Nested loops, how many times run and complexity - algorithm

I have these 2 codes, the question is to find how many times x=x+1 will run in each occasion as T1(n) stands for code 1 and T2(n) stands for code 2. Then I have to find the BIG O of each one, but I know how to do it, the thing is I get stuck in finding how many times ( as to n of course ) will x = x + 1 will run.
CODE 1:
for( i= 1; i <= n; i++)
{
for(j = 1; j <= sqrt(i); j++)
{
for( k = 1; k <= n - j + 1; k++)
{
x = x + 1;
}
}
}
CODE 2:
for(j = 1; j <= n; j++)
{
h = n;
while(h > 0)
{
for (i = 1; i <= sqrt(n); i++)
{
x = x+1;
}
h = h/2;
}
}
I am really stuck, and have read already a lot so I ask if someone can help me, please explain me analytically.
PS: I think in the code 2 , this for (i = 1; i <= sqrt(n); i++) will run n*log(n) times, right? Then what?

For code 1 you have that the number of calls of x=x+1 is:
Here we bounded 1+sqrt(2)+...+sqrt(n) with n sqrt(n) and used the fact that the first term is the leading term.
For code 2 the calculations are simpler:
The second loop actually goes from h=n to 0 by iterating h = h/2 but you can see that this is the same as going from 1 to log n. What we used is the fact the j, t, i are mutually independent (analogously just like we can write that sum from 1 to n of f(n) is just nf(n)).

Related

How to find the time complexity of these two programs? [duplicate]

int sum = 0;
for(int i = 1; i < n; i++) {
for(int j = 1; j < i * i; j++) {
if(j % i == 0) {
for(int k = 0; k < j; k++) {
sum++;
}
}
}
}
I don't understand how when j = i, 2i, 3i... the last for loop runs n times. I guess I just don't understand how we came to that conclusion based on the if statement.
Edit: I know how to compute the complexity for all the loops except for why the last loop executes i times based on the mod operator... I just don't see how it's i. Basically, why can't j % i go up to i * i rather than i?
Let's label the loops A, B and C:
int sum = 0;
// loop A
for(int i = 1; i < n; i++) {
// loop B
for(int j = 1; j < i * i; j++) {
if(j % i == 0) {
// loop C
for(int k = 0; k < j; k++) {
sum++;
}
}
}
}
Loop A iterates O(n) times.
Loop B iterates O(i2) times per iteration of A. For each of these iterations:
j % i == 0 is evaluated, which takes O(1) time.
On 1/i of these iterations, loop C iterates j times, doing O(1) work per iteration. Since j is O(i2) on average, and this is only done for 1/i iterations of loop B, the average cost is O(i2 / i) = O(i).
Multiplying all of this together, we get O(n × i2 × (1 + i)) = O(n × i3). Since i is on average O(n), this is O(n4).
The tricky part of this is saying that the if condition is only true 1/i of the time:
Basically, why can't j % i go up to i * i rather than i?
In fact, j does go up to j < i * i, not just up to j < i. But the condition j % i == 0 is true if and only if j is a multiple of i.
The multiples of i within the range are i, 2*i, 3*i, ..., (i-1) * i. There are i - 1 of these, so loop C is reached i - 1 times despite loop B iterating i * i - 1 times.
The first loop consumes n iterations.
The second loop consumes n*n iterations. Imagine the case when i=n, then j=n*n.
The third loop consumes n iterations because it's executed only i times, where i is bounded to n in the worst case.
Thus, the code complexity is O(n×n×n×n).
I hope this helps you understand.
All the other answers are correct, I just want to amend the following.
I wanted to see, if the reduction of executions of the inner k-loop was sufficient to reduce the actual complexity below O(n⁴). So I wrote the following:
for (int n = 1; n < 363; ++n) {
int sum = 0;
for(int i = 1; i < n; ++i) {
for(int j = 1; j < i * i; ++j) {
if(j % i == 0) {
for(int k = 0; k < j; ++k) {
sum++;
}
}
}
}
long cubic = (long) Math.pow(n, 3);
long hypCubic = (long) Math.pow(n, 4);
double relative = (double) (sum / (double) hypCubic);
System.out.println("n = " + n + ": iterations = " + sum +
", n³ = " + cubic + ", n⁴ = " + hypCubic + ", rel = " + relative);
}
After executing this, it becomes obvious, that the complexity is in fact n⁴. The last lines of output look like this:
n = 356: iterations = 1989000035, n³ = 45118016, n⁴ = 16062013696, rel = 0.12383254507467704
n = 357: iterations = 2011495675, n³ = 45499293, n⁴ = 16243247601, rel = 0.12383580700180696
n = 358: iterations = 2034181597, n³ = 45882712, n⁴ = 16426010896, rel = 0.12383905075183874
n = 359: iterations = 2057058871, n³ = 46268279, n⁴ = 16610312161, rel = 0.12384227647628734
n = 360: iterations = 2080128570, n³ = 46656000, n⁴ = 16796160000, rel = 0.12384548432498857
n = 361: iterations = 2103391770, n³ = 47045881, n⁴ = 16983563041, rel = 0.12384867444612208
n = 362: iterations = 2126849550, n³ = 47437928, n⁴ = 17172529936, rel = 0.1238518469862343
What this shows is, that the actual relative difference between actual n⁴ and the complexity of this code segment is a factor asymptotic towards a value around 0.124... (actually 0.125). While it does not give us the exact value, we can deduce, the following:
Time complexity is n⁴/8 ~ f(n) where f is your function/method.
The wikipedia-page on Big O notation states in the tables of 'Family of Bachmann–Landau notations' that the ~ defines the limit of the two operand sides is equal. Or:
f is equal to g asymptotically
(I chose 363 as excluded upper bound, because n = 362 is the last value for which we get a sensible result. After that, we exceed the long-space and the relative value becomes negative.)
User kaya3 figured out the following:
The asymptotic constant is exactly 1/8 = 0.125, by the way; here's the exact formula via Wolfram Alpha.
Remove if and modulo without changing the complexity
Here's the original method:
public static long f(int n) {
int sum = 0;
for (int i = 1; i < n; i++) {
for (int j = 1; j < i * i; j++) {
if (j % i == 0) {
for (int k = 0; k < j; k++) {
sum++;
}
}
}
}
return sum;
}
If you're confused by the if and modulo, you can just refactor them away, with j jumping directly from i to 2*i to 3*i ... :
public static long f2(int n) {
int sum = 0;
for (int i = 1; i < n; i++) {
for (int j = i; j < i * i; j = j + i) {
for (int k = 0; k < j; k++) {
sum++;
}
}
}
return sum;
}
To make it even easier to calculate the complexity, you can introduce an intermediary j2 variable, so that every loop variable is incremented by 1 at each iteration:
public static long f3(int n) {
int sum = 0;
for (int i = 1; i < n; i++) {
for (int j2 = 1; j2 < i; j2++) {
int j = j2 * i;
for (int k = 0; k < j; k++) {
sum++;
}
}
}
return sum;
}
You can use debugging or old-school System.out.println in order to check that i, j, k triplet is always the same in each method.
Closed form expression
As mentioned by others, you can use the fact that the sum of the first n integers is equal to n * (n+1) / 2 (see triangular numbers). If you use this simplification for every loop, you get :
public static long f4(int n) {
return (n - 1) * n * (n - 2) * (3 * n - 1) / 24;
}
It is obviously not the same complexity as the original code but it does return the same values.
If you google the first terms, you can notice that 0 0 0 2 11 35 85 175 322 546 870 1320 1925 2717 3731 appear in "Stirling numbers of the first kind: s(n+2, n).", with two 0s added at the beginning. It means that sum is the Stirling number of the first kind s(n, n-2).
Let's have a look at the first two loops.
The first one is simple, it's looping from 1 to n. The second one is more interesting. It goes from 1 to i squared. Let's see some examples:
e.g. n = 4
i = 1
j loops from 1 to 1^2
i = 2
j loops from 1 to 2^2
i = 3
j loops from 1 to 3^2
In total, the i and j loops combined have 1^2 + 2^2 + 3^2.
There is a formula for the sum of first n squares, n * (n+1) * (2n + 1) / 6, which is roughly O(n^3).
You have one last k loop which loops from 0 to j if and only if j % i == 0. Since j goes from 1 to i^2, j % i == 0 is true for i times. Since the i loop iterates over n, you have one extra O(n).
So you have O(n^3) from i and j loops and another O(n) from k loop for a grand total of O(n^4)

Assuming that n is a positive even integer, what will be the value of x right after this segment of code is run?

x = 0;
for (i = 1; i <= n/2; i++) {
for (j = 1; j <=n; j++) {
if (j > i)
x++;
}
}
I'm trying to predict the value of x by capturing a summation but I'm kind of stuck because I know that for each iteration of the first for loop, the summation changes for the inner loop. For example if we assume x is 10, after the first completion of the inner loop, x would have 9, then after the 2nd completion, we add 8 to x, then 7, 6, etc. The final value of x would be 35. How would I represent this in a cohesive equation for any positive even integer n?
Skip to the end for a simple equation; here I show the steps you might take.
First, here's the original code:
x = 0;
for (i = 1; i <= n/2; i++) {
for (j = 1; j <=n; j++) {
if (j > i)
x++;
}
}
We can start j at i+1 to skip a lot of pointless loops
x = 0;
for (i = 1; i <= n/2; i++) {
for (j = i+1; j <=n; j++) {
if (j > i)
x++;
}
}
Then instead of adding 1 on each of n-i loops, we can just add n-i.
x = 0;
for (i = 1; i <= n/2; i++) {
x += (n-i)
}
That's the same as this (just writing out what we're adding in the loops):
x = (n-1) + (n-2) + ... + (n - n/2)
We can pull out the n's.
x = n * (n/2) - 1 - 2 - 3 - ... - n/2
The final simplification is for the summation of 1 through n/2.
x = n * (n/2) - ((n/2) * (n/2 + 1))/2

Complexity analysis of while(key <= N*N) loop using Big-Oh

I'm kind of confused to conclude the Big-O notation for this while loop, where N is the input size:
int array[0][(N-1)/2] = 1;
int key = 2,k,l;
i = 0;
int j = (N-1)/2;
while(key <= N*N)
{
if(i <= 0)
k = N-1;
else
k = i-1;
if(j <= 0)
l = N-1;
else
l = j-1;
if(array[k][l])
i = (i+1)%N;
else
{
i = k;
j = l;
}
array[i][j] = key;
key++;
}
I concluded it as O(N2)
because when N=5 it iterates until N*N i.e 5*5=25 times but I'm still confused regarding the rest of the code inside the loop. would really appreciate it if someone could give a step by step explanation of the code, and this loop is just part of a bigger function which has 4 more loops which i understood but not this loop.
What you should actually care about is, how k changes. It grows by one in each iteration, and there are no shortcuts here.
So it's just O(N2).

Run time Complexity

I believe that the following code is big theta of n^3, is this correct?
for (int i = 0; i < n; i ++)
{ // A is an array of integers
if (A[i] == 0) {
for (int j = 0; j <= i; j++) {
if (A[i] == 0) {
for (int k = 0; k <= j; k++) {
A[i] = 1;
}
}
}
}
}
And that the following is big theta of nlog(n)
for (int i = 1; i < n; i *= 2)
{
func(i);
}
void func(int x) {
if (x <= 1) return;
func(x-1);
}
because the for loop would run log(n) times, and func runs at most n recursive calls.
Thanks for the help!
Your intuition looks correct. Note that for the first bit if the input contains non-zero elements the time complexity drops down to big-theta(n). If you remove the checks it would definitely be big-theta(n^3).
You are correct about the second snippet, however the first is not Big-Theta(n^3). It is not even O(n^3)! The key observation is: for each i, the innermost loop will execute at most once.
Obviously, the worst-case is when the array contains only zeros. However, A[i] will be set to 1 in the first pass of the inner-most loop, and all subsequent checks of if (A[i] == 0) for the same i will be evaluated to false and the innermost loop will not be executed anymore until i increments. Therefore, there are total of 1 + 2 + 3 + .. + n = n * (n + 1) / 2 iterations, so the time complexity of the first snippet is O(n^2).
Hope this helps!

running time of algorithm does not match the reality

I have the following algorithm:
I analyzed this algoritm as follow:
Since the outer for loop goes from i to n it iterates at most n times,
and the loop on j iterates again from i to n which we can say at most n times,
if we do the same with the whole algorithm we have 4 nested for loop so the running time would be O(n^4).
But when I run this code for different input size I get the following result:
As you can see the result is much closer to n^3? can anyone explain why does this happen or what is wrong with my analysis that I get a loose bound?
Formally, you may proceed like the following, using Sigma Notation, to obtain the order of growth complexity of your algorithm:
Moreover, the equation obtained tells the exact number of iterations executed inside the innermost loop:
int sum = 0;
for( i=0 ; i<n ; i++ )
for( j=i ; j<n ; j++ )
for( k=0 ; k<j ; k++ )
for( h=0 ; h<i ; h++ )
sum ++;
printf("\nsum = %d", sum);
When T(10) = 1155, sum = 1155 also.
I'm sure there's a conceptual way to see why, but you can prove by induction the above has (n + 2) * (n + 1) * n * (n - 1) / 24 loops. Proof left to the reader.
In other words, it is indeed O(n^4).
Edit: You're count increases too frequently. Simply try this code to count number of loops:
for (int n = 0; n < 30; n++) {
int sum = 0;
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
for(int k = 0; k < j; k++) {
for (int h = k; h < i; h++) {
sum++;
}
}
}
}
System.out.println(n + ": " + sum + " = " + (n + 2) * (n + 1) * n * (n - 1) / 24);
}
You are having a rather complex algorithm. The number of operations is clearly less than n^4, but it isn't at all obvious how much less than n^4, and whether it is O (n^3) or not.
Checking the values n = 1 to 9 and making a guess based on the results is rather pointless.
To get a slightly better idea, assume that the number of steps is either c * n^3 or d * n^4, and make a table of the values c and d for 1 <= n <= 1,000. That might give you a better idea. It's not a foolproof method; there are algorithms changing their behaviour dramatically much later than at n = 1,000.
Best method is of course a proof. Just remember that O (n^4) doesn't mean "approximately n^4 operations", it means "at most c * n^4 operations, for some c". Sometimes c is small.

Resources