Backpropagation in Attention Model - backpropagation

I am trying to figure out how to do backpropagation through the scaled dot product attention model.
The scaled dot production attention takes Q(Queries),K(Keys),V(Values) as inputs and performs the following operation:
Attention(Q,K,V ) = softmax((Q.transpose(K))/√dk )V
Here √dk is the scaling factor and is a constant.
Here Q,K and V are tensors. I am for now assuming that Q=K=V.
So I differentiate the formula (softmax((Q.transpose(Q)))Q) with respect to Q.
I think the answer would be:
softmax((Q.transpose(Q))) + Q.derivativeOfSoftmax((Q.transpose(Q))).(2*transpose(Q))
Since I think the derivative of Q.transpose(Q) wrt Q is 2*Q.transpose(Q).
Is this the right approach considering the rules of tensor calculus? If not kindly tell me how to proceed.
One can refer the concept of scaled dot product attention in the given paper:
https://arxiv.org/pdf/1706.03762.pdf

I'm not sure tensor calculus is the right term.
Choose a specific index of your vector, say index j. Then differentiate with respect to that variable. Do that for index 1, 2, 3, etc. and you will see a pattern. Let me give an example with multiplication. There are two types of multiplication with matrices, matrix multiplication & the hadamard product. The hadamard product is the intuitive method where you multiply two same dimension matrices element-wise. In a similar manner, you should differentiate your softmax function "element-wise".

Related

Obtaining the functional form of a curve

The following is the plot of a curve f(r), where r is the radial coordinate, and plotted for different values of a parameter as shown:
However, I don't know the functional form of the curve and I am interested to find the same. Are there any numerical methods which can be used to find the functional form of f(r) in terms of the radial coordinate and the parameter?
I had found a solution of the problem based on the suggestion by ja72 to use the Eureqa software which churns through the data to create accurate predictive models using evolutionary search algorithm.
In the question, the different curves corresponds to different values of . So, initially I obtained the best fit equation for different values of and found that the following model equation is suitable for my purpose:
Then, I repeated the process for a large number of values of and calculated the values of the four functions for different values of and then individually fitted these four functions. The following are the results that I obtained:
N.B.: Eureqa gave several other better fitting formulas than those mentioned in the answer. But the formulas that I mentioned are sufficiently accurate for my purpose and have minimum complexity.
A blind curve fit without an underlying model is a dangerous thing.
You need to have an understanding of the physical model behind the data to create a successful fit. The reason is that if r is distance and the best fit curve uses r^0.4072 for example, that dimension raised to a decimal power bears no meaning and it hides any underlying assumptions.Like some other dimension l not included in the model, whereas only the dimensionless quantity (r/l) would make sense to raise to the decimal power.
From a function analysis standpoint
These curves are not the result of any standard math function. Well I am not that familiar with bessel functions, gamma functions and legendre polynomials. But none of the standard functions you find in a scientific calculator jumps out here.
If r is assumed to be dimensionless, then you try to match the asymptotic behavior when r -> 0 and when r -> ∞. The would be the baseline curve. To me it does not look hyperbolic, but rather close to 1/LN(1+r).
So change the variables make g=1/LN(1+r) and plot f(r) against g(r) and see what that looks like. Then try another round of curve fitting in the new curves ... and so on.
Nobody can answer this question
Nobody else could effectively answer this question but you, because a) you have the data, and b) you need to make assumptions about what region is important or not, and what is acceptable deviation.

How to compute Discrete Fourier Transform?

I've been trying to find some places to help me better understand DFT and how to compute it but to no avail. So I need help understanding DFT and it's computation of complex numbers.
Basically, I'm just looking for examples on how to compute DFT with an explanation on how it was computed because in the end, I'm looking to create an algorithm to compute it.
I assume 1D DFT/IDFT ...
All DFT's use this formula:
X(k) is transformed sample value (complex domain)
x(n) is input data sample value (real or complex domain)
N is number of samples/values in your dataset
This whole thing is usually multiplied by normalization constant c. As you can see for single value you need N computations so for all samples it is O(N^2) which is slow.
Here mine Real<->Complex domain DFT/IDFT in C++ you can find also hints on how to compute 2D transform with 1D transforms and how to compute N-point DCT,IDCT by N-point DFT,IDFT there.
Fast algorithms
There are fast algorithms out there based on splitting this equation to odd and even parts of the sum separately (which gives 2x N/2 sums) which is also O(N) per single value, but the 2 halves are the same equations +/- some constant tweak. So one half can be computed from the first one directly. This leads to O(N/2) per single value. if you apply this recursively then you get O(log(N)) per single value. So the whole thing became O(N.log(N)) which is awesome but also adds this restrictions:
All DFFT's need the input dataset is of size equal to power of two !!!
So it can be recursively split. Zero padding to nearest bigger power of 2 is used for invalid dataset sizes (in audio tech sometimes even phase shift). Look here:
mine Complex->Complex domain DFT,DFFT in C++
some hints on constructing FFT like algorithms
Complex numbers
c = a + i*b
c is complex number
a is its real part (Re)
b is its imaginary part (Im)
i*i=-1 is imaginary unit
so the computation is like this
addition:
c0+c1=(a0+i.b0)+(a1+i.b1)=(a0+a1)+i.(b0+b1)
multiplication:
c0*c1=(a0+i.b0)*(a1+i.b1)
=a0.a1+i.a0.b1+i.b0.a1+i.i.b0.b1
=(a0.a1-b0.b1)+i.(a0.b1+b0.a1)
polar form
a = r.cos(θ)
b = r.sin(θ)
r = sqrt(a.a + b.b)
θ = atan2(b,a)
a+i.b = r|θ
sqrt
sqrt(r|θ) = (+/-)sqrt(r)|(θ/2)
sqrt(r.(cos(θ)+i.sin(θ))) = (+/-)sqrt(r).(cos(θ/2)+i.sin(θ/2))
real -> complex conversion:
complex = real+i.0
[notes]
do not forget that you need to convert data to different array (not in place)
normalization constant on FFT recursion is tricky (usually something like /=log2(N) depends also on the recursion stopping condition)
do not forget to stop the recursion if N=1 or 2 ...
beware FPU can overflow on big datasets (N is big)
here some insights to DFT/DFFT
here 2D FFT and wrapping example
usually Euler's formula is used to compute e^(i.x)=cos(x)+i.sin(x)
here How do I obtain the frequencies of each value in an FFT?
you find how to obtain the Niquist frequencies
[edit1] Also I strongly recommend to see this amazing video (I just found):
But what is the Fourier Transform A visual introduction
It describes the (D)FT in geometric representation. I would change some minor stuff in it but still its amazingly simple to understand.

SPH fluid - kernel derivitive

I'm currently trying to create an SPH fluid simulator. To get started I've tried to implement the paper from Müller. So the whole algorithm is based on calculating three different forces (pressure, viscosity and surface tension).
The pressure-force can be calculated with equation 9 where the derivitive of the kernel function is the partial derivitive whit respect to r_{i,x} r_{i,y} r_{i,z}. So we get a three dimensional vector out of it.
But for viscosity and surface tension we need the second derivitive of W which should be a three dimensional vector too but equation 14 and 19 expect a scalar?
Anyone got a hint for me?
I cannot see any major problems in equations 14, and 19 (but I do not claim to understand the paper too thoroughly). Could it be that the notation has just lead you astray?
The kernel function W(r) is a scalar field (vector parameter, scalar result). If we take its gradient 𝛁W, we get a vector field. However, if we take the Laplacian (𝛁²) of W, it is the same as calculating the divergence of the vector field, i.e., 𝛁·𝛁W. This, in turn, gives a scalar field by the definition of divergence.
So, with this in mind it seems that both equations 9 and 14 look reasonably sane.
The key takeaway is the Laplacian maps the divergence of the field it is applied to.
This divergence involves a dot product, which describes how aligned vectors are in the field. Thus the laplacian operator describes sum of second order partial derivatives of the field. The components summed together.
The kernel only needs to apply a second order differential because the "gradient" dealing with viscosity, which are the relative velocity vectors, is given.
Laplacian

Machine Learning Algorithm for Completing Sparse Matrix Data

I've seen some machine learning questions on here so I figured I would post a related question:
Suppose I have a dataset where athletes participate at running competitions of 10 km and 20 km with hilly courses i.e. every competition has its own difficulty.
The finishing times from users are almost inverse normally distributed for every competition.
One can write this problem as a matrix:
Comp1 Comp2 Comp3
User1 20min ?? 10min
User2 25min 20min 12min
User3 30min 25min ??
User4 30min ?? ??
I would like to complete the matrix above which has the size 1000x20 and a sparseness of 8 % (!).
There should be a very easy way to complete this matrix, since I can calculate parameters for every user (ability) and parameters for every competition (mu, lambda of distributions). Moreover the correlation between the competitions are very high.
I can take advantage of the rankings User1 < User2 < User3 and Item3 << Item2 < Item1
Could you maybe give me a hint which methods I could use?
Your astute observation that this is a matrix completion problem gets
you most of the way to the solution. I'll codify your intuition that
the combination of ability of a user and difficulty of the course
yields the time of a race, then present various algorithms.
Model
Let the vector u denote the speed of the users so that u_i is user i's
speed. Let the vector v denote the difficulty of the courses so
that v_j is course j's difficulty. Also when available, let t_ij be user i's time on
course j, and define y_ij = 1/t_ij, user i's speed on course j.
Since you say the times are inverse Gaussian distributed, a sensible
model for the observations is
y_ij = u_i * v_j + e_ij,
where e_ij is a zero-mean Gaussian random variable.
To fit this model, we search for vectors u and v that minimize the
prediction error among the observed speeds:
f(u,v) = sum_ij (u_i * v_j - y_ij)^2
Algorithm 1: missing value Singular Value Decomposition
This is the classical Hebbian
algorithm. It
minimizes the above cost function by gradient descent. The gradient of
f wrt to u and v are
df/du_i = sum_j (u_i * v_j - y_ij) v_j
df/dv_j = sum_i (u_i * v_j - y_ij) u_i
Plug these gradients into a Conjugate Gradient solver or BFGS
optimizer, like MATLAB's fmin_unc or scipy's optimize.fmin_ncg or
optimize.fmin_bfgs. Don't roll your own gradient descent unless you're willing to implement a very good line search algorithm.
Algorithm 2: matrix factorization with a trace norm penalty
Recently, simple convex relaxations to this problem have been
proposed. The resulting algorithms are just as simple to code up and seem to
work very well. Check out, for example Collaborative Filtering in a Non-Uniform World:
Learning with the Weighted Trace Norm. These methods minimize
f(m) = sum_ij (m_ij - y_ij)^2 + ||m||_*,
where ||.||_* is the so-called nuclear norm of the matrix m. Implementations will end up again computing gradients with respect to u and v and relying on a nonlinear optimizer.
There are several ways to do this, perhaps the best architecture to try first is the following:
(As usual, as a preprocessing step normalize your data into a uniform function with 0 mean and 1 std deviation as best you can. You can do this by fitting a function to the distribution of all race results, applying its inverse, and then subtracting the mean and dividing by the std deviation.)
Select a hyperparameter N (you can tune this as usual with a cross validation set).
For each participant and each race create an N-dimensional feature vector, initially random. So if there are R races and P participants then there are R+P feature vectors with a total of N(R+P) parameters.
The prediction for a given participant and a given race is a function of the two corresponding feature vectors (as a first try use the scalar product of these two vectors).
Alternate between incrementally improving the participant feature vectors and the race feature vectors.
To improve a feature vector use gradient descent (or some more complex optimization method) on the known data elements (the participant/race pairs for which you have a result).
That is your loss function is:
total_error = 0
forall i,j
if (Participant i participated in Race j)
actual = ActualRaceResult(i,j)
predicted = ScalarProduct(ParticipantFeatures_i, RaceFeatures_j)
total_error += (actual - predicted)^2
So calculate the partial derivative of this function wrt the feature vectors and adjust them incrementally as per a usual ML algorithm.
(You should also include a regularization term on the loss function, for example square of the lengths of the feature vectors)
Let me know if this architecture is clear to you or you need further elaboration.
I think this is a classical task of missing data recovery. There exist some different methods. One of them which I can suggest is based on Self Organizing Feature Map (Kohonen's Map).
Below it's assumed that every athlet record is a pattern, and every competition data is a feature.
Basically, you should divide your data into 2 sets: first - with fully defined patterns, and second - patterns with partially lost features. I assume this is eligible because sparsity is 8%, that is you have enough data (92%) to train net on undamaged records.
Then you feed first set to the SOM and train it on this data. During this process all features are used. I'll not copy algorithm here, because it can be found in many public sources, and even some implementations are available.
After the net is trained, you can feed patterns from the second set to the net. For each pattern the net should calculate best matching unit (BMU), based only on those features that exist in the current pattern. Then you can take from the BMU its weigths, corresponding to missing features.
As alternative, you could not divide the whole data into 2 sets, but train the net on all patterns including the ones with missing features. But for such patterns learning process should be altered in the similar way, that is BMU should be calculated only on existing features in every pattern.
I think you can have a look at the recent low rank matrix completion methods.
The assumption is that your matrix has a low rank compared to the matrix dimension.
min rank(M)
s.t. ||P(M-M')||_F=0
M is the final result, and M' is the uncompleted matrix you currently have.
This algorithm minimizes the rank of your matrix M. P in the constraint is an operator that takes the known terms of your matrix M', and constraint those terms in M to be the same as in M'.
The optimization of this problem has a relaxed version, which is:
min ||M||_* + \lambda*||P(M-M')||_F
rank(M) is relaxed to its convex hull ||M||_* Then you trade off the two terms by controlling the parameter lambda.

Random projection algorithm pseudo code

I am trying to apply Random Projections method on a very sparse dataset. I found papers and tutorials about Johnson Lindenstrauss method, but every one of them is full of equations which makes no meaningful explanation to me. For example, this document on Johnson-Lindenstrauss
Unfortunately, from this document, I can get no idea about the implementation steps of the algorithm. It's a long shot but is there anyone who can tell me the plain English version or very simple pseudo code of the algorithm? Or where can I start to dig this equations? Any suggestions?
For example, what I understand from the algorithm by reading this paper concerning Johnson-Lindenstrauss is that:
Assume we have a AxB matrix where A is number of samples and B is the number of dimensions, e.g. 100x5000. And I want to reduce the dimension of it to 500, which will produce a 100x500 matrix.
As far as I understand: first, I need to construct a 100x500 matrix and fill the entries randomly with +1 and -1 (with a 50% probability).
Edit:
Okay, I think I started to get it. So we have a matrix A which is mxn. We want to reduce it to E which is mxk.
What we need to do is, to construct a matrix R which has nxk dimension, and fill it with 0, -1 or +1, with respect to 2/3, 1/6 and 1/6 probability.
After constructing this R, we'll simply do a matrix multiplication AxR to find our reduced matrix E. But we don't need to do a full matrix multiplication, because if an element of Ri is 0, we don't need to do calculation. Simply skip it. But if we face with 1, we just add the column, or if it's -1, just subtract it from the calculation. So we'll simply use summation rather than multiplication to find E. And that is what makes this method very fast.
It turned out a very neat algorithm, although I feel too stupid to get the idea.
You have the idea right. However as I understand random project, the rows of your matrix R should have unit length. I believe that's approximately what the normalizing by 1/sqrt(k) is for, to normalize away the fact that they're not unit vectors.
It isn't a projection, but, it's nearly a projection; R's rows aren't orthonormal, but within a much higher-dimensional space, they quite nearly are. In fact the dot product of any two of those vectors you choose will be pretty close to 0. This is why it is a generally good approximation of actually finding a proper basis for projection.
The mapping from high-dimensional data A to low-dimensional data E is given in the statement of theorem 1.1 in the latter paper - it is simply a scalar multiplication followed by a matrix multiplication. The data vectors are the rows of the matrices A and E. As the author points out in section 7.1, you don't need to use a full matrix multiplication algorithm.
If your dataset is sparse, then sparse random projections will not work well.
You have a few options here:
Option A:
Step 1. apply a structured dense random projection (so called fast hadamard transform is typically used). This is a special projection which is very fast to compute but otherwise has the properties of a normal dense random projection
Step 2. apply sparse projection on the "densified data" (sparse random projections are useful for dense data only)
Option B:
Apply SVD on the sparse data. If the data is sparse but has some structure SVD is better. Random projection preserves the distances between all points. SVD preserves better the distances between dense regions - in practice this is more meaningful. Also people use random projections to compute the SVD on huge datasets. Random Projections gives you efficiency, but not necessarily the best quality of embedding in a low dimension.
If your data has no structure, then use random projections.
Option C:
For data points for which SVD has little error, use SVD; for the rest of the points use Random Projection
Option D:
Use a random projection based on the data points themselves.
This is very easy to understand what is going on. It looks something like this:
create a n by k matrix (n number of data point, k new dimension)
for i from 0 to k do #generate k random projection vectors
randomized_combination = feature vector of zeros (number of zeros = number of features)
sample_point_ids = select a sample of point ids
for each point_id in sample_point_ids do:
random_sign = +1/-1 with prob. 1/2
randomized_combination += random_sign*feature_vector[point_id] #this is a vector operation
normalize the randomized combination
#note that the normal random projection is:
# randomized_combination = [+/-1, +/-1, ...] (k +/-1; if you want sparse randomly set a fraction to 0; also good to normalize by length]
to project the data points on this random feature just do
for each data point_id in dataset:
scores[point_id, j] = dot_product(feature_vector[point_id], randomized_feature)
If you are still looking to solve this problem, write a message here, I can give you more pseudocode.
The way to think about it is that a random projection is just a random pattern and the dot product (i.e. projecting the data point) between the data point and the pattern gives you the overlap between them. So if two data points overlap with many random patterns, those points are similar. Therefore, random projections preserve similarity while using less space, but they also add random fluctuations in the pairwise similarities. What JLT tells you is that to make fluctuations 0.1 (eps)
you need about 100*log(n) dimensions.
Good Luck!
An R Package to perform Random Projection using Johnson- Lindenstrauss Lemma
RandPro

Resources