and all subsequent checks of if (A[i] == 0) for the same i will be evaluated to false and the innermost loop will not be executed anymore until i increments. Therefore, there are total of 1 + 2 + 3 + .. + n = n * (n + 1) / 2 iterations, so the time complexity of the first snippet is O(n^2).
Hope this helps!
I have these 2 codes, the question is to find how many times x=x+1 will run in each occasion as T1(n) stands for code 1 and T2(n) stands for code 2. Then I have to find the BIG O of each one, but I know how to do it, the thing is I get stuck in finding how many times ( as to n of course ) will x = x + 1 will run.
CODE 1:
for( i= 1; i <= n; i++)
{
for(j = 1; j <= sqrt(i); j++)
{
for( k = 1; k <= n - j + 1; k++)
{
x = x + 1;
}
}
}
CODE 2:
for(j = 1; j <= n; j++)
{
h = n;
while(h > 0)
{
for (i = 1; i <= sqrt(n); i++)
{
x = x+1;
}
h = h/2;
}
}
I am really stuck, and have read already a lot so I ask if someone can help me, please explain me analytically.
PS: I think in the code 2 , this for (i = 1; i <= sqrt(n); i++) will run n*log(n) times, right? Then what?
For code 1 you have that the number of calls of x=x+1 is:
Here we bounded 1+sqrt(2)+...+sqrt(n) with n sqrt(n) and used the fact that the first term is the leading term.
For code 2 the calculations are simpler:
The second loop actually goes from h=n to 0 by iterating h = h/2 but you can see that this is the same as going from 1 to log n. What we used is the fact the j, t, i are mutually independent (analogously just like we can write that sum from 1 to n of f(n) is just nf(n)).
Compute the complexity of the following Algorithm.
i = 1;
while(i < n+1)
{
j=1
while(j < n+1)
{
j = j*2
}
i++
}
Ask yourself, in which way does i increment grow towards the final value n? How many times will the outer loop run for a given n?
The same for the inner loop. I recommend you read through somthing like this or this SO post and maybe start with some examples:
n = 100;
i = 1;
while (i < n+1){
j = 1;
while (j < n+1) {
j = j*2
}
i = i+1;
}
How many times exactly will both of the loops run?