Compute the complexity of the following Algorithm.
i = 1;
while(i < n+1)
{
j=1
while(j < n+1)
{
j = j*2
}
i++
}
Ask yourself, in which way does i increment grow towards the final value n? How many times will the outer loop run for a given n?
The same for the inner loop. I recommend you read through somthing like this or this SO post and maybe start with some examples:
n = 100;
i = 1;
while (i < n+1){
j = 1;
while (j < n+1) {
j = j*2
}
i = i+1;
}
How many times exactly will both of the loops run?
Related
I want to find the time complexity for this below code. Here's my understanding-
The outer for loop will loop 2n times and in the worst case when i==n, we will enter the if block where the nested for loops have complexity of O(n^2), counting the outer for loop, the time complexity for the code block will be O(n^3).
In best case when i!=n, else has complexity of O(n) and the outer for loop is O(n) which makes the complexity, in best case as O(n^2).
Am I correct or am I missing something here?
for (int i = 0; i < 2*n; i++)
{
if (i == n)
{
for (int j = 0; j < i; j++)
for (int k = 0; k < i; k++)
O(1)
}
else
{
for (int j = 0; j < i; j++)
O(1)
}
}
No.
The question "what is T(n)?".
What you are saying is "if i=n, then O(n^3), else O(n^2)".
But there is no i in the question, only n.
Think of a similar question:
"During a week, Pete works 10 hours on Wednesday, and 1 hour on every other day, what is the total time Pete works in a week?".
You don't really answer "if the week is Wednesday, then X, otherwise Y".
Your answer has to include the work time on Wednesday and on every other day as well.
Back in your original question, Wednesday is the case when i=n, and all other days are the case when i!=n.
We have to sum them all up to find the answer.
This is a question of how many times O(1) is executed per loop. The time complexity is a function of n, not i. That is, "How many times is O(1) executed at n?"
There is one run of a O(n^2) loop when i == n.
There are (2n - 2) instances of the O(n) loop in all other cases.
Therefore, the time complexity is O((2n - 2) * n + 1 * n^2) = O(3n^2 - 2*n) = O(n^2).
I've written a C program to spit out the first few values of n^2, the actual value, and n^3 to illustrate the difference:
#include <stdio.h>
int count(int n){
int ctr = 0;
for (int i = 0; i < 2*n; i++){
if (i == n)
for (int j = 0; j < i; j++)
for (int k = 0; k < i; k++)
ctr++;
else
for (int j = 0; j < i; j++)
ctr++;
}
return ctr;
}
int main(){
for (int i = 1; i <= 20; i++){
printf(
"%d\t%d\t%d\t%d\n",
i*i, count(i), 3*i*i - 2*i, i*i*i
);
}
}
Try it online!
(You can paste it into Excel to plot the values.)
The First loop is repeated 2*n times:
for (int i = 0; i < 2*n; i++)
{
// some code
}
This part Just occur once, when i == n and time complexity is : O(n^2):
if (i == n)
{
for (int j = 0; j < i; j++)
for (int k = 0; k < i; k++)
O(1)
}
And this part is depends on i.
else
{
for (int j = 0; j < i; j++)
O(1)
}
Consider i when:
i = 0 the loop is repeated 0 times
i = 1 the loop is repeated 1 times
i = 2 the loop is repeated 2 times
.
.
i = n the loop is repeated n times. (n here is 2*n)
So the loop repeated (n*(n+1)) / 2 times But when i == n else part is not working so (n*(n+1)) / 2 - n and time complexity is O(n^2).
Now we sum all of these parts: O(n^2) (first part) + O(n^2) (second part) because the first part occurs once so it's not O(n^3). Time complaxity is: O(n^2).
Based on #Gassa answer lets sum up all:
O(n^3) + O((2n)^2) = O(n^3) + O(4n^2) = O(n^3) + 4*O(n^2) = O(n^3)
Big O notation allows us throw out 4*O(n^2) because O(n^3) "eats" it
I have some trouble finding the time complexity of the code below. I figured that the if statement will run for approximately n times; however, I could not manage to describe it mathematically. Thanks in advance.
int sum = 0;
for (int i = 1; i < n; i++) {
for (int j = 1 ; j < i*i; j++) {
if (j % i == 0) {
for (int k = 0; k < j; k++) {
sum++;
}
}
}
}
Outer loop
Well, it's clear that it's O(n) because i is bounded by n.
Inner loops
If we take a look at the second loop alone, then it looks as follows:
...
for (int j = 1 ; j < i*i; j++){
...
j is bounded by i*i or simply n^2.
However, the innermost loop won't be executed for every j, but only for js that are divisible by i because that's what the constraint j % i == 0 means. Since j ~ i*i, there will be only i cases, when the innermost loop is executed. So, the number of iterations in the inner loops is bounded by i^3 or simply n^3.
Result
Hence, the overall time complexity is O(n4).
I want to understand the time complexity of my below algorithm, which is an acceptable answer for the famous first missing integer problem:
public int firstMissingPositive(int[] A) {
int l = A.length;
int i = 0;
while (i < l) {
int j = A[i];
while (j > 0 && j <= l) {
int k = A[j - 1];
A[j - 1] = Integer.MAX_VALUE;
j = k;
}
i++;
}
for (i = 0; i < l; i++) {
if (A[i] != Integer.MAX_VALUE)
break;
}
return i + 1;
}
Observations and findings:
Looking at the loop structure I thought that the complexity should be more than n as I may visit every element more than twice in some cases. But to my surprise, the solution got accepted. I am not able to understand the complexity.
You are probably looking at the nested loops and thinking O(N2), but it's not that simple.
Every iteration of the inner loop changes an item in A to Integer.MAX_VALUE, and there are only N items, so there cannot be more than N iterations of the inner loop in total.
The total time is therefore O(N).
I understand that the innermost for loop is Θ(logn)
and the two outermost for loops is Θ(n^2) because it's an arithmetic sum. The if-statement is my main problem. Does anyone know how to solve this?
int tally=0;
for (int i = 1; i < n; i ++)
{
for (int j = i; j < n; j ++)
{
if (j % i == 0)
{
for (int k = 1; k < n; k *= 2)
{
tally++;
}
}
}
}
Edit:
Now I noticed loop order: i before j.
In this case for given i value j varies from i to n and there are (n/i) successful if-conditions.
So program will call then most inner loop
n/1 +n/2+n/3+..+n/n
times. This is sum of harmonic series, it converges to n*ln(n)
So inner loop will be executed n*log^2(n) times.
As you wrote, two outermost loops provide O(n^2) complexity, so overall complexity is O(n^2 + n*log^2(n)), the first term overrides the second one, loop, and finally overall complexity is quadratic.
int tally=0;
for (int i = 1; i < n; i ++)
{
// N TIMES
for (int j = i; j < n; j ++)
{
//N*N/2 TIMES
if (j % i == 0)
{
//NlogN TIMES
for (int k = 1; k < n; k *= 2)
{
//N*logN*logN
tally++;
}
}
}
}
Old answer (wrong)
This complexity is linked with sum of sigma0(n) function (number of divisors) and represented as sequence A006218 (Dirichlet Divisor problem)
We can see that approximation for sum of divisors for values up to n is
n * ( log(n) + 2*gamma - 1 ) + O(sqrt(n))
so average number of successful if-conditions for loop counter j is ~log(j)
I'm kind of confused to conclude the Big-O notation for this while loop, where N is the input size:
int array[0][(N-1)/2] = 1;
int key = 2,k,l;
i = 0;
int j = (N-1)/2;
while(key <= N*N)
{
if(i <= 0)
k = N-1;
else
k = i-1;
if(j <= 0)
l = N-1;
else
l = j-1;
if(array[k][l])
i = (i+1)%N;
else
{
i = k;
j = l;
}
array[i][j] = key;
key++;
}
I concluded it as O(N2)
because when N=5 it iterates until N*N i.e 5*5=25 times but I'm still confused regarding the rest of the code inside the loop. would really appreciate it if someone could give a step by step explanation of the code, and this loop is just part of a bigger function which has 4 more loops which i understood but not this loop.
What you should actually care about is, how k changes. It grows by one in each iteration, and there are no shortcuts here.
So it's just O(N2).