How to use StepListenerSupport - spring

I am trying to stop a running job based on timeout value. I am following a post found here, but I am not sure how you add this listener.
Here is the listener implementation
public class StopListener extends StepListenerSupport{
public static final Logger LOG = LoggerFactory.getLogger(StopListener.class);
private static final int TIMEOUT = 30;
private StepExecution stepExecution;
#Override
public void beforeStep(StepExecution stepExecution) {
this.stepExecution = stepExecution;
}
#Override
public void afterChunk(ChunkContext context) {
if (timeout(context)) {
this.stepExecution.setTerminateOnly();
}
}
private boolean timeout(ChunkContext chunkContext) {
LOG.info("----- TIMEOUT-----");
Date startTime = chunkContext.getStepContext().getStepExecution().getJobExecution().getStartTime();
Date now = new Date();
return Duration.between(startTime.toInstant(), now.toInstant()).toMinutes() > TIMEOUT;
}
}
Here is my step
#Bean
public Step dataFilterStep() {
return stepBuilderFactory.get("dataFilterStep")
.<UserInfo, UserInfo> chunk(10)
.reader(dataFilterItemReader())
.processor(dataFilterItemProcessor())
.writer(dataFilterWriter())
.listener(new StopListener())
.build();
}
But I am getting error saying "The method listener(Object) is ambiguous for the type SimpleStepBuilder<UserInfo,UserInfo>". A help would be really appreciated!

On one hand, StepListenerSupport is a polymorphic object, it implements 7 interfaces. On the other hand, the step builder provides several overloaded .listener() methods to accept different types of listeners. That's why when you pass your StopListener in .listener(new StopListener()), the type of listener is ambiguous.
What you can do is cast the listener to the type you want, something like:
.listener(((ChunkListener) new StopListener()))
However, by following the principle of least power [1][2], I would recommend changing your StopListener to implement only the interface required for the functionality. In your case, you seem to want to stop the job after a given timeout in afterChunk, so you can make your listener implement ChunkListener and not extend StepListenerSupport.
[1]: The Rule of Least Power
[2]: The Principle of Least Power

Related

Using DelegatingSessionFactory with RemoteFileTemplate.execute(SessionCallback)

I'm trying to declare multiple SFTP sessions, wrap them in a DelegatingSessionFactory, then later use SftpRemoteFileTemplate.execute(...) during a cron job.
On the execute part of things, the code is very simple, it is already used for a single session, but I want to expand it to multiple possible sessions.
Below I extended my single session code. I just copied the methods for reference. At the end I'll show how I think the new methods should look.
public class XSession extends SftpSession {
#Scheduled(cron = "${sftp.scan.x.schedule}")
void scan() {
List<FileHistoryEntity> fileList = template.execute(this::processFiles);
...
}
private List<FileHistoryEntity> processFiles(Session<ChannelSftp.LsEntry> session) {
List.of(session.list(this.remoteDir)).forEach(file -> doWhatever());
...
}
}
But now I have multiple sessions. So I declare the following class:
#Slf4j
#Configuration
#RequiredArgsConstructor
public class DelegateSftpSessionHandler {
private final SessionFactory<ChannelSftp.LsEntry> session1;
private final SessionFactory<ChannelSftp.LsEntry> session2;
private final SessionFactory<ChannelSftp.LsEntry> session3;
private final SessionFactory<ChannelSftp.LsEntry> session4;
private final SessionFactory<ChannelSftp.LsEntry> session5;
#RequiredArgsConstructor
public enum DelegateSessionConfig {
SESSION_1("IN_REALITY_A_RELEVANT_NAME_1");
SESSION_2("IN_REALITY_A_RELEVANT_NAME_2");
SESSION_3("IN_REALITY_A_RELEVANT_NAME_3");
SESSION_4("IN_REALITY_A_RELEVANT_NAME_4");
SESSION_5("IN_REALITY_A_RELEVANT_NAME_5");
public final String threadKey;
}
#Bean
#Primary
public DelegatingSessionFactory<ChannelSftp.LsEntry> delegatingSessionFactory() {
Map<Object, SessionFactory<ChannelSftp.LsEntry>> sessionMap = new HashMap<>();
sessionMap.put(DelegateSessionConfig.SESSION_1.threadKey, session1);
sessionMap.put(DelegateSessionConfig.SESSION_2.threadKey, session2);
sessionMap.put(DelegateSessionConfig.SESSION_3.threadKey, session3);
sessionMap.put(DelegateSessionConfig.SESSION_4.threadKey, session4);
sessionMap.put(DelegateSessionConfig.SESSION_5.threadKey, session5);
DefaultSessionFactoryLocator<ChannelSftp.LsEntry> sessionLocator = new DefaultSessionFactoryLocator<>(sessionMap);
return new DelegatingSessionFactory<>(sessionLocator);
}
#Bean
SftpRemoteFileTemplate ftpRemoteFileTemplate(DelegatingSessionFactory<ChannelSftp.LsEntry> dsf) {
return new SftpRemoteFileTemplate(dsf);
}
}
Ting is, I have no idea how any of this works, and the spring sftp / fpt documentation is by no means clear. The code is virtually undocumented. And I'm just guessing. I think that I have to do the following:
public class XSession extends SftpSession {
#Autowire
DelegatingSessionFactory<ChannelSftp.LsEntry> delegatingSessionFactory;
#Autowired
SftpRemoteFileTemplate template;
#Scheduled(cron = "${sftp.scan.x.schedule}") // x == SESSION_1
#Async // for thread key
void scan() {
delegatingSessionFactory.setThreadKey(DelegateSessionConfig.SESSION_1.threadKey);
// because thread key changes the session globally? So I don't need specify
// which session this template is working with???
List<FileHistoryEntity> fileList = template.execute(this::processFiles);
...
delegatingSessionFactory.clearThreadKey();
}
private List<FileHistoryEntity> processFiles(Session<ChannelSftp.LsEntry> session) {
List.of(session.list(this.remoteDir)).forEach(file -> doWhatever());
...
}
}
I'm basing what I'm saying on the following link, github spring integration test
Honestly, I hardly understand what is happening. But it seems like setting the thread key, changes the session globally.
My only other idea is to just ... create the RemoteFileTemplate on demand
public static SftpRemoteFileTemplate getTemplateFor(DelegatingSessionFactory<ChannelSftp.LsEntry> dsf, DelegateSessionConfig session) {
return new SftpRemoteFileTemplate(dsf.getFactoryLocator().getSessionFactory(session.threadKey));
}
It does not set it globally. That's how a ThreadLocal variable works: you set a value in some thread and only this thread can see it. If you use the same object concurrently, other threads don't see that value because it does not belong to their thread state.
Not sure what is your concern, but pattern to extend an SftpSession for custom logic is not right. You should consider to use an SftpRemoteFileTemplate.execute(SessionCallback<F, T> callback) instead, but thread key must be set into a DelegatingSessionFactory before anyway and in the same thread you going to call that execute().

Why is exception in Spring Batch AsycItemProcessor caught by SkipListener's onSkipInWrite method?

I'm writing a Spring Boot application that starts up, gathers and converts millions of database entries into a new streamlined JSON format, and then sends them all to a GCP PubSub topic. I'm attempting to use Spring Batch for this, but I'm running into trouble implementing fault tolerance for my process. The database is rife with data quality issues, and sometimes my conversions to JSON will fail. When failures occur, I don't want the job to immediately quit, I want it to continue processing as many records as it can and, before completion, to report which exact records failed so that I, and or my team, can examine these problematic database entries.
To achieve this, I've attempted to use Spring Batch's SkipListener interface. But I'm also using an AsyncItemProcessor and an AsyncItemWriter in my process, and even though the exceptions are occurring during the processing, the SkipListener's onSkipInWrite() method is catching them - rather than the onSkipInProcess() method. And unfortunately, the onSkipInWrite() method doesn't have access to the original database entity, so I can't store its ID in my list of problematic DB entries.
Have I misconfigured something? Is there any other way to gain access to the objects from the reader that failed the processing step of an AsynItemProcessor?
Here's what I've tried...
I have a singleton Spring Component where I store how many DB entries I've successfully processed along with up to 20 problematic database entries.
#Component
#Getter //lombok
public class ProcessStatus {
private int processed;
private int failureCount;
private final List<UnexpectedFailure> unexpectedFailures = new ArrayList<>();
public void incrementProgress { processed++; }
public void logUnexpectedFailure(UnexpectedFailure failure) {
failureCount++;
unexpectedFailure.add(failure);
}
#Getter
#AllArgsConstructor
public static class UnexpectedFailure {
private Throwable error;
private DBProjection dbData;
}
}
I have a Spring batch Skip Listener that's supposed to catch failures and update my status component accordingly:
#AllArgsConstructor
public class ConversionSkipListener implements SkipListener<DBProjection, Future<JsonMessage>> {
private ProcessStatus processStatus;
#Override
public void onSkipInRead(Throwable error) {}
#Override
public void onSkipInProcess(DBProjection dbData, Throwable error) {
processStatus.logUnexpectedFailure(new ProcessStatus.UnexpectedFailure(error, dbData));
}
#Override
public void onSkipInWrite(Future<JsonMessage> messageFuture, Throwable error) {
//This is getting called instead!! Even though the exception happened during processing :(
//But I have no access to the original DBProjection data here, and messageFuture.get() gives me null.
}
}
And then I've configured my job like this:
#Configuration
public class ConversionBatchJobConfig {
#Autowired
private JobBuilderFactory jobBuilderFactory;
#Autowired
private StepBuilderFactory stepBuilderFactory;
#Autowired
private TaskExecutor processThreadPool;
#Bean
public SimpleCompletionPolicy processChunkSize(#Value("${commit.chunk.size:100}") Integer chunkSize) {
return new SimpleCompletionPolicy(chunkSize);
}
#Bean
#StepScope
public ItemStreamReader<DbProjection> dbReader(
MyDomainRepository myDomainRepository,
#Value("#{jobParameters[pageSize]}") Integer pageSize,
#Value("#{jobParameters[limit]}") Integer limit) {
RepositoryItemReader<DbProjection> myDomainRepositoryReader = new RepositoryItemReader<>();
myDomainRepositoryReader.setRepository(myDomainRepository);
myDomainRepositoryReader.setMethodName("findActiveDbDomains"); //A native query
myDomainRepositoryReader.setArguments(new ArrayList<Object>() {{
add("ACTIVE");
}});
myDomainRepositoryReader.setSort(new HashMap<String, Sort.Direction>() {{
put("update_date", Sort.Direction.ASC);
}});
myDomainRepositoryReader.setPageSize(pageSize);
myDomainRepositoryReader.setMaxItemCount(limit);
// myDomainRepositoryReader.setSaveState(false); <== haven't figured out what this does yet
return myDomainRepositoryReader;
}
#Bean
#StepScope
public ItemProcessor<DbProjection, JsonMessage> dataConverter(DataRetrievalSerivice dataRetrievalService) {
//Sometimes throws exceptions when DB data is exceptionally weird, bad, or missing
return new DbProjectionToJsonMessageConverter(dataRetrievalService);
}
#Bean
#StepScope
public AsyncItemProcessor<DbProjection, JsonMessage> asyncDataConverter(
ItemProcessor<DbProjection, JsonMessage> dataConverter) throws Exception {
AsyncItemProcessor<DbProjection, JsonMessage> asyncDataConverter = new AsyncItemProcessor<>();
asyncDataConverter.setDelegate(dataConverter);
asyncDataConverter.setTaskExecutor(processThreadPool);
asyncDataConverter.afterPropertiesSet();
return asyncDataConverter;
}
#Bean
#StepScope
public ItemWriter<JsonMessage> jsonPublisher(GcpPubsubPublisherService publisherService) {
return new JsonMessageWriter(publisherService);
}
#Bean
#StepScope
public AsyncItemWriter<JsonMessage> asyncJsonPublisher(ItemWriter<JsonMessage> jsonPublisher) throws Exception {
AsyncItemWriter<JsonMessage> asyncJsonPublisher = new AsyncItemWriter<>();
asyncJsonPublisher.setDelegate(jsonPublisher);
asyncJsonPublisher.afterPropertiesSet();
return asyncJsonPublisher;
}
#Bean
public Step conversionProcess(SimpleCompletionPolicy processChunkSize,
ItemStreamReader<DbProjection> dbReader,
AsyncItemProcessor<DbProjection, JsonMessage> asyncDataConverter,
AsyncItemWriter<JsonMessage> asyncJsonPublisher,
ProcessStatus processStatus,
#Value("${conversion.failure.limit:20}") int maximumFailures) {
return stepBuilderFactory.get("conversionProcess")
.<DbProjection, Future<JsonMessage>>chunk(processChunkSize)
.reader(dbReader)
.processor(asyncDataConverter)
.writer(asyncJsonPublisher)
.faultTolerant()
.skipPolicy(new MyCustomConversionSkipPolicy(maximumFailures))
// ^ for now this returns true for everything until 20 failures
.listener(new ConversionSkipListener(processStatus))
.build();
}
#Bean
public Job conversionJob(Step conversionProcess) {
return jobBuilderFactory.get("conversionJob")
.start(conversionProcess)
.build();
}
}
This is because the future wrapped by the AsyncItemProcessor is only unwrapped in the AsyncItemWriter, so any exception that might occur at that time is seen as a write exception instead of a processing exception. That's why onSkipInWrite is called instead of onSkipInProcess.
This is actually a known limitation of this pattern which is documented in the Javadoc of the AsyncItemProcessor, here is an excerpt:
Because the Future is typically unwrapped in the ItemWriter,
there are lifecycle and stats limitations (since the framework doesn't know
what the result of the processor is).
While not an exhaustive list, things like StepExecution.filterCount will not
reflect the number of filtered items and
itemProcessListener.onProcessError(Object, Exception) will not be called.
The Javadoc states that the list is not exhaustive, and the side-effect regarding the SkipListener that you are experiencing is one these limitations.

Mockito: Verifying a method was called with a functional parameter

I have a simple scenario in which am trying to verify some behavior when a method is called (i.e. that a certain method was called with given parameter, a function pointer in this scenario). Below are my classes:
#SpringBootApplication
public class Application {
public static void main(String[] args) {
ConfigurableApplicationContext context = SpringApplication.run(Application.class, args);
AppBootStrapper bootStrapper = context.getBean(AppBootStrapper.class);
bootStrapper.start();
}
}
#Component
public class AppBootStrapper {
private NetworkScanner networkScanner;
private PacketConsumer packetConsumer;
public AppBootStrapper(NetworkScanner networkScanner, PacketConsumer packetConsumer) {
this.networkScanner = networkScanner;
this.packetConsumer = packetConsumer;
}
public void start() {
networkScanner.addConsumer(packetConsumer::consumePacket);
networkScanner.startScan();
}
}
#Component
public class NetworkScanner {
private List<Consumer<String>> consumers = new ArrayList<>();
public void startScan(){
Executors.newSingleThreadExecutor().submit(() -> {
while(true) {
// do some scanning and get/parse packets
consumers.forEach(consumer -> consumer.accept("Package Data"));
}
});
}
public void addConsumer(Consumer<String> consumer) {
this.consumers.add(consumer);
}
}
#Component
public class PacketConsumer {
public void consumePacket(String packet) {
System.out.println("Packet received: " + packet);
}
}
#RunWith(JUnit4.class)
public class AppBootStrapperTest {
#Test
public void start() throws Exception {
NetworkScanner networkScanner = mock(NetworkScanner.class);
PacketConsumer packetConsumer = mock(PacketConsumer.class);
AppBootStrapper appBootStrapper = new AppBootStrapper(networkScanner, packetConsumer);
appBootStrapper.start();
verify(networkScanner).addConsumer(packetConsumer::consumePacket);
verify(networkScanner, times(1)).startScan();
}
}
I want to verify that bootStrapper did in fact do proper setup by registering the packet consumer(there might be other consumers registered later on, but this one is mandatory) and then called startScan. I get the following error message when I execute the test case:
Argument(s) are different! Wanted:
networkScanner bean.addConsumer(
com.spring.starter.AppBootStrapperTest$$Lambda$8/438123546#282308c3
);
-> at com.spring.starter.AppBootStrapperTest.start(AppBootStrapperTest.java:24)
Actual invocation has different arguments:
networkScanner bean.addConsumer(
com.spring.starter.AppBootStrapper$$Lambda$7/920446957#5dda14d0
);
-> at com.spring.starter.AppBootStrapper.start(AppBootStrapper.java:12)
From the exception, clearly the function pointers aren't the same.
Am I approaching this the right way? Is there something basic I am missing? I played around and had a consumer injected into PacketConsumer just to see if it made a different and that was OK, but I know that's certainly not the right way to go.
Any help, perspectives on this would be greatly appreciated.
Java doesn't have any concept of "function pointers"; when you see:
networkScanner.addConsumer(packetConsumer::consumePacket);
What Java actually compiles is (the equivalent of):
networkScanner.addConsumer(new Consumer<String>() {
#Override void accept(String packet) {
packetConsumer.consumePacket(packet);
}
});
This anonymous inner class happens to be called AppBootStrapper$$Lambda$7. Because it doesn't (and shouldn't) define an equals method, it will never be equal to the anonymous inner class that the compiler generates in your test, which happens to be called AppBootStrapperTest$$Lambda$8. This is regardless of the fact that the method bodies are the same, and are built in the same way from the same method reference.
If you generate the Consumer explicitly in your test and save it as a static final Consumer<String> field, then you can pass that reference in the test and compare it; at that point, reference equality should hold. This should work with a lambda expression or method reference just fine.
A more apt test would probably verify(packetConsumer, atLeastOnce()).consumePacket(...), as the contents of the lambda are an implementation detail and you're really more concerned about how your component collaborates with other components. The abstraction here should be at the consumePacket level, not at the addConsumer level.
See the comments and answer on this SO question.

DeferredResult in spring mvc

I have one class that extends DeferredResults and extends Runnable as shown below
public class EventDeferredObject<T> extends DeferredResult<Boolean> implements Runnable {
private Long customerId;
private String email;
#Override
public void run() {
RestTemplate restTemplate=new RestTemplate();
EmailMessageDTO emailMessageDTO=new EmailMessageDTO("dineshshe#gmail.com", "Hi There");
Boolean result=restTemplate.postForObject("http://localhost:9080/asycn/sendEmail", emailMessageDTO, Boolean.class);
this.setResult(result);
}
//Constructor and getter and setters
}
Now I have controller that return the object of the above class,whenever new request comes to controller we check if that request is present in HashMap(That stores unprocessed request at that instance).If not present then we are creating object of EventDeferredObject class can store that in HashMap and call start() method on it.If this type request is already present then we will return that from HashMap.On completion on request we will delete that request from HashMap.
#RequestMapping(value="/sendVerificationDetails")
public class SendVerificationDetailsController {
private ConcurrentMap<String , EventDeferredObject<Boolean>> requestMap=new ConcurrentHashMap<String , EventDeferredObject<Boolean>>();
#RequestMapping(value="/sendEmail",method=RequestMethod.POST)
public EventDeferredObject<Boolean> sendEmail(#RequestBody EmailDTO emailDTO)
{
EventDeferredObject<Boolean> eventDeferredObject = null;
System.out.println("Size:"+requestMap.size());
if(!requestMap.containsKey(emailDTO.getEmail()))
{
eventDeferredObject=new EventDeferredObject<Boolean>(emailDTO.getCustomerId(), emailDTO.getEmail());
requestMap.put(emailDTO.getEmail(), eventDeferredObject);
Thread t1=new Thread(eventDeferredObject);
t1.start();
}
else
{
eventDeferredObject=requestMap.get(emailDTO.getEmail());
}
eventDeferredObject.onCompletion(new Runnable() {
#Override
public void run() {
if(requestMap.containsKey(emailDTO.getEmail()))
{
requestMap.remove(emailDTO.getEmail());
}
}
});
return eventDeferredObject;
}
}
Now this code works fine if there no identical request comes to that stored in HashMap. If we give number of different request at same time code works fine.
Well, I do not know if I understood correctly, but I think you might have race conditions in the code, for example here:
if(!requestMap.containsKey(emailDTO.getEmail()))
{
eventDeferredObject=new EventDeferredObject<Boolean>(emailDTO.getCustomerId(), emailDTO.getEmail());
requestMap.put(emailDTO.getEmail(), eventDeferredObject);
Thread t1=new Thread(eventDeferredObject);
t1.start();
}
else
{
eventDeferredObject=requestMap.get(emailDTO.getEmail());
}
think of a scenario in which you have two requests with the same key emailDTO.getEmail().
Request 1 checks if there is a key in the map, does not find it and puts it inside.
Request 2 comes some time later, checks if there is a key in the map, finds it, and
goes to fetch it; however just before that, the thread started by request 1 finishes and another thread, started by onComplete event, removes the key from the map. At this point,
requestMap.get(emailDTO.getEmail())
will return null, and as a result you will have a NullPointerException.
Now, this does look like a rare scenario, so I do not know if this is the problem you see.
I would try to modify the code as follows (I did not run it myself, so I might have errors):
public class EventDeferredObject<T> extends DeferredResult<Boolean> implements Runnable {
private Long customerId;
private String email;
private ConcurrentMap ourConcurrentMap;
#Override
public void run() {
...
this.setResult(result);
ourConcurrentMap.remove(this.email);
}
//Constructor and getter and setters
}
so the DeferredResult implementation has the responsibility to remove itself from the concurrent map. Moreover I do not use the onComplete to set a callback thread, as it seems to me an unnecessary complication. To avoid the race conditions I talked about before, one needs to combine somehow the verification of the presence of an entry with its fetching into one atomic operation; this is done by the putIfAbsent method of ConcurrentMap. Therefore I change the controller into
#RequestMapping(value="/sendVerificationDetails")
public class SendVerificationDetailsController {
private ConcurrentMap<String , EventDeferredObject<Boolean>> requestMap=new ConcurrentHashMap<String , EventDeferredObject<Boolean>>();
#RequestMapping(value="/sendEmail",method=RequestMethod.POST)
public EventDeferredObject<Boolean> sendEmail(#RequestBody EmailDTO emailDTO)
{
EventDeferredObject<Boolean> eventDeferredObject = new EventDeferredObject<Boolean>(emailDTO.getCustomerId(), emailDTO.getEmail(), requestMap);
EventDeferredObject<Boolean> oldEventDeferredObject = requestMap.putIfAbsent(emailDTO.getEmail(), eventDeferredObject );
if(oldEventDeferredObject == null)
{
//if no value was present before
Thread t1=new Thread(eventDeferredObject);
t1.start();
return eventDeferredObject;
}
else
{
return oldEventDeferredObject;
}
}
}
if this does not solve the problem you have, I hope that at least it might give some idea.

Can you think of a better way to only load DBbUnit once per test class with Spring?

I realise that best practise may advise on loading test data on every #Test method, however this can be painfully slow for DBUnit so I have come up with the following solution to load it only once per class:
Only load a data set once per test class
Support multiple data sources and those not named "dataSource" from the ApplicationContext
Roll back of the inserted DBUnit data set not strictly required
While the code below works, what is bugging me is that my Test class has the static method beforeClassWithApplicationContext() but it cannot belong to an Interface because its static. Therefore my use of Reflection is being used in a non Type safe manner. Is there a more elegant solution?
/**
* My Test class
*/
#RunWith(SpringJUnit4ClassRunner.class)
#TestExecutionListeners({DependencyInjectionTestExecutionListener.class, DirtiesContextTestExecutionListener.class, DbunitLoadOnceTestExecutionListener.class})
#ContextConfiguration(locations={"classpath:resources/spring/applicationContext.xml"})
public class TestClass {
public static final String TEST_DATA_FILENAME = "Scenario-1.xml";
public static void beforeClassWithApplicationContext(ApplicationContext ctx) throws Exception {
DataSource ds = (DataSource)ctx.getBean("dataSourceXyz");
IDatabaseConnection conn = new DatabaseConnection(ds.getConnection());
IDataSet dataSet = DbUnitHelper.getDataSetFromFile(conn, TEST_DATA_FILENAME);
InsertIdentityOperation.CLEAN_INSERT.execute(conn, dataSet);
}
#Test
public void somethingToTest() {
// do stuff...
}
}
/**
* My new custom TestExecutioner
*/
public class DbunitLoadOnceTestExecutionListener extends AbstractTestExecutionListener {
final String methodName = "beforeClassWithApplicationContext";
#Override
public void beforeTestClass(TestContext testContext) throws Exception {
super.beforeTestClass(testContext);
Class<?> clazz = testContext.getTestClass();
Method m = null;
try {
m = clazz.getDeclaredMethod(methodName, ApplicationContext.class);
}
catch(Exception e) {
throw new Exception("Test class must implement " + methodName + "()", e);
}
m.invoke(null, testContext.getApplicationContext());
}
}
One other thought I had was possibly creating a static singleton class for holding a reference to the ApplicationContext and populating it from DbunitLoadOnceTestExecutionListener.beforeTestClass(). I could then retrieve that singleton reference from a standard #BeforeClass method defined on TestClass. My code above calling back into each TestClass just seems a little messy.
After the helpful feedback from Matt and JB this is a much simpler solution to achieve the desired result
/**
* My Test class
*/
#RunWith(SpringJUnit4ClassRunner.class)
#TestExecutionListeners({DependencyInjectionTestExecutionListener.class, DirtiesContextTestExecutionListener.class, DbunitLoadOnceTestExecutionListener.class})
#ContextConfiguration(locations={"classpath:resources/spring/applicationContext.xml"})
public class TestClass {
private static final String TEST_DATA_FILENAME = "Scenario-1.xml";
// must be static
private static volatile boolean isDataSetLoaded = false;
// use the Qualifier to select a specific dataSource
#Autowired
#Qualifier("dataSourceXyz")
private DataSource dataSource;
/**
* For performance reasons, we only want to load the DBUnit data set once per test class
* rather than before every test method.
*
* #throws Exception
*/
#Before
public void before() throws Exception {
if(!isDataSetLoaded) {
isDataSetLoaded = true;
IDatabaseConnection conn = new DatabaseConnection(dataSource.getConnection());
IDataSet dataSet = DbUnitHelper.getDataSetFromFile(conn, TEST_DATA_FILENAME);
InsertIdentityOperation.CLEAN_INSERT.execute(conn, dataSet);
}
}
#Test
public void somethingToTest() {
// do stuff...
}
}
The class DbunitLoadOnceTestExecutionListener is no longer requried and has been removed. It just goes to show that reading up on all the fancy techniques can sometimes cloud your own judgement :o)
Not a specialist, but couldn't you call an instance method of your test object in prepareTestInstance() after having verified it implements the appropriate interface, and call this method only if it's the first time prepareTestInstance is invoked with a test instance of this class. You would just have to keep a set of already seen classes:
#Override
public void prepareTestInstance(TestContext testContext) throws Exception {
MyDbUnitTest instance = (MyDbUnitTest) getTestInstance();
if (!this.alreadySeenClasses.contains(instance.getClass()) {
instance.beforeClassWithApplicationContext(testContext.getApplicationContext());
this.alreadySeenClasses.add(instance.getClass());
}
}

Resources