Related
I'm trying to figure out how i can detect parts of an image based on color and/or shape.
Ideally what i want to achieve is that:
given a lot of pictures which are similar in some way
they always contain several identical but a non-trivial shape (e.g.
variations of finger nails, not just simple squares or circles)
figure out these interesting areas somehow, so i can detect the color of these areas
Example:
Assume that i have a lot of these images of fingers, i would like to detect which color the nails have. This is a nice example of how finger nails are "quite the same shape" and are "quite similar in color".
In the end i should be able to figure out these interesting areas such that i only get the blue nails (== shape) in a picture and nothing else.
What would be the best way to do this?
I thought of the following things which might help me, however i'm unsure on how to do this properly.
edge detection
detect colors in a given image using color quantization
cut out some nail shapes and match them to the picture (but too intensive and too many variations to collect?!)
imagemagick is a tool i can use which supports everything i need for this (i think)
Preferrably i would like to do this using node.js
I want to remove background and get deer as a foreground image.
This is my source image captured by trail camera:
This is what I want to get. This output image can be a binary image or RGB.
I worked on it and try many methods to get solution but every time it failed at specific point. So please first understand what is my exact problem.
Image are captured by a trail camera and camera is motion detector. when deer come in front of camera it capture image.
Scene mode change with respect to weather changing or day and night etc. So I can't use frame difference or some thing like this.
Segmentation may be not work correctly because Foreground (deer) and Background have same color in many cases.
If anyone still have any ambiguity in my question then please first ask me to clear and then answer, it will be appreciated.
Thanks in advance.
Here's what I would do:
As was commented to your question, you can detect the dear and then perform grabcut to segment it from the picture.
To detect the dear, I would couple a classifier with a sliding window approach. That would mean that you'll have a classifier that given a patch (can be a large patch) in the image, output's a score of how much that patch is similar to a dear. The sliding window approach means that you loop on the window size and then loop on the window location. For each position of the window in the image, you should apply the classifier on that window and get a score of how much that window "looks like" a dear. Once you've done that, threshold all the scores to get the "best windows", i.e. the windows that are most similar to a dear. The rational behind this is that if we a dear is present at some location in the image, the classifier will output a high score at all windows that are close/overlap with the actual dear location. We would like to merge all that locations to a single location. That can be done by applying the functions groupRectangles from OpenCV:
http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html#grouprectangles
Take a look at some face detection example from OpenCV, it basically does the same (sliding window + classifier) where the classifier is a Haar cascade.
Now, I didn't mention what that "dear classifier" can be. You can use HOG+SVM (which are both included in OpenCV) or use a much powerful approach of running a deep convulutional neural network (deep CNN). Luckily, you don't need to train a deep CNN. You can use the following packages with their "off the shelf" ImageNet networks (which are very powerful and might even be able to identify a dear without further training):
Decaf- which can be used only for research purposes:
https://github.com/UCB-ICSI-Vision-Group/decaf-release/
Or Caffe - which is BSD licensed:
http://caffe.berkeleyvision.org/
There are other packages of which you can read about here:
http://deeplearning.net/software_links/
The most common ones are Theano, Cuda ConvNet's and OverFeat (but that's really opinion based, you should chose the best package from the list that I linked to).
The "off the shelf" ImageNet network were trained on roughly 10M images from 1000 categories. If those categories contain "dear", that you can just use them as is. If not, you can use them to extract features (as a 4096 dimensional vector in the case of Decaf) and train a classifier on positive and negative images to build a "dear classifier".
Now, once you detected the dear, meaning you have a bounding box around it, you can apply grabcut:
http://docs.opencv.org/trunk/doc/py_tutorials/py_imgproc/py_grabcut/py_grabcut.html
You'll need an initial scribble on the dear to perform grabcu. You can just take a horizontal line in the middle of the bounding box and hope that it will be on the dear's torso. More elaborate approaches would be to find the symmetry axis of the dear and use that as a scribble, but you would have to google, research an implement some method to extract symmetry axis from the image.
That's about it. Not straightforward, but so is the problem.
Please let me know if you have any questions.
Try OpenCV Background Substraction with Mixture of Gaussians models. They should be adaptable enough for your scenes. Of course, the final performance will depend on the scenario, but it is worth trying.
Since you just want to separate the background from the foreground I think you do not need to recognize the deer. You need to recognize an object in motion in the scene. You just need to separate what is static in a significant interval of time (background) from what is not static: the deer.
There are algorithms that combine multiple frames from the same scene in order to determine the background, like THIS ONE.
You mentioned that the scene mode changes with respect to weather changing or day and night considering photos of different deers.
You could implement a solution when motion is detected, instead of taking a single photo, it could take a few ones with some interval of time.
This interval has to be long as to get the deer in different positions or out of the scene and at the same time short enough to not be much affected by scene variations. Perhaps you need to deal with some brightness variation, but I think it is feasible to determine the background using these frames and finally segment the deer in the "motion frame".
I 'm trying to find an efficient way of acceptable complexity to
detect an object in an image so I can isolate it from its surroundings
segment that object to its sub-parts and label them so I can then fetch them at will
It's been 3 weeks since I entered the image processing world and I've read about so many algorithms (sift, snakes, more snakes, fourier-related, etc.), and heuristics that I don't know where to start and which one is "best" for what I'm trying to achieve. Having in mind that the image dataset in interest is a pretty large one, I don't even know if I should use some algorithm implemented in OpenCV or if I should implement one my own.
Summarize:
Which methodology should I focus on? Why?
Should I use OpenCV for that kind of stuff or is there some other 'better' alternative?
Thank you in advance.
EDIT -- More info regarding the datasets
Each dataset consists of 80K images of products sharing the same
concept e.g. t-shirts, watches, shoes
size
orientation (90% of them)
background (95% of them)
All pictures in each datasets look almost identical apart from the product itself, apparently. To make things a little more clear, let's consider only the 'watch dataset':
All the pictures in the set look almost exactly like this:
(again, apart form the watch itself). I want to extract the strap and the dial. The thing is that there are lots of different watch styles and therefore shapes. From what I've read so far, I think I need a template algorithm that allows bending and stretching so as to be able to match straps and dials of different styles.
Instead of creating three distinct templates (upper part of strap, lower part of strap, dial), it would be reasonable to create only one and segment it into 3 parts. That way, I would be confident enough that each part was detected with respect to each other as intended to e.g. the dial would not be detected below the lower part of the strap.
From all the algorithms/methodologies I've encountered, active shape|appearance model seem to be the most promising ones. Unfortunately, I haven't managed to find a descent implementation and I'm not confident enough that that's the best approach so as to go ahead and write one myself.
If anyone could point out what I should be really looking for (algorithm/heuristic/library/etc.), I would be more than grateful. If again you think my description was a bit vague, feel free to ask for a more detailed one.
From what you've said, here are a few things that pop up at first glance:
Simplest thing to do it binarize the image and do Connected Components using OpenCV or CvBlob library. For simple images with non-complex background this usually yeilds objects
HOwever, looking at your sample image, texture-based segmentation techniques may work better - the watch dial, the straps and the background are wisely variant in texture/roughness, and this could be an ideal way to separate them.
The roughness of a portion can be easily found by the Eigen transform (explained a bit on SO, check the link to the research paper provided there), then the Mean Shift filter can be applied on the output of the Eigen transform. This will give regions clearly separated according to texture. Both the pyramidal Mean Shift and finding eigenvalues by SVD are implemented in OpenCV, so unless you can optimize your own code its better (and easier) to use inbuilt functions (if present) as far as speed and efficiency is concerned.
I think I would turn the problem around. Instead of hunting for the dial, I would use a set of robust features from the watch to 'stitch' the target image onto a template. The first watch has a set of squares in the dial that are white, the second watch has a number of white circles. I would per type of watch:
Segment out the squares or circles in the dial. Segmentation steps can be tricky as they are usually both scale and light dependent
Estimate the centers or corners of the above found feature areas. These are the new feature points.
Use the Hungarian algorithm to match features between the template watch and the target watch. Alternatively, one can take the surroundings of each feature point in the original image and match these using cross correlation
Use matching features between the template and the target to estimate scaling, rotation and translation
Stitch the image
As the image is now in a known form, one can extract the regions simply via pre set coordinates
In a multi-touch environment, how does gesture recognition work? What mathematical methods or algorithms are utilized to recognize or reject data for possible gestures?
I've created some retro-reflective gloves and an IR LED array, coupled with a Wii remote. The Wii remote does internal blob detection and tracks 4 points of IR light and transmits this information to my computer via a bluetooth dongle.
This is based off Johnny Chung Lee's Wii Research. My precise setup is exactly like the graduate students from the Netherlands displayed here. I can easily track 4 point's positions in 2d space and I've written my basic software to receive and visualize these points.
The Netherlands students have gotten a lot of functionality out of their basic pinch-click recognition. I'd like to take it a step further if I could, and implement some other gestures.
How is gesture recognition usually implemented? Beyond anything trivial, how could I write software to recognize and identify a variety of gestures: various swipes, circular movements, letter tracing, etc.
Gesture recognition, as I've seen it anyway, is usually implemented using machine learning techniques similar to image recognition software. Here's a cool project on codeproject about doing mouse gesture recognition in c#. I'm sure the concepts are quite similar since you can likely reduce the problem down to 2D space. If you get something working with this, I'd love to see it. Great project idea!
One way to look at it is as a compression / recognition problem. Basically, you want to take a whole bunch of data, throw out most of it, and categorize the remainder. If I were doing this (from scratch) I'd probably proceed as follows:
work with a rolling history window
take the center of gravity of the four points in the start frame, save it, and subtract it out of all the positions in all frames.
factor each frame into two components: the shape of the constellation and the movement of it's CofG relative to the last frame's.
save the absolute CofG for the last frame too
the series of CofG changes gives you swipes, waves, etc.
the series of constellation morphing gives you pinches, etc.
After seeing your photo (two points on each hand, not four points on one, doh!) I'd modify the above as follows:
Do the CofG calculation on pairs, with the caveats that:
If there are four points visible, pairs are chosen to minimize the product of the intrapair distances
If there are three points visible, the closest two are one pair, the other one is the other
Use prior / following frames to override when needed
Instead of a constellation, you've got a nested structure of distance / orientation pairs (i.e., one D/O between the hands, and one more for each hand).
Pass the full reduced data to recognizers for each gesture, and let them sort out what they care about.
If you want to get cute, do a little DSL to recognize the patterns, and write things like:
fire when
in frame.final: rectangle(points)
and
over frames.final(5): points.all (p => p.jerk)
or
fire when
over frames.final(3): hands.all (h => h.click)
A video of what has been done with this sort of technology, if anyone is interested?
Pattie Maes demos the Sixth Sense - TED 2009
Most simple gesture-recognition tools I've looked at use a vector-based template to recognize them. For example, you can define right-swipe as "0", a checkmark as "-45, 45, 45", a clockwise circle as "0, -45, -90, -135, 180, 135, 90, 45, 0", and so on.
Err.. I've been working on gesture recognition for the past year or so now, but I don't want to say too much because I'm trying to patent my technology :) But... we've had some luck with adaptive boosting, although what you're doing looks fundamentally different. You only have 4 points of data to process, so I don't think you really need to "reduce" anything.
What I would investigate is how programs like Flash turn a freehand drawn circle into an actual circle. It seems like you could track the points for duration of about a second, and then "smooth" the path in some fashion, and then you could probably get away with hardcoding your gestures (if you make them simple enough). Otherwise, yes, you're going to want to use a learning algorithm. Neural nets might work... I don't know. Just tossing out ideas :) Maybe look at how OCR is done too... or even Hough transforms. It looks to me like this is a problem of recognizing shapes more than it is of recognizing gestures.
I'm not very well versed in this type of mathematics, but I have read somewhere that people sometimes use Markov Chains or Hidden Markov Models to do Gesture Recognition.
Perhaps someone with a little more background in this side of Computer Science can illuminate it further and provide some more details.
I am building a web application using .NET 3.5 (ASP.NET, SQL Server, C#, WCF, WF, etc) and I have run into a major design dilemma. This is a uni project btw, but it is 100% up to me what I develop.
I need to design a system whereby I can take an image and automatically crop a certain object within it, without user input. So for example, cut out the car in a picture of a road. I've given this a lot of thought, and I can't see any feasible method. I guess this thread is to discuss the issues and feasibility of achieving this goal. Eventually, I would get the dimensions of a car (or whatever it may be), and then pass this into a 3d modelling app (custom) as parameters, to render a 3d model. This last step is a lot more feasible. It's the cropping issue which is an issue. I have thought of all sorts of ideas, like getting the colour of the car and then the outline around that colour. So if the car (example) is yellow, when there is a yellow pixel in the image, trace around it. But this would fail if there are two yellow cars in a photo.
Ideally, I would like the system to be completely automated. But I guess I can't have everything my way. Also, my skills are in what I mentioned above (.NET 3.5, SQL Server, AJAX, web design) as opposed to C++ but I would be open to any solution just to see the feasibility.
I also found this patent: US Patent 7034848 - System and method for automatically cropping graphical images
Thanks
This is one of the problems that needed to be solved to finish the DARPA Grand Challenge. Google video has a great presentation by the project lead from the winning team, where he talks about how they went about their solution, and how some of the other teams approached it. The relevant portion starts around 19:30 of the video, but it's a great talk, and the whole thing is worth a watch. Hopefully it gives you a good starting point for solving your problem.
What you are talking about is an open research problem, or even several research problems. One way to tackle this, is by image segmentation. If you can safely assume that there is one object of interest in the image, you can try a figure-ground segmentation algorithm. There are many such algorithms, and none of them are perfect. They usually output a segmentation mask: a binary image where the figure is white and the background is black. You would then find the bounding box of the figure, and use it to crop. The thing to remember is that none of the existing segmentation algorithm will give you what you want 100% of the time.
Alternatively, if you know ahead of time what specific type of object you need to crop (car, person, motorcycle), then you can try an object detection algorithm. Once again, there are many, and none of them are perfect either. On the other hand, some of them may work better than segmentation if your object of interest is on very cluttered background.
To summarize, if you wish to pursue this, you would have to read a fair number of computer vision papers, and try a fair number of different algorithms. You will also increase your chances of success if you constrain your problem domain as much as possible: for example restrict yourself to a small number of object categories, assume there is only one object of interest in an image, or restrict yourself to a certain type of scenes (nature, sea, etc.). Also keep in mind, that even the accuracy of state-of-the-art approaches to solving this type of problems has a lot of room for improvement.
And by the way, the choice of language or platform for this project is by far the least difficult part.
A method often used for face detection in images is through the use of a Haar classifier cascade. A classifier cascade can be trained to detect any objects, not just faces, but the ability of the classifier is highly dependent on the quality of the training data.
This paper by Viola and Jones explains how it works and how it can be optimised.
Although it is C++ you might want to take a look at the image processing libraries provided by the OpenCV project which include code to both train and use Haar cascades. You will need a set of car and non-car images to train a system!
Some of the best attempts I've see of this is using a large database of images to help understand the image you have. These days you have flickr, which is not only a giant corpus of images, but it's also tagged with meta-information about what the image is.
Some projects that do this are documented here:
http://blogs.zdnet.com/emergingtech/?p=629
Start with analyzing the images yourself. That way you can formulate the criteria on which to match the car. And you get to define what you cannot match.
If all cars have the same background, for example, it need not be that complex. But your example states a car on a street. There may be parked cars. Should they be recognized?
If you have access to MatLab, you could test your pattern recognition filters with specialized software like PRTools.
Wwhen I was studying (a long time ago:) I used Khoros Cantata and found that an edge filter can simplify the image greatly.
But again, first define the conditions on the input. If you don't do that you will not succeed because pattern recognition is really hard (think about how long it took to crack captcha's)
I did say photo, so this could be a black car with a black background. I did think of specifying the colour of the object, and then when that colour is found, trace around it (high level explanation). But, with a black object in a black background (no constrast in other words), it would be a very difficult task.
Better still, I've come across several sites with 3d models of cars. I could always use this, stick it into a 3d model, and render it.
A 3D model would be easier to work with, a real world photo much harder. It does suck :(
If I'm reading this right... This is where AI shines.
I think the "simplest" solution would be to use a neural-network based image recognition algorithm. Unless you know that the car will look the exact same in each picture, then that's pretty much the only way.
If it IS the exact same, then you can just search for the pixel pattern, and get the bounding rectangle, and just set the image border to the inner boundary of the rectangle.
I think that you will never get good results without a real user telling the program what to do. Think of it this way: how should your program decide when there is more than 1 interesting object present (for example: 2 cars)? what if the object you want is actually the mountain in the background? what if nothing of interest is inside the picture, thus nothing to select as the object to crop out? etc, etc...
With that said, if you can make assumptions like: only 1 object will be present, then you can have a go with using image recognition algorithms.
Now that I think of it. I recently got a lecture about artificial intelligence in robots and in robotic research techniques. Their research went on about language interaction, evolution, and language recognition. But in order to do that they also needed some simple image recognition algorithms to process the perceived environment. One of the tricks they used was to make a 3D plot of the image where x and y where the normal x and y axis and the z axis was the brightness of that particular point, then they used the same technique for red-green values, and blue-yellow. And lo and behold they had something (relatively) easy they could use to pick out the objects from the perceived environment.
(I'm terribly sorry, but I can't find a link to the nice charts they had that showed how it all worked).
Anyway, the point is that they were not interested (that much) in image recognition so they created something that worked good enough and used something less advanced and thus less time consuming, so it is possible to create something simple for this complex task.
Also any good image editing program has some kind of magic wand that will select, with the right amount of tweaking, the object of interest you point it on, maybe it's worth your time to look into that as well.
So, it basically will mean that you:
have to make some assumptions, otherwise it will fail terribly
will probably best be served with techniques from AI, and more specifically image recognition
can take a look at paint.NET and their algorithm for their magic wand
try to use the fact that a good photo will have the object of interest somewhere in the middle of the image
.. but i'm not saying that this is the solution for your problem, maybe something simpler can be used.
Oh, and I will continue to look for those links, they hold some really valuable information about this topic, but I can't promise anything.