Difference between #Qualifier("beanName") and #Component("beanName") - spring

Is there any difference between using #Qualifier("beanName") and #Component("beanName") ?
If not, is there a preferred approach?

Generally, you use #Component("beanName") on the component, You use #Qualifier("beanName") on a class you are autowiring. Ex
#Component("myComponent1")
public class MyComponent1 implements MyComponent {
....
}
#Component("myComponent2")
public class MyComponent2 implements MyComponent {
....
}
#Service
public class SomeService implements MyService {
#Qualifier("myComponent1")
private MyComponent myComponent;
...
}
If there is more than one implementation of a bean/component, spring won't know which bean to select, so you need to use a the qualifier to specify which one is correct.
Additionally, you can use #Primary on one of the components, so it is always selected by default.

They are totally two different things , sound like you are compare apple and orange to me.
#Component is used to declare a class as a Spring bean which you cannot do it with #Qualifier.
#Qualifier is intended to help Spring to determine which bean to inject if there are more than 1 eligible bean for that injection. It is normally used with #Autowired which add more constraint on the injection point such that there are only one bean can be injected in it.

Related

Injecting 2 bean with same class name

I have a app 'app_test' which consists a class TestClass with #Service anotation. I have a library class 'lib_test' with bean in XML file with id=''TestClass'. Both are in different package.
I m injecting #Service bean as follows
Import com.app.TestClass
Class TestController
{
Private final TestClass testClass;
#Inject
TestController (TestClass testClass)
{
This.testClass =testClass;
}
}
It should inject by type since they are in different package. But the controller is giving qualified bean not found.
I can resolve it by giving #Qualifier and giving name to #Service. But y is it needed? Since both are in different package it should autowire by type right? Or m missing some concept?
Although they are in different packages if they are of the same type Spring does not know which to use
I'd suggest marking any service class with #Primary.
package com.app.TestClass
#Primary
#Repository
public class TestClass implements XXX
This way it will be selected as the default autowire candididate, with no need to autowire-candidate on the other bean.
Also, rather than using #Autowired #Qualifier, I find it more elegant to use #Resource for picking specific beans.
I've always found this a strange limitation of Spring's standard bean naming convention. It does not include the package part of the class in the name leading to duplicates in large projects when classes have the same name.
This is why I always configure Spring projects with a different BeanNameGenerator:
public class CustomAnnotationConfigWebApplicationContext extends AnnotationConfigWebApplicationContext {
private BeanNameGenerator qualifiedAnnotationBeanNameGenerator = new QualifiedNameAnnotationBeanNameGenerator();
#Override
protected BeanNameGenerator getBeanNameGenerator() {
return this.qualifiedAnnotationBeanNameGenerator;
}
}
And the generator:
public class QualifiedNameAnnotationBeanNameGenerator extends AnnotationBeanNameGenerator {
#Override
protected String buildDefaultBeanName(BeanDefinition definition) {
String qualifiedName = definition.getBeanClassName();
return Introspector.decapitalize(qualifiedName);
}
}
With this setup, common class names that are in different packages are automatically recognized as being different and the correct one gets injected.

Spring Boot detects 2 identical repository beans

I am using Spring Boot with Spring Data JPA, there is only one #SpringBootApplication. And I have also a repository classes, for example:
package com.so;
public interface SORepository {
//methods
}
And impl
#Repository("qualifier")
#Transactional(readOnly = true)
public class SORepositoryImpl implements SORepository {
//methods
}
The proplem is, when I start the application, I get following error:
Parameter 0 of constructor in com.so.SomeComponent required a single bean, but 2 were found:
- qualifier: defined in file [path\to\SORepositoryImpl.class]
- soRepositoryImpl: defined in file [path\to\SORepositoryImpl.class]
So, as you see, somehow 2 beans of one repository class are created. How can I fix this?
You can use Spring Data JPA methods having created Proxy element and than inject it into public class SORepositoryImpl:
public interface Proxy() extends JpaRepository<Element, Long>{
Element saveElement (Element element); //ore other methods if you want}
And than:
#Repository
#Transactional(readOnly = true)
public class SORepositoryImpl implements SORepository {
#Autowired
private Proxy proxy;
//end realisation of methods from interface SORepository
}
Try taking the #Repository annotation off the SORepositoryImpl class
e.g.
#Transactional(readOnly = true)
public class SORepositoryImpl implements SORepository {
//methods
}
The error message is implying you have two beans, one named "qualifier" and one named "soRepositoryImpl", which is probably in a Config class.
I guess you should share your SomeComponent class supposing you have no extra configuration class/xml. My take is that you are injecting as 'soRepositoryImpl' there where you have defined as 'qualifier'. Having two options them. I would say to just remove the annotation parameter 'qualifier' and it should work.
Moreover, unless you want do specify an custom DAO implementation you can avoid #Repository at all (That's an annotation you use to make it injectable for your services). You can just create an interface extending Spring interface and define methods for queries.
For example:
public interface PersonRepository extends Repository<User, Long> {
List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);
Then you can just inject it in your services/controller directly.
private final PersonRepository personRepository;
public PersonController(final PersonRepository personRepository) {
this.personRepository = personRepository;
}
check samples:
https://spring.io/guides/gs/accessing-data-jpa/
http://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
OK, I've found the issue.
I just couldn't understand, how Spring creates the second bean (soRepositoryImpl), because I've never told it, neither explicitly nor in config classes. But I figured out that the second bean us created during the instantiation of my another SORepository (which is in the different package com.another and which extends JpaRepository).
So, when Spring tries to resolve all dependencies of com.another.SORepository it somehow finds my com.so.SORepositoryImpl (which has nothing familiar with com.another.SORepository - not extending\implementing, not jpa stuff, only similar names!).
Well it seems like a Spring bug to me, because it doesn't check the real inheritance of dependent classes of repositories, only name + Impl (even in different package) suits for him.
The only thing that I should do is to rename `com.so.SORepositoryImpl and that it, no 2 beans anymore.
Thanks everyone for answers!

Could not autowire field when bean implements some interface with Spring

I am using Spring in my Java Application, all the #Autowired annotations working until now.
Simplified example would be:
#Component
public class MyBean implements MyInterface {
...
}
#Component
public class MyOtherBean {
#Autowired
private MyBean myBean;
...
}
Once I try to start the Application, I get:
java.lang.IllegalArgumentException: Can not set MyBean field MyOtherBean.myBean to $ProxyXX
The interface contains just two public simple methods and the class implements them.
Both classes are public and have public default constructor. (I even tried to instantiate them in tests.
Once I remove the implements section, everything works correctly.
What can be wrong with the implementation of the interface? What is $ProxyXX?
I suspect the issue is that Spring is injecting an AOP proxy which implements MyInterface - possibly for the purposes of transaction management or caching. Are any of MyBean's methods annotated #Transactional or annotated with any other annotation?
Ideally you'd probably want to reference MyBean by it's interface type - which should resolve the issue.
#Component
public class MyOtherBean {
#Autowired
private MyInterface myBean;
...
}
If you have more than one bean implementing MyInterface then you an always qualify your bean by name.
#Component
public class MyOtherBean {
#Autowired
#Qualifier("myBean")
private MyInterface myBean;
...
}
By default, Spring uses Java dynamic proxies to implement AOP when the bean implements an interface. The easiest and cleanest way to solve your problem is to make program on interfaces, and inject theinterface insted of the concrete class:
#Component
public class MyOtherBean {
#Autowired
private MyInterface myBean;
...
}
See http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/htmlsingle/#aop-proxying for how to force Spring to always use CGLib.

Where should #Service annotation be kept? Interface or Implementation?

I'm developing an application using Spring. I need to use the #Service annotation. I have ServiceI and ServiceImpl such that ServiceImpl implements ServiceI. I'm confused here as to where should I keep the #Service annotation.
Should I annotate the interface or the implementation with #Service? What are the differences between these two approaches?
I never put #Component (or #Service, ...) at an interface, because this make the interface useless. Let me explain why.
claim 1: If you have an interface then you want to use that interface for the injection point type.
claim 2: The purpose of an interface is that it define a contract that can been implemented by several implementations. On the other side you have your injection point (#Autowired). Having just one interface and only one class that implement it, is (IMHO) useless, and violates YAGNI.
fact: When you put:
#Component (or #Service, ...) at an interface,
have multiple classes that implements it,
at least two classes become Spring Beans, and
have an injection point that use the interface for type based injection,
then you will get and NoUniqueBeanDefinitionException
(or you have a very special configurations setup, with Environment, Profiles or Qualifiers ...)
Conclusion: If you use #Component (or #Service, ...) at an interface then you must violate at least one of the two clains. Therefore I think it is not useful (except some rare scenarios) to put #Component at interface level.
Spring-Data-JPA Repository interfaces are something complete different
Basically annotations like #Service, #Repository, #Component, etc. they all serve the same purpose:
auto-detection when using annotation-based configuration and classpath
scanning.
From my experience I am always using #Service annotation on the interfaces or abstract classes and annotations like #Component and #Repository for their implementation. #Component annotation I am using on those classes which serves basic purposes, simple Spring beans, nothing more. #Repository annotation I am using in the DAO layer, for e.g. if I have to communicate to the database, have some transactions, etc.
So I would suggest to annotate your interface with the #Service and other layers depending on the functionality.
I used #Component, #Service, #Controller and #Repository annotations only on the implementation classes and not on the interface. But #Autowired annotation with Interfaces still worked for me. If there's only one implementation of your interface Spring component scan automatically finds it with just #Autowired annotation. In case you have multiple implementations, you will need to use the #Qualifier annotation along with #Autowired to inject the correct implementation at the injection point.
1. #Service on Interfaces
#Service
public interface AuthenticationService {
boolean authenticate(String username, String password);
}
Normally, that's fine, but there's a drawback. By putting Spring's #Service on interfaces, we create an extra dependency and couple our interfaces with an outside library.
Next, to test the autodetection of our new service beans, let's create an implementation of our AuthenticationService:
public class InMemoryAuthenticationService implements AuthenticationService {
#Override
public boolean authenticate(String username, String password) {
//...
}
}
We should pay attention that our new implementation, InMemoryAuthenticationService, doesn't have the #Service annotation on it. We left #Service only on the interface, AuthenticationService.
So, let's run our Spring context with the help of a basic Spring Boot setup:
#SpringBootApplication
public class AuthApplication {
#Autowired
private AuthenticationService authService;
public static void main(String[] args) {
SpringApplication.run(AuthApplication.class, args);
}
}
When we run our app, we may get the infamous NoSuchBeanDefinitionException, and the Spring context fails to start.
Therefore, placing #Service on interfaces isn't enough for the auto-detection of Spring components.
2. #Service on Abstract Classes
Using the #Service annotation on abstract classes isn't common.
We'll start by defining an abstract class from scratch and putting the #Service annotation on it:
#Service
public abstract class AbstractAuthenticationService {
public boolean authenticate(String username, String password) {
return false;
}
}
Next, we extend AbstractAuthenticationService to create a concrete implementation without annotating it:
public class LdapAuthenticationService extends AbstractAuthenticationService {
#Override
public boolean authenticate(String username, String password) {
//...
}
}
Accordingly, we also update our AuthApplication, to inject the new service class:
#SpringBootApplication
public class AuthApplication {
#Autowired
private AbstractAuthenticationService authService;
public static void main(String[] args) {
SpringApplication.run(AuthApplication.class, args);
}
}
After we run our AuthApplication, the Spring context doesn't start. It ends up with the same NoSuchBeanDefinitionException exception again.
So, using #Service annotation on abstract classes doesn't have any effect in Spring.
3. #Service on Concrete Classes
Contrary to what we've seen above, it's quite a common practice to annotate the implementation classes instead of abstract classes or interfaces.
In this way, our goal is mostly to tell Spring this class is going to be a #Component and mark it with a special stereotype, which is #Service in our case.
Therefore, Spring will autodetect those classes from the classpath and automatically define them as managed beans.
So, let's put #Service on our concrete service classes this time around. We'll have one class that implements our interface and a second that extends the abstract class that we defined previously:
#Service
public class InMemoryAuthenticationService implements AuthenticationService {
#Override
public boolean authenticate(String username, String password) {
//...
}
}
#Service
public class LdapAuthenticationService extends AbstractAuthenticationService {
#Override
public boolean authenticate(String username, String password) {
//...
}
}
We should take notice here that our AbstractAuthenticationService doesn't implement the AuthenticationService here. Hence, we can test them independently.
Finally, we add both of our service classes into the AuthApplication and give it a try:
#SpringBootApplication
public class AuthApplication {
#Autowired
private AuthenticationService inMemoryAuthService;
#Autowired
private AbstractAuthenticationService ldapAuthService;
public static void main(String[] args) {
SpringApplication.run(AuthApplication.class, args);
}
}
Our final test gives us a successful result, and the Spring context boots up with no exceptions. Both of the services are automatically registered as beans.
You might have a look at this page for the other explanations.
Pros of putting annotation on #Service is that it gives a hint that it is a service. I don't know if any implementing class will by default inherit this annoation.
Con side is that you are coupling your interface with a specific framework i.e. Spring, by using spring specific annotation.
As interfaces are supposed to be decoupled from implementation, I would not suggest using any framework specific Annotations or object part of your interface.
I would put #Service on your class but put the name of the interface as a parameter to the annotation e.g.
interface ServiceOne {}
#Service("ServiceOne")
class ServiceOneImpl implements ServiceOne{}
By doing that you get all the benefits and can still inject the interface but get the class
#Autowired
private ServiceOne serviceOne;
So your interface is not tied to spring framework and you can change the class at any time and not have to update all your injection points.
So if I wanted to change the implementation class I could just annotate the new class and remove from the first but that's all that is required to be changed. If you inject the class you could have a lot of work when ever you want to change the impl class.
One benefit of spring is to easily switch Service (or other) implementation.
For this, you need to annotate on the interface and declare variable like this :
#Autowired
private MyInterface myVariable;
and not :
#Autowired
private MyClassImplementationWhichImplementsMyInterface myVariable;
Like the first case, you can activate which implementation to inject from the moment it is unique (only one class implements the interface).
In the second case, you need to refactor all your code (the new class implementation has another name).
As a consequence, the annotation needs to be on the interface as much as possible. Furthermore, JDK proxies are well suited for this : they are created and instantiated at application startup because runtime type is known by advance, contrary to CGlib proxies.
interface MyService {}
#Service
class MyServiceImpl implements MyService{}
#Autowired
private MyService myService;
My testing result on spring-boot 2.7.4 is:
Adding #Service ONLY to interface doesn't create spring bean named MyService. It will error on Autowired.
#Service will need to be added to implementation class to create bean com.*.service.impl.MyServiceImpl $$EnhancerBySpringCGLIB$$9140ae19 Spring will wire it to private MyService myService;
There are 5 annotations which could be used for making spring beans. List in below of answers.
Do you really need an interface? If you are going to have one implementation for each service interface, just avoid it, use only class. Of course, if you don't have RMI or when interface proxy is required.
#Repository - use for injecting your dao layer classes.
#Service - use for injecting your service layer classes. In service layer also you might need to use #Transactional annotation for db transaction management.
#Controller - use for your frontend layer controllers, such as JSF managed beans injecting as spring beans.
#RestController - use for spring rest controllers, this would help you to avoid every time to put #ResponseBody and #RequestBody annotations in your rest methods.
#Component - use it in any other case when you need to Inject spring bean which is not controller, service, or dao class
To put it simply:
#Service is a Stereotype annotation for the service layer.
#Repos­itory is a Stereotype annotation for the persis­tence layer.
#Component is a generic stereotype annotation used to tell Spring to create an instance of the object in the Appl­ication Context. It's possible to
define any name for the instance, the default is the class name as camel case.

Autowiring doubts in spring?

After going thru autowiring concept
i have got some questions. These are:-
If i need to autowire below class byType or byName , is it mandatory to have setStudent() method in class College?
public class College {
private Student student1;
private String registration1;
}
<bean id="student1" class="Student"/> - in case of byname it will look into id attribute and in case of bytype it will look for class attribute in above
Stetement. Right? If incase it finds two bean dean tags for the same type it will throw fatal error in case of bytype. Correct?
autodetect Scenario chooses constructor or byType through introspection of the bean class. If a default constructor is found, the byType mode
will be applied.
My question here if default constructor is not found and constructor with argument is found then autowire by constructor
will be applied. Correct?
Do we need to specify #Autowired somewhere in College to apply the autowiring. As i can see this in this example
but nothing is specified here
1), 4) There are two separate ways of autowiring in Spring: XML-based and annotaion-based.
XML-based autowiring is activated from XML config, as described here. In the end, it will call setter method, so setStudent() method is required here.
Annonation-based autowiring, on the other hand, is performed via reflection magic. It attempts to fill everything you mark with #Autowired annotation. In fact, it can set private field with no accessors, as in
public class Foo {
#Autowired private Thingy thing; // No getThing or setThing methods
private void doStuff() {
// thing is usable here
}
}
For #Autowired annotaion to work, you will need to define corresponding bean post-processor; it is done by adding the following line to xml config:
<context:annotation-config/>
Note, that these two autowiring methods are independant, and it is possible(but not recommended) to use them simultaneously. In that case, xml autowiring will override annotations.
2) In general, autowiring will fail, if it cannot find one and only one candidate for injection. So, in your case, it will fail with exception upon container creation. There are some fallback quirks, but in general it works reliably.
3) Yes, documentaion says so.
About byName and byType autowiring. While byName autowiring simply tries to match bean name (can be specified with id attribute), byType is a bit more complex than class attribute lookup. It searches beans by type, and it will match interfaces. Example:
public interface SomeService {
void doStuff();
}
public class SomeServiceImpl implements SomeService {
#Override public void doStuff() {
// Implementation
};
}
public class ServiceUser {
#Autowired
private SomeService someService; // SomeServiceImpl instance goes here
}
P.S. You are referencing two different versions of Spring in your question, 2.5 and 3.0. Autowiring behavior is same in both.
In Addition if you are using #Autwired annotation you need to mark the classes as candidates for autowiring. It should be done by using one of these annotations:
#Repository
#Service
#Component
#Controller
and of cause you can configure it in different scopes:
#Scope("prototype")
#Repository
public class MovieFinderImpl implements MovieFinder {
// ...
}
Hope it makes it more clear.

Resources