Spring JPA - How to avoid heavy code redundancy - spring

I started with smaller projects to learn how to use Spring. Actually I have a big problem.
Code Redundacy
Maybe I missunderstood something but I have #Entity Classes to describe how my SQL Tables/Structure must be. On the otherside I have serializable classes. Example:
#Entity class UserEntity
and
class User implements Serializable
On CRUD operations I must transfer Values between this two. But why? This two classes are like the same for me. They have same members and getters/setters. Is there an elegant way to avoid this redundacy?
Maybe I do it completley wrong?

I would assume that your question is "Why do I need to make DTO for Entities? Isn't that redutant?"
Simple answer : Safety reason.
Complex answer :
So there are some risk with JSP and MVC where if you put your managed entities into frontend, there are posibilities where you can inject data into database. Which is bad for site of course : )
For more detail information check https://o2platform.files.wordpress.com/2011/07/ounce_springframework_vulnerabilities.pdf

Related

Spring Data problem - derived delete doesn't work

I have a spring boot application (based off spring-boot-starter-data-jpa. I have an absolute minimum of configuration going on, and only a single table and entity.
I'm using CrudRepository<Long, MyEntity> with a couple of findBy methods which all work. And I have a derived deleteBy method - which doesn't work. The signature is simply:
public interface MyEntityRepository<Long, MyEntity> extends CrudRespository<> {
Long deleteBySystemId(String systemId);
// findBy methods left out
}
The entity is simple, too:
#Entity #Table(name="MyEntityTable")
public class MyEntity {
#Id
#GeneratedValue(strategy=GenerationType.IDENTITY)
#Column(name="MyEntityPID")
private Long MyEntityPID;
#Column(name="SystemId")
private String systemId;
#Column(name="PersonIdentifier")
private String personIdentifier;
// Getters and setters here, also hashCode & equals.
}
The reason the deleteBy method isn't working is because it seems to only issue a "select" statement to the database, which selects all the MyEntity rows which has a SystemId with the value I specify. Using my mysql global log I have captured the actual, physical sql and issued it manually on the database, and verified that it returns a large number of rows.
So Spring, or rather Hibernate, is trying to select the rows it has to delete, but it never actually issues a DELETE FROM statement.
According to a note on Baeldung this select statement is normal, in the sense that Hibernate will first select all rows that it intends to delete, then issue delete statements for each of them.
Does anyone know why this derived deleteBy method would not be working? I have #TransactionManagementEnabled on my #Configuration, and the method calling is #Transactional. The mysql log shows that spring sets autocommit=0 so it seems like transactions are properly enabled.
I have worked around this issue by manually annotating the derived delete method this way:
public interface MyEntityRepository<Long, MyEntity> extends CrudRespository<> {
#Modifying
#Query("DELETE FROM MyEntity m where m.systemId=:systemId")
Long deleteBySystemId(#Param("systemId") String systemId);
// findBy methods left out
}
This works. Including transactions. But this just shouldn't have to be, I shouldn't need to add that Query annotation.
Here is a person who has the exact same problem as I do. However the Spring developers were quick to wash their hands and write it off as a Hibernate problem so no solution or explanation to be found there.
Oh, for reference I'm using Spring Boot 2.2.9.
tl;dr
It's all in the reference documentation. That's the way JPA works. (Me rubbing hands washing.)
Details
The two methods do two different things: Long deleteBySystemId(String systemId); loads the entity by the given constraints and ends up issuing EntityManager.delete(…) which the persistence provider is about to delay until transaction commits. I.e. code following that call is not guaranteed that the changes have already been synced to the database. That in turn is due to JPA allowing its implementations to actually do just that. Unfortunately that's nothing Spring Data can fix on top of that. (More rubbing, more washing, plus a bit of soap.)
The reference documentation justifies that behavior with the need for the EntityManager (again a JPA abstraction, not something Spring Data has anything to do with) to trigger lifecycle events like #PreDelete etc. which users expect to fire.
The second method declaring a modifying query manually is declaring a query to be executed in the database, which means that entity lifecycles do not fire as the entities do not get materialized upfront.
However the Spring developers were quick to wash their hands and write it off as a Hibernate problem so no solution or explanation to be found there.
There's detailed explanation why it works the way it works in the comments to the ticket. There are solutions provided even. Workarounds and suggestions to bring this up with the part of the stack that has control over this behavior. (Shuts faucet, reaches for a towel.)

A question regarding DAO vs Repository patterns

I am new to repositories and I am a bit confused at the moment. From what I have read, DAO pattern is where you provide methods to access the the data store. Though, with repository, you access the datastore with an object repo.
I saw two examples here:
https://medium.com/#gustavo.ponce.ch/spring-boot-spring-mvc-spring-security-mysql-a5d8545d837d
http://javainsimpleway.com/spring-mvc-with-hibernate-crud-example/
The first example extends JpaRepository as intended, and no implementations are available (for add, remove, etc).
The second example provides DAO access with methods, though it goes with service/repository implementation. I mean it uses #Repository and #Service even though it is DAO.
Which one is the right implementation handling repositories.
Thanks for your time.
I recommend reading this article.
A DAO is much closer to the underlying storage , it's really data
centric. That's why in many cases you'll have DAOs matching db tables
or views 1 on 1.
A repository sits at a higher level. It deals with data too and hides
queries and all that but, a repository deals with** business/domain
objects**.

Identifying Spring MVC architecture pattern

I'm working through a spring mvc video series and loving it!
https://www.youtube.com/channel/UCcawgWKCyddtpu9PP_Fz-tA/videos
I'd like to learn more about the specifics of the exact architecture being used and am having trouble identifying the proper name - so that I can read further.
For example, I understand that the presentation layer is MVC, but not really sure how you would more specifically describe the pattern to account for the use of service and resource objects - as opposed to choosing to use service, DAO and Domain objects.
Any clues to help me better focus my search on understanding the layout below?
application
core
models/entities
services
rest
controllers
resources
resource_assemblers
Edit:
Nathan Hughes comment clarified my confusion with the nomenclature and SirKometa connected the architectural dots that I was not grasping. Thanks guys.
As far as I can tell the layout you have mentioned represents the application which communicates with the world through REST services.
core package represents all the classes (domain, services, repositories) which are not related to view.
model package - Assuming you are aiming for the typical application you do have a model/domain/entity package which represents your data For example: https://github.com/chrishenkel/spring-angularjs-tutorial-10/blob/master/src/main/java/tutorial/core/models/entities/Account.java.
repository package - Since you are using Spring you will most likely use also since spring-data or even spring-data-jpa with Hibernate as your ORM Library. It will most likely lead you to use Repository interfaces (author of videos you watch for some reason decided not to use it though). Anyway it will be your layer to access database, for example: https://github.com/chrishenkel/spring-angularjs-tutorial-10/blob/master/src/main/java/tutorial/core/repositories/jpa/JpaAccountRepo.java
service package will be your package to manipulate data. It's not the best example but this layer doesn't access your database directly, it will use Repositories to do it, but it might also do other things - it will be your API to manipulate data in you application. Let's say you want to have a fancy calculation on your wallet before you save it to DB, or like here https://github.com/chrishenkel/spring-angularjs-tutorial-10/blob/master/src/main/java/tutorial/core/services/impl/AccountServiceImpl.java you want to make sure that the Blog you try to create doesn't exist yet.
controllers package contain all classes which will be used by DispacherServlet to take care of the requests. You will read "input" from the request, process it (use your Services here) and send your responses.
resource_assemblers package in this case is framework specific (Hateoas). As far as I can tell it's just a DTO for your json responses (for example you might want to store password in your Account but exposing it through json won't be a good idea, and it would happen if you didn't use DTO).
Please let me know if that is the answer you were looking for.
This question may be of interest to you as well as this explanation.
You are mostly talking about the same things in each case, Spring just uses annotations so that when it scans them it knows what type of object you are creating or instantiating.
Basically everything request flows through the controller annotated with #Controller. Each method process the request and (if needed) calls a specific service class to process the business logic. These classes are annotated with #Service. The controller can instantiate these classes by autowiring them in #Autowire or resourcing them #Resource.
#Controller
#RequestMapping("/")
public class MyController {
#Resource private MyServiceLayer myServiceLayer;
#RequestMapping("/retrieveMain")
public String retrieveMain() {
String listOfSomething = myServiceLayer.getListOfSomethings();
return listOfSomething;
}
}
The service classes then perform their business logic and if needed, retrieve data from a repository class annotated with #Repository. The service layer instantiate these classes the same way, either by autowiring them in #Autowire or resourcing them #Resource.
#Service
public class MyServiceLayer implements MyServiceLayerService {
#Resource private MyDaoLayer myDaoLayer;
public String getListOfSomethings() {
List<String> listOfSomething = myDaoLayer.getListOfSomethings();
// Business Logic
return listOfSomething;
}
}
The repository classes make up the DAO, Spring uses the #Repository annotation on them. The entities are the individual class objects that are received by the #Repository layer.
#Repository
public class MyDaoLayer implements MyDaoLayerInterface {
#Resource private JdbcTemplate jdbcTemplate;
public List<String> getListOfSomethings() {
// retrieve list from database, process with row mapper, object mapper, etc.
return listOfSomething;
}
}
#Repository, #Service, and #Controller are specific instances of #Component. All of these layers could be annotated with #Component, it's just better to call it what it actually is.
So to answer your question, they mean the same thing, they are just annotated to let Spring know what type of object it is instantiating and/or how to include another class.
I guess the architectural pattern you are looking for is Representational State Transfer (REST). You can read up on it here:
http://en.wikipedia.org/wiki/Representational_state_transfer
Within REST the data passed around is referred to as resources:
Identification of resources:
Individual resources are identified in requests, for example using URIs in web-based REST systems. The resources themselves are conceptually separate from the representations that are returned to the client. For example, the server may send data from its database as HTML, XML or JSON, none of which are the server's internal representation, and it is the same one resource regardless.

Autowire two Neo4j GraphRepository in Spring

I'm new to using Spring with Neo4j and I have a question about #Autowire for a GraphRepository.
Most examples I've seen use one #Autowire per Controller, but I have two Nodes I need to modify at the same time when a particular method is called in the controller. Should I simply #Autowire the repositories for both nodes (eg per the code below)? Is there any impact if I do this in a second controller with the same repositories as well (so if I had a ChatSessionController which also #Autowired ChatMessageService and ChatSessionService)?
ChatMessageController.java
#Controller
public class ChatMessageController {
#Autowired
private ChatMessageService chatMessageService;
#Autowired
private ChatSessionService chatSessionService;
#RequestMapping(value = "/message/add/{chatSessionId}", method = RequestMethod.POST)
#ResponseBody
#Transactional
public void addMessage(#RequestBody ChatMessagePack chatMessagePack,
#PathVariable("chatSessionId") Long chatSessionId) {
ChatMessage chatMessage = new ChatMessage(chatMessagePack);
chatMessageService.save(chatMessage);
// TODO: Make some modifications to the ChatSession as well
}
}
Any help would be much appreciated! I've been googling and looking through Stackoverflow to understand this better but I haven't found anything yet. Any pointers in the right directions would be great.
Another underlying question is, should I be (and can I?) modifying other Nodes in a GraphRepository that handles a particular node? Eg Should my GraphRepository be able to modify my GraphRespository?
Thanks!
I'm not convinced that this is a SO question, it's not really a Neo4J or Spring question either, it is more about the architecture of your application. However assuming that you understand the negatives of class fan out, and how to use the #Transactional annotation to achieve what you want then the answer to your question is that it is just fine to have many Repositories (Neo4J or otherwise, autowired or otherwise) in your class and in as many classes as you want.
Neo4J transactions default to Isolation level READ_COMMITTED and if you need anything else, you need to add the guards/locks yourself. Nested transactions are consideredd tobe the same transaction. The Spring #Transactional annotation relies on proxies that you should be aware of as they have implications when calling methods from within the same class.
I would go through this tuotorial over at Spring Data and get your head around how real world vs domain vs node models differ, there will be cases where one repository impacts another node type but I would think it is often transparent to you (i.e adding relationships). You can do what you like in each repository (the generic nature of them is largely confined to all of the built in CRUD and queries derived from finder-method names (see documentation ) using the #Query annotation, and some queries have side effects, but largely you should avoid it.
As you start adding multiple repositories to multiple controllers I think that your code will begin to smell bad and that you should consider encapsulating this business logic off on its own somewhere, neatly unit tested. I also wouldn't tie myself to one controller per data object, it would be fine to have a single ChatController with a POST/chat/ to create a new session and POST /chat/{sessionId} to add a message. Intersting questions on Programmers:
How accurate is "Business logic should be in a service, not in a model?"
Best Practices for MVC Architecture
MVC Architecture — How many Controllers do I need?

Inject Value into JPA-Table-Annotation

I have an JPA Entity which I Would like to use for 2 Tables.
#Entity
#Table(name="table_name_should_be_injected")
class MyEntity{
// Implementation goes here
}
So I would like to inject the table name with Spring.
Is this possible?
Please don't pursue this line of design. It will add a completely unnecessary level of complexity to your solution, it goes against the JPA specification and intention and it will leave anyone else looking at your solution scratching their heads.
The proper way to accomplish this in JPA is with an abstract base-class and #Inheritance(strategy=TABLE_PER_CLASS) (see #Inheritance).

Resources