Inject Value into JPA-Table-Annotation - spring

I have an JPA Entity which I Would like to use for 2 Tables.
#Entity
#Table(name="table_name_should_be_injected")
class MyEntity{
// Implementation goes here
}
So I would like to inject the table name with Spring.
Is this possible?

Please don't pursue this line of design. It will add a completely unnecessary level of complexity to your solution, it goes against the JPA specification and intention and it will leave anyone else looking at your solution scratching their heads.
The proper way to accomplish this in JPA is with an abstract base-class and #Inheritance(strategy=TABLE_PER_CLASS) (see #Inheritance).

Related

Spring Data problem - derived delete doesn't work

I have a spring boot application (based off spring-boot-starter-data-jpa. I have an absolute minimum of configuration going on, and only a single table and entity.
I'm using CrudRepository<Long, MyEntity> with a couple of findBy methods which all work. And I have a derived deleteBy method - which doesn't work. The signature is simply:
public interface MyEntityRepository<Long, MyEntity> extends CrudRespository<> {
Long deleteBySystemId(String systemId);
// findBy methods left out
}
The entity is simple, too:
#Entity #Table(name="MyEntityTable")
public class MyEntity {
#Id
#GeneratedValue(strategy=GenerationType.IDENTITY)
#Column(name="MyEntityPID")
private Long MyEntityPID;
#Column(name="SystemId")
private String systemId;
#Column(name="PersonIdentifier")
private String personIdentifier;
// Getters and setters here, also hashCode & equals.
}
The reason the deleteBy method isn't working is because it seems to only issue a "select" statement to the database, which selects all the MyEntity rows which has a SystemId with the value I specify. Using my mysql global log I have captured the actual, physical sql and issued it manually on the database, and verified that it returns a large number of rows.
So Spring, or rather Hibernate, is trying to select the rows it has to delete, but it never actually issues a DELETE FROM statement.
According to a note on Baeldung this select statement is normal, in the sense that Hibernate will first select all rows that it intends to delete, then issue delete statements for each of them.
Does anyone know why this derived deleteBy method would not be working? I have #TransactionManagementEnabled on my #Configuration, and the method calling is #Transactional. The mysql log shows that spring sets autocommit=0 so it seems like transactions are properly enabled.
I have worked around this issue by manually annotating the derived delete method this way:
public interface MyEntityRepository<Long, MyEntity> extends CrudRespository<> {
#Modifying
#Query("DELETE FROM MyEntity m where m.systemId=:systemId")
Long deleteBySystemId(#Param("systemId") String systemId);
// findBy methods left out
}
This works. Including transactions. But this just shouldn't have to be, I shouldn't need to add that Query annotation.
Here is a person who has the exact same problem as I do. However the Spring developers were quick to wash their hands and write it off as a Hibernate problem so no solution or explanation to be found there.
Oh, for reference I'm using Spring Boot 2.2.9.
tl;dr
It's all in the reference documentation. That's the way JPA works. (Me rubbing hands washing.)
Details
The two methods do two different things: Long deleteBySystemId(String systemId); loads the entity by the given constraints and ends up issuing EntityManager.delete(…) which the persistence provider is about to delay until transaction commits. I.e. code following that call is not guaranteed that the changes have already been synced to the database. That in turn is due to JPA allowing its implementations to actually do just that. Unfortunately that's nothing Spring Data can fix on top of that. (More rubbing, more washing, plus a bit of soap.)
The reference documentation justifies that behavior with the need for the EntityManager (again a JPA abstraction, not something Spring Data has anything to do with) to trigger lifecycle events like #PreDelete etc. which users expect to fire.
The second method declaring a modifying query manually is declaring a query to be executed in the database, which means that entity lifecycles do not fire as the entities do not get materialized upfront.
However the Spring developers were quick to wash their hands and write it off as a Hibernate problem so no solution or explanation to be found there.
There's detailed explanation why it works the way it works in the comments to the ticket. There are solutions provided even. Workarounds and suggestions to bring this up with the part of the stack that has control over this behavior. (Shuts faucet, reaches for a towel.)

Spring JPA - How to avoid heavy code redundancy

I started with smaller projects to learn how to use Spring. Actually I have a big problem.
Code Redundacy
Maybe I missunderstood something but I have #Entity Classes to describe how my SQL Tables/Structure must be. On the otherside I have serializable classes. Example:
#Entity class UserEntity
and
class User implements Serializable
On CRUD operations I must transfer Values between this two. But why? This two classes are like the same for me. They have same members and getters/setters. Is there an elegant way to avoid this redundacy?
Maybe I do it completley wrong?
I would assume that your question is "Why do I need to make DTO for Entities? Isn't that redutant?"
Simple answer : Safety reason.
Complex answer :
So there are some risk with JSP and MVC where if you put your managed entities into frontend, there are posibilities where you can inject data into database. Which is bad for site of course : )
For more detail information check https://o2platform.files.wordpress.com/2011/07/ounce_springframework_vulnerabilities.pdf

Autowire two Neo4j GraphRepository in Spring

I'm new to using Spring with Neo4j and I have a question about #Autowire for a GraphRepository.
Most examples I've seen use one #Autowire per Controller, but I have two Nodes I need to modify at the same time when a particular method is called in the controller. Should I simply #Autowire the repositories for both nodes (eg per the code below)? Is there any impact if I do this in a second controller with the same repositories as well (so if I had a ChatSessionController which also #Autowired ChatMessageService and ChatSessionService)?
ChatMessageController.java
#Controller
public class ChatMessageController {
#Autowired
private ChatMessageService chatMessageService;
#Autowired
private ChatSessionService chatSessionService;
#RequestMapping(value = "/message/add/{chatSessionId}", method = RequestMethod.POST)
#ResponseBody
#Transactional
public void addMessage(#RequestBody ChatMessagePack chatMessagePack,
#PathVariable("chatSessionId") Long chatSessionId) {
ChatMessage chatMessage = new ChatMessage(chatMessagePack);
chatMessageService.save(chatMessage);
// TODO: Make some modifications to the ChatSession as well
}
}
Any help would be much appreciated! I've been googling and looking through Stackoverflow to understand this better but I haven't found anything yet. Any pointers in the right directions would be great.
Another underlying question is, should I be (and can I?) modifying other Nodes in a GraphRepository that handles a particular node? Eg Should my GraphRepository be able to modify my GraphRespository?
Thanks!
I'm not convinced that this is a SO question, it's not really a Neo4J or Spring question either, it is more about the architecture of your application. However assuming that you understand the negatives of class fan out, and how to use the #Transactional annotation to achieve what you want then the answer to your question is that it is just fine to have many Repositories (Neo4J or otherwise, autowired or otherwise) in your class and in as many classes as you want.
Neo4J transactions default to Isolation level READ_COMMITTED and if you need anything else, you need to add the guards/locks yourself. Nested transactions are consideredd tobe the same transaction. The Spring #Transactional annotation relies on proxies that you should be aware of as they have implications when calling methods from within the same class.
I would go through this tuotorial over at Spring Data and get your head around how real world vs domain vs node models differ, there will be cases where one repository impacts another node type but I would think it is often transparent to you (i.e adding relationships). You can do what you like in each repository (the generic nature of them is largely confined to all of the built in CRUD and queries derived from finder-method names (see documentation ) using the #Query annotation, and some queries have side effects, but largely you should avoid it.
As you start adding multiple repositories to multiple controllers I think that your code will begin to smell bad and that you should consider encapsulating this business logic off on its own somewhere, neatly unit tested. I also wouldn't tie myself to one controller per data object, it would be fine to have a single ChatController with a POST/chat/ to create a new session and POST /chat/{sessionId} to add a message. Intersting questions on Programmers:
How accurate is "Business logic should be in a service, not in a model?"
Best Practices for MVC Architecture
MVC Architecture — How many Controllers do I need?

#XmlSeeAlso Inheritance

First, I am a newbie in the JAXB and Spring world so if I missed something very obvious I would really appreciate it if someone can point it out instead of not replying. :) I tried searching for a solution here but could not find a good answer.
I have a bunch of subclass DTO's(say A1, A2, A3) which inherit from the same abstract class A. I want the result of my rest query to return a list of the subclass type. I have the following class to represent the result
#XmlRootElement(name="result")
#XmlSeeAlso({A1.class, A2.class, A3.class})
public class AResult<T>
{
...
}
Since AResult is generic I would like the #XmlSeeAlso to also be generic and just write something like
#XmlSeeAlso({(subclasses of A.class})
But I do not think that is possible with JAXB from the research I did on this site and elsewhere.
Since we use the annotation-driven tag in the config, it automatically uses the Jaxb2RootElementHttpMessageConverter class. This message converter creates the JaxbContext using the classes defined in #XmlSeeAlso among others. The createMarshaller and getContext methods are immutable in a superclass.
Because of point 1, I can not write a class where I can check if a class is a subclass of class A and then add it to the JaxbContext. I cannot use a custom Jaxb2RootElementHttpMessageConverter or a custom Marshaller.
How do I get around this? BTW, we are using Spring version 3.1.3
Thanks for your help.
JAXB doesn't scan your classpath for classes that might just happen to be subclasses of AResult (that would be rather slow!) but rather relies on the context knowing about all the classes that it might ever have to create instances of. All the #XmlSeeAlso annotation does is extend the context with the additional classes listed.
However, there are a number of other approaches. For example, you could create a class marked with #XmlRegistry that knows how to make the subclasses that you care about. Or you could experiment with using #XmlJavaTypeAdapter. Alas, I've only ever progressed as far as using the #XmlSeeAlso-based approach in my own code, so I can't comment really from experience.

Dynamic creation of beans in Spring

Is there a way in spring wherein we can read the fields of a bean from the DB table and create a complete bean class - with getters and setters on server startup????
I require this to make my application completely configurable...as in if I have to add a new field in future , all I would require would be adding a field in the db and the bean setters and getters would be available to me.
Thanks
You could try approaches for dynamically registering beans . You could use the BeanDefinitionBuilder for this purpose . See a sample here . But as #Darren says , It's not a wise idea to creak a bean via DB lookup .
1: Improve your accept-rate
2: You might benefit from something like an ORM approach (Hibernate or JPA). Another slightly different approach that might suite you is the Active Record pattern as implemented in, forinstance, ActiveJDBC.
Spring does not, in itself, offer anything like what you are after, but using spring-jpa together with Hibernate might get you a bit closer towards your goal. If, OTOH, you want auto-generated code you could also look at something like Spring-Roo
You might want to think about this a little more. Even if you made your fields totally configurable, you will still have to write the code that accesses them. And given that you are going to have to write code anyway, might as well keep everything in code. It's much simpler that way.

Resources