Using DelegatingSessionFactory with RemoteFileTemplate.execute(SessionCallback) - spring

I'm trying to declare multiple SFTP sessions, wrap them in a DelegatingSessionFactory, then later use SftpRemoteFileTemplate.execute(...) during a cron job.
On the execute part of things, the code is very simple, it is already used for a single session, but I want to expand it to multiple possible sessions.
Below I extended my single session code. I just copied the methods for reference. At the end I'll show how I think the new methods should look.
public class XSession extends SftpSession {
#Scheduled(cron = "${sftp.scan.x.schedule}")
void scan() {
List<FileHistoryEntity> fileList = template.execute(this::processFiles);
...
}
private List<FileHistoryEntity> processFiles(Session<ChannelSftp.LsEntry> session) {
List.of(session.list(this.remoteDir)).forEach(file -> doWhatever());
...
}
}
But now I have multiple sessions. So I declare the following class:
#Slf4j
#Configuration
#RequiredArgsConstructor
public class DelegateSftpSessionHandler {
private final SessionFactory<ChannelSftp.LsEntry> session1;
private final SessionFactory<ChannelSftp.LsEntry> session2;
private final SessionFactory<ChannelSftp.LsEntry> session3;
private final SessionFactory<ChannelSftp.LsEntry> session4;
private final SessionFactory<ChannelSftp.LsEntry> session5;
#RequiredArgsConstructor
public enum DelegateSessionConfig {
SESSION_1("IN_REALITY_A_RELEVANT_NAME_1");
SESSION_2("IN_REALITY_A_RELEVANT_NAME_2");
SESSION_3("IN_REALITY_A_RELEVANT_NAME_3");
SESSION_4("IN_REALITY_A_RELEVANT_NAME_4");
SESSION_5("IN_REALITY_A_RELEVANT_NAME_5");
public final String threadKey;
}
#Bean
#Primary
public DelegatingSessionFactory<ChannelSftp.LsEntry> delegatingSessionFactory() {
Map<Object, SessionFactory<ChannelSftp.LsEntry>> sessionMap = new HashMap<>();
sessionMap.put(DelegateSessionConfig.SESSION_1.threadKey, session1);
sessionMap.put(DelegateSessionConfig.SESSION_2.threadKey, session2);
sessionMap.put(DelegateSessionConfig.SESSION_3.threadKey, session3);
sessionMap.put(DelegateSessionConfig.SESSION_4.threadKey, session4);
sessionMap.put(DelegateSessionConfig.SESSION_5.threadKey, session5);
DefaultSessionFactoryLocator<ChannelSftp.LsEntry> sessionLocator = new DefaultSessionFactoryLocator<>(sessionMap);
return new DelegatingSessionFactory<>(sessionLocator);
}
#Bean
SftpRemoteFileTemplate ftpRemoteFileTemplate(DelegatingSessionFactory<ChannelSftp.LsEntry> dsf) {
return new SftpRemoteFileTemplate(dsf);
}
}
Ting is, I have no idea how any of this works, and the spring sftp / fpt documentation is by no means clear. The code is virtually undocumented. And I'm just guessing. I think that I have to do the following:
public class XSession extends SftpSession {
#Autowire
DelegatingSessionFactory<ChannelSftp.LsEntry> delegatingSessionFactory;
#Autowired
SftpRemoteFileTemplate template;
#Scheduled(cron = "${sftp.scan.x.schedule}") // x == SESSION_1
#Async // for thread key
void scan() {
delegatingSessionFactory.setThreadKey(DelegateSessionConfig.SESSION_1.threadKey);
// because thread key changes the session globally? So I don't need specify
// which session this template is working with???
List<FileHistoryEntity> fileList = template.execute(this::processFiles);
...
delegatingSessionFactory.clearThreadKey();
}
private List<FileHistoryEntity> processFiles(Session<ChannelSftp.LsEntry> session) {
List.of(session.list(this.remoteDir)).forEach(file -> doWhatever());
...
}
}
I'm basing what I'm saying on the following link, github spring integration test
Honestly, I hardly understand what is happening. But it seems like setting the thread key, changes the session globally.
My only other idea is to just ... create the RemoteFileTemplate on demand
public static SftpRemoteFileTemplate getTemplateFor(DelegatingSessionFactory<ChannelSftp.LsEntry> dsf, DelegateSessionConfig session) {
return new SftpRemoteFileTemplate(dsf.getFactoryLocator().getSessionFactory(session.threadKey));
}

It does not set it globally. That's how a ThreadLocal variable works: you set a value in some thread and only this thread can see it. If you use the same object concurrently, other threads don't see that value because it does not belong to their thread state.
Not sure what is your concern, but pattern to extend an SftpSession for custom logic is not right. You should consider to use an SftpRemoteFileTemplate.execute(SessionCallback<F, T> callback) instead, but thread key must be set into a DelegatingSessionFactory before anyway and in the same thread you going to call that execute().

Related

Why is exception in Spring Batch AsycItemProcessor caught by SkipListener's onSkipInWrite method?

I'm writing a Spring Boot application that starts up, gathers and converts millions of database entries into a new streamlined JSON format, and then sends them all to a GCP PubSub topic. I'm attempting to use Spring Batch for this, but I'm running into trouble implementing fault tolerance for my process. The database is rife with data quality issues, and sometimes my conversions to JSON will fail. When failures occur, I don't want the job to immediately quit, I want it to continue processing as many records as it can and, before completion, to report which exact records failed so that I, and or my team, can examine these problematic database entries.
To achieve this, I've attempted to use Spring Batch's SkipListener interface. But I'm also using an AsyncItemProcessor and an AsyncItemWriter in my process, and even though the exceptions are occurring during the processing, the SkipListener's onSkipInWrite() method is catching them - rather than the onSkipInProcess() method. And unfortunately, the onSkipInWrite() method doesn't have access to the original database entity, so I can't store its ID in my list of problematic DB entries.
Have I misconfigured something? Is there any other way to gain access to the objects from the reader that failed the processing step of an AsynItemProcessor?
Here's what I've tried...
I have a singleton Spring Component where I store how many DB entries I've successfully processed along with up to 20 problematic database entries.
#Component
#Getter //lombok
public class ProcessStatus {
private int processed;
private int failureCount;
private final List<UnexpectedFailure> unexpectedFailures = new ArrayList<>();
public void incrementProgress { processed++; }
public void logUnexpectedFailure(UnexpectedFailure failure) {
failureCount++;
unexpectedFailure.add(failure);
}
#Getter
#AllArgsConstructor
public static class UnexpectedFailure {
private Throwable error;
private DBProjection dbData;
}
}
I have a Spring batch Skip Listener that's supposed to catch failures and update my status component accordingly:
#AllArgsConstructor
public class ConversionSkipListener implements SkipListener<DBProjection, Future<JsonMessage>> {
private ProcessStatus processStatus;
#Override
public void onSkipInRead(Throwable error) {}
#Override
public void onSkipInProcess(DBProjection dbData, Throwable error) {
processStatus.logUnexpectedFailure(new ProcessStatus.UnexpectedFailure(error, dbData));
}
#Override
public void onSkipInWrite(Future<JsonMessage> messageFuture, Throwable error) {
//This is getting called instead!! Even though the exception happened during processing :(
//But I have no access to the original DBProjection data here, and messageFuture.get() gives me null.
}
}
And then I've configured my job like this:
#Configuration
public class ConversionBatchJobConfig {
#Autowired
private JobBuilderFactory jobBuilderFactory;
#Autowired
private StepBuilderFactory stepBuilderFactory;
#Autowired
private TaskExecutor processThreadPool;
#Bean
public SimpleCompletionPolicy processChunkSize(#Value("${commit.chunk.size:100}") Integer chunkSize) {
return new SimpleCompletionPolicy(chunkSize);
}
#Bean
#StepScope
public ItemStreamReader<DbProjection> dbReader(
MyDomainRepository myDomainRepository,
#Value("#{jobParameters[pageSize]}") Integer pageSize,
#Value("#{jobParameters[limit]}") Integer limit) {
RepositoryItemReader<DbProjection> myDomainRepositoryReader = new RepositoryItemReader<>();
myDomainRepositoryReader.setRepository(myDomainRepository);
myDomainRepositoryReader.setMethodName("findActiveDbDomains"); //A native query
myDomainRepositoryReader.setArguments(new ArrayList<Object>() {{
add("ACTIVE");
}});
myDomainRepositoryReader.setSort(new HashMap<String, Sort.Direction>() {{
put("update_date", Sort.Direction.ASC);
}});
myDomainRepositoryReader.setPageSize(pageSize);
myDomainRepositoryReader.setMaxItemCount(limit);
// myDomainRepositoryReader.setSaveState(false); <== haven't figured out what this does yet
return myDomainRepositoryReader;
}
#Bean
#StepScope
public ItemProcessor<DbProjection, JsonMessage> dataConverter(DataRetrievalSerivice dataRetrievalService) {
//Sometimes throws exceptions when DB data is exceptionally weird, bad, or missing
return new DbProjectionToJsonMessageConverter(dataRetrievalService);
}
#Bean
#StepScope
public AsyncItemProcessor<DbProjection, JsonMessage> asyncDataConverter(
ItemProcessor<DbProjection, JsonMessage> dataConverter) throws Exception {
AsyncItemProcessor<DbProjection, JsonMessage> asyncDataConverter = new AsyncItemProcessor<>();
asyncDataConverter.setDelegate(dataConverter);
asyncDataConverter.setTaskExecutor(processThreadPool);
asyncDataConverter.afterPropertiesSet();
return asyncDataConverter;
}
#Bean
#StepScope
public ItemWriter<JsonMessage> jsonPublisher(GcpPubsubPublisherService publisherService) {
return new JsonMessageWriter(publisherService);
}
#Bean
#StepScope
public AsyncItemWriter<JsonMessage> asyncJsonPublisher(ItemWriter<JsonMessage> jsonPublisher) throws Exception {
AsyncItemWriter<JsonMessage> asyncJsonPublisher = new AsyncItemWriter<>();
asyncJsonPublisher.setDelegate(jsonPublisher);
asyncJsonPublisher.afterPropertiesSet();
return asyncJsonPublisher;
}
#Bean
public Step conversionProcess(SimpleCompletionPolicy processChunkSize,
ItemStreamReader<DbProjection> dbReader,
AsyncItemProcessor<DbProjection, JsonMessage> asyncDataConverter,
AsyncItemWriter<JsonMessage> asyncJsonPublisher,
ProcessStatus processStatus,
#Value("${conversion.failure.limit:20}") int maximumFailures) {
return stepBuilderFactory.get("conversionProcess")
.<DbProjection, Future<JsonMessage>>chunk(processChunkSize)
.reader(dbReader)
.processor(asyncDataConverter)
.writer(asyncJsonPublisher)
.faultTolerant()
.skipPolicy(new MyCustomConversionSkipPolicy(maximumFailures))
// ^ for now this returns true for everything until 20 failures
.listener(new ConversionSkipListener(processStatus))
.build();
}
#Bean
public Job conversionJob(Step conversionProcess) {
return jobBuilderFactory.get("conversionJob")
.start(conversionProcess)
.build();
}
}
This is because the future wrapped by the AsyncItemProcessor is only unwrapped in the AsyncItemWriter, so any exception that might occur at that time is seen as a write exception instead of a processing exception. That's why onSkipInWrite is called instead of onSkipInProcess.
This is actually a known limitation of this pattern which is documented in the Javadoc of the AsyncItemProcessor, here is an excerpt:
Because the Future is typically unwrapped in the ItemWriter,
there are lifecycle and stats limitations (since the framework doesn't know
what the result of the processor is).
While not an exhaustive list, things like StepExecution.filterCount will not
reflect the number of filtered items and
itemProcessListener.onProcessError(Object, Exception) will not be called.
The Javadoc states that the list is not exhaustive, and the side-effect regarding the SkipListener that you are experiencing is one these limitations.

Cache Kafka Records using Caffeine Cache Springboot

I am trying to cache Kafka Records within 3 minutes of interval post that it will get expired and removed from the cache.
Each incoming records which is fetched using kafka consumer written in springboot needs to be updated in cache first then if it is present i need to discard the next duplicate records if it matches the cache record.
I have tried using Caffeine cache as below,
#EnableCaching
public class AppCacheManagerConfig {
#Bean
public CacheManager cacheManager(Ticker ticker) {
CaffeineCache bookCache = buildCache("declineRecords", ticker, 3);
SimpleCacheManager cacheManager = new SimpleCacheManager();
cacheManager.setCaches(Collections.singletonList(bookCache));
return cacheManager;
}
private CaffeineCache buildCache(String name, Ticker ticker, int minutesToExpire) {
return new CaffeineCache(name, Caffeine.newBuilder().expireAfterWrite(minutesToExpire, TimeUnit.MINUTES)
.maximumSize(100).ticker(ticker).build());
}
#Bean
public Ticker ticker() {
return Ticker.systemTicker();
}
}
and my Kafka Consumer is as below,
#Autowired
CachingServiceImpl cachingService;
#KafkaListener(topics = "#{'${spring.kafka.consumer.topic}'}", concurrency = "#{'${spring.kafka.consumer.concurrentConsumers}'}", errorHandler = "#{'${spring.kafka.consumer.errorHandler}'}")
public void consume(Message<?> message, Acknowledgment acknowledgment,
#Header(KafkaHeaders.RECEIVED_TIMESTAMP) long createTime) {
logger.info("Recieved Message: " + message.getPayload());
try {
boolean approveTopic = false;
boolean duplicateRecord = false;
if (cachingService.isDuplicateCheck(declineRecord)) {
//do something with records
}
else
{
//do something with records
}
cachingService.putInCache(xmlJSONObj, declineRecord, time);
and my caching service is as below,
#Component
public class CachingServiceImpl {
private static final Logger logger = LoggerFactory.getLogger(CachingServiceImpl.class);
#Autowired
CacheManager cacheManager;
#Cacheable(value = "declineRecords", key = "#declineRecord", sync = true)
public String putInCache(JSONObject xmlJSONObj, String declineRecord, String time) {
logger.info("Record is Cached for 3 minutes interval check", declineRecord);
cacheManager.getCache("declineRecords").put(declineRecord, time);
return declineRecord;
}
public boolean isDuplicateCheck(String declineRecord) {
if (null != cacheManager.getCache("declineRecords").get(declineRecord)) {
return true;
}
return false;
}
}
But Each time a record comes in consumer my cache is always empty. Its not holding the records.
Modifications Done:
I have added Configuration file as below after going through the suggestions and more kind of R&D removed some of the earlier logic and now the caching is working as expected but duplicate check is failing when all the three consumers are sending the same records.
`
#Configuration
public class AppCacheManagerConfig {
public static Cache<String, Object> jsonCache =
Caffeine.newBuilder().expireAfterWrite(3, TimeUnit.MINUTES)
.maximumSize(10000).recordStats().build();
#Bean
public CacheLoader<Object, Object> cacheLoader() {
CacheLoader<Object, Object> cacheLoader = new CacheLoader<Object, Object>() {
#Override
public Object load(Object key) throws Exception {
return null;
}
#Override
public Object reload(Object key, Object oldValue) throws Exception {
return oldValue;
}
};
return cacheLoader;
}
`
Now i am using the above cache as manual put and get.
I guess you're trying to implement records deduplication for Kafka.
Here is the similar discussion:
https://github.com/spring-projects/spring-kafka/issues/80
Here is the current abstract class which you may extend to achieve the necessary result:
https://github.com/spring-projects/spring-kafka/blob/master/spring-kafka/src/main/java/org/springframework/kafka/listener/adapter/AbstractFilteringMessageListener.java
Your caching service is definitely incorrect: Cacheable annotation allows marking the data getters and setters, to add caching through AOP. While in the code you clearly implement some low-level cache updating logic of your own.
At least next possible changes may help you:
Remove #Cacheable. You don't need it because you work with cache manually, so it may be the source of conflicts (especially as soon as you use sync = true). If it helps, remove #EnableCaching as well - it enables support for cache-related Spring annotations which you don't need here.
Try removing Ticker bean with the appropriate parameters for other beans. It should not be harmful as per your configuration, but usually it's helpful only for tests, no need to define it otherwise.
Double-check what is declineRecord. If it's a serialized object, ensure that serialization works properly.
Add recordStats() for cache and output stats() to log for further analysis.

How to do manual transaction management with JOOQ and Spring-boot 2.0?

Using Spring Boot 2.0.4 and JOOQ 3.11.3.
I have a server endpoint that needs fine-grained control over transaction management; it needs to issue multiple SQL statements before and after an external call and must not keep the DB transaction open while talking to the external site.
In the below code testTransactionV4 is the attempt I like best.
I've looked in the JOOQ manual but the transaction-management section is pretty light-on and seems to imply this is the way to do it.
It feels like I'm working harder than I should be here, which is usually a sign that I'm doing it wrong. Is there a better, "correct" way to do manual transaction management with Spring/JOOQ?
Also, any improvements to the implementation of the TransactionBean would be greatly appreciated (and upvoted).
But the point of this question is really just: "Is this the right way"?
TestEndpoint:
#Role.SystemApi
#SystemApiEndpoint
public class TestEndpoint {
private static Log log = to(TestEndpoint.class);
#Autowired private DSLContext db;
#Autowired private TransactionBean txBean;
#Autowired private Tx tx;
private void doNonTransactionalThing() {
log.info("long running thing that should not be inside a transaction");
}
/** Works; don't like the commitWithResult name but it'll do if there's
no better way. Implementation is ugly too.
*/
#JsonPostMethod("testTransactionV4")
public void testMultiTransactionWithTxBean() {
log.info("start testMultiTransactionWithTxBean");
AccountRecord account = txBean.commitWithResult( db ->
db.fetchOne(ACCOUNT, ACCOUNT.ID.eq(1)) );
doNonTransactionalThing();
account.setName("test_tx+"+new Date());
txBean.commit(db -> account.store() );
}
/** Works; but it's ugly, especially having to work around lambda final
requirements on references. */
#JsonPostMethod("testTransactionV3")
public void testMultiTransactionWithJooqApi() {
log.info("start testMultiTransactionWithJooqApi");
AtomicReference<AccountRecord> account = new AtomicReference<>();
db.transaction( config->
account.set(DSL.using(config).fetchOne(ACCOUNT, ACCOUNT.ID.eq(1))) );
doNonTransactionalThing();
account.get().setName("test_tx+"+new Date());
db.transaction(config->{
account.get().store();
});
}
/** Does not work, there's only one commit that spans over the long operation */
#JsonPostMethod("testTransactionV1")
#Transactional
public void testIncorrectSingleTransactionWithMethodAnnotation() {
log.info("start testIncorrectSingleTransactionWithMethodAnnotation");
AccountRecord account = db.fetchOne(ACCOUNT, ACCOUNT.ID.eq(1));
doNonTransactionalThing();
account.setName("test_tx+"+new Date());
account.store();
}
/** Works, but I don't like defining my tx boundaries this way, readability
is poor (relies on correct bean naming and even then is non-obvious) and is
fragile in the face of refactoring. When explicit TX boundaries are needed
I want them getting in my face straight away.
*/
#JsonPostMethod("testTransactionV2")
public void testMultiTransactionWithNestedComponent() {
log.info("start testTransactionWithComponentDelegation");
AccountRecord account = tx.readAccount();
doNonTransactionalThing();
account.setName("test_tx+"+new Date());
tx.writeAccount(account);
}
#Component
static class Tx {
#Autowired private DSLContext db;
#Transactional
public AccountRecord readAccount() {
return db.fetchOne(ACCOUNT, ACCOUNT.ID.eq(1));
}
#Transactional
public void writeAccount(AccountRecord account) {
account.store();
}
}
}
TransactionBean:
#Component
public class TransactionBean {
#Autowired private DSLContext db;
/**
Don't like the name, but can't figure out how to make it be just "commit".
*/
public <T> T commitWithResult(Function<DSLContext, T> worker) {
// Yuck, at the very least need an array or something as the holder.
AtomicReference<T> result = new AtomicReference<>();
db.transaction( config -> result.set(
worker.apply(DSL.using(config))
));
return result.get();
}
public void commit(Consumer<DSLContext> worker) {
db.transaction( config ->
worker.accept(DSL.using(config))
);
}
public void commit(Runnable worker) {
db.transaction( config ->
worker.run()
);
}
}
Use the TransactionTemplate to wrap the transactional part. Spring Boot provides one out-of-the-box so it is ready for use. You can use the execute method to wrap a call in a transaction.
#Autowired
private TransactionTemplate transaction;
#JsonPostMethod("testTransactionV1")
public void testIncorrectSingleTransactionWithTransactionTemplate() {
log.info("start testIncorrectSingleTransactionWithMethodAnnotation");
AccountRecord account = transaction.execute( status -> db.fetchOne(ACCOUNT, ACCOUNT.ID.eq(1)));
doNonTransactionalThing();
transaction.execute(status -> {
account.setName("test_tx+"+new Date());
account.store();
return null;
}
}
Something like that should do the trick. Not sure if the lambdas would work (keep forgetting the syntax of the TransactionCallback

DeferredResult in spring mvc

I have one class that extends DeferredResults and extends Runnable as shown below
public class EventDeferredObject<T> extends DeferredResult<Boolean> implements Runnable {
private Long customerId;
private String email;
#Override
public void run() {
RestTemplate restTemplate=new RestTemplate();
EmailMessageDTO emailMessageDTO=new EmailMessageDTO("dineshshe#gmail.com", "Hi There");
Boolean result=restTemplate.postForObject("http://localhost:9080/asycn/sendEmail", emailMessageDTO, Boolean.class);
this.setResult(result);
}
//Constructor and getter and setters
}
Now I have controller that return the object of the above class,whenever new request comes to controller we check if that request is present in HashMap(That stores unprocessed request at that instance).If not present then we are creating object of EventDeferredObject class can store that in HashMap and call start() method on it.If this type request is already present then we will return that from HashMap.On completion on request we will delete that request from HashMap.
#RequestMapping(value="/sendVerificationDetails")
public class SendVerificationDetailsController {
private ConcurrentMap<String , EventDeferredObject<Boolean>> requestMap=new ConcurrentHashMap<String , EventDeferredObject<Boolean>>();
#RequestMapping(value="/sendEmail",method=RequestMethod.POST)
public EventDeferredObject<Boolean> sendEmail(#RequestBody EmailDTO emailDTO)
{
EventDeferredObject<Boolean> eventDeferredObject = null;
System.out.println("Size:"+requestMap.size());
if(!requestMap.containsKey(emailDTO.getEmail()))
{
eventDeferredObject=new EventDeferredObject<Boolean>(emailDTO.getCustomerId(), emailDTO.getEmail());
requestMap.put(emailDTO.getEmail(), eventDeferredObject);
Thread t1=new Thread(eventDeferredObject);
t1.start();
}
else
{
eventDeferredObject=requestMap.get(emailDTO.getEmail());
}
eventDeferredObject.onCompletion(new Runnable() {
#Override
public void run() {
if(requestMap.containsKey(emailDTO.getEmail()))
{
requestMap.remove(emailDTO.getEmail());
}
}
});
return eventDeferredObject;
}
}
Now this code works fine if there no identical request comes to that stored in HashMap. If we give number of different request at same time code works fine.
Well, I do not know if I understood correctly, but I think you might have race conditions in the code, for example here:
if(!requestMap.containsKey(emailDTO.getEmail()))
{
eventDeferredObject=new EventDeferredObject<Boolean>(emailDTO.getCustomerId(), emailDTO.getEmail());
requestMap.put(emailDTO.getEmail(), eventDeferredObject);
Thread t1=new Thread(eventDeferredObject);
t1.start();
}
else
{
eventDeferredObject=requestMap.get(emailDTO.getEmail());
}
think of a scenario in which you have two requests with the same key emailDTO.getEmail().
Request 1 checks if there is a key in the map, does not find it and puts it inside.
Request 2 comes some time later, checks if there is a key in the map, finds it, and
goes to fetch it; however just before that, the thread started by request 1 finishes and another thread, started by onComplete event, removes the key from the map. At this point,
requestMap.get(emailDTO.getEmail())
will return null, and as a result you will have a NullPointerException.
Now, this does look like a rare scenario, so I do not know if this is the problem you see.
I would try to modify the code as follows (I did not run it myself, so I might have errors):
public class EventDeferredObject<T> extends DeferredResult<Boolean> implements Runnable {
private Long customerId;
private String email;
private ConcurrentMap ourConcurrentMap;
#Override
public void run() {
...
this.setResult(result);
ourConcurrentMap.remove(this.email);
}
//Constructor and getter and setters
}
so the DeferredResult implementation has the responsibility to remove itself from the concurrent map. Moreover I do not use the onComplete to set a callback thread, as it seems to me an unnecessary complication. To avoid the race conditions I talked about before, one needs to combine somehow the verification of the presence of an entry with its fetching into one atomic operation; this is done by the putIfAbsent method of ConcurrentMap. Therefore I change the controller into
#RequestMapping(value="/sendVerificationDetails")
public class SendVerificationDetailsController {
private ConcurrentMap<String , EventDeferredObject<Boolean>> requestMap=new ConcurrentHashMap<String , EventDeferredObject<Boolean>>();
#RequestMapping(value="/sendEmail",method=RequestMethod.POST)
public EventDeferredObject<Boolean> sendEmail(#RequestBody EmailDTO emailDTO)
{
EventDeferredObject<Boolean> eventDeferredObject = new EventDeferredObject<Boolean>(emailDTO.getCustomerId(), emailDTO.getEmail(), requestMap);
EventDeferredObject<Boolean> oldEventDeferredObject = requestMap.putIfAbsent(emailDTO.getEmail(), eventDeferredObject );
if(oldEventDeferredObject == null)
{
//if no value was present before
Thread t1=new Thread(eventDeferredObject);
t1.start();
return eventDeferredObject;
}
else
{
return oldEventDeferredObject;
}
}
}
if this does not solve the problem you have, I hope that at least it might give some idea.

ApacheConnector does not process request headers that were set in a WriterInterceptor

I am experiencing problems when configurating my Jersey Client with the ApacheConnector. It seems to ignore all request headers that I define in a WriterInterceptor. I can tell that the WriterInterceptor is called when I set a break point within WriterInterceptor#aroundWriteTo(WriterInterceptorContext). Contrary to that, I can observe that the modification of an InputStream is preserved.
Here is a runnable example demonstrating my problem:
public class ApacheConnectorProblemDemonstration extends JerseyTest {
private static final Logger LOGGER = Logger.getLogger(JerseyTest.class.getName());
private static final String QUESTION = "baz", ANSWER = "qux";
private static final String REQUEST_HEADER_NAME_CLIENT = "foo-cl", REQUEST_HEADER_VALUE_CLIENT = "bar-cl";
private static final String REQUEST_HEADER_NAME_INTERCEPTOR = "foo-ic", REQUEST_HEADER_VALUE_INTERCEPTOR = "bar-ic";
private static final int MAX_CONNECTIONS = 100;
private static final String PATH = "/";
#Path(PATH)
public static class TestResource {
#POST
public String handle(InputStream questionStream,
#HeaderParam(REQUEST_HEADER_NAME_CLIENT) String client,
#HeaderParam(REQUEST_HEADER_NAME_INTERCEPTOR) String interceptor)
throws IOException {
assertEquals(REQUEST_HEADER_VALUE_CLIENT, client);
// Here, the header that was set in the client's writer interceptor is lost.
assertEquals(REQUEST_HEADER_VALUE_INTERCEPTOR, interceptor);
// However, the input stream got gzipped so the WriterInterceptor has been partly applied.
assertEquals(QUESTION, new Scanner(new GZIPInputStream(questionStream)).nextLine());
return ANSWER;
}
}
#Provider
#Priority(Priorities.ENTITY_CODER)
public static class ClientInterceptor implements WriterInterceptor {
#Override
public void aroundWriteTo(WriterInterceptorContext context)
throws IOException, WebApplicationException {
context.getHeaders().add(REQUEST_HEADER_NAME_INTERCEPTOR, REQUEST_HEADER_VALUE_INTERCEPTOR);
context.setOutputStream(new GZIPOutputStream(context.getOutputStream()));
context.proceed();
}
}
#Override
protected Application configure() {
enable(TestProperties.LOG_TRAFFIC);
enable(TestProperties.DUMP_ENTITY);
return new ResourceConfig(TestResource.class);
}
#Override
protected Client getClient(TestContainer tc, ApplicationHandler applicationHandler) {
ClientConfig clientConfig = tc.getClientConfig() == null ? new ClientConfig() : tc.getClientConfig();
clientConfig.property(ApacheClientProperties.CONNECTION_MANAGER, makeConnectionManager(MAX_CONNECTIONS));
clientConfig.register(ClientInterceptor.class);
// If I do not use the Apache connector, I avoid this problem.
clientConfig.connector(new ApacheConnector(clientConfig));
if (isEnabled(TestProperties.LOG_TRAFFIC)) {
clientConfig.register(new LoggingFilter(LOGGER, isEnabled(TestProperties.DUMP_ENTITY)));
}
configureClient(clientConfig);
return ClientBuilder.newClient(clientConfig);
}
private static ClientConnectionManager makeConnectionManager(int maxConnections) {
PoolingClientConnectionManager connectionManager = new PoolingClientConnectionManager();
connectionManager.setMaxTotal(maxConnections);
connectionManager.setDefaultMaxPerRoute(maxConnections);
return connectionManager;
}
#Test
public void testInterceptors() throws Exception {
Response response = target(PATH)
.request()
.header(REQUEST_HEADER_NAME_CLIENT, REQUEST_HEADER_VALUE_CLIENT)
.post(Entity.text(QUESTION));
assertEquals(200, response.getStatus());
assertEquals(ANSWER, response.readEntity(String.class));
}
}
I want to use the ApacheConnector in order to optimize for concurrent requests via the PoolingClientConnectionManager. Did I mess up the configuration?
PS: The exact same problem occurs when using the GrizzlyConnector.
After further research, I assume that this is rather a misbehavior in the default Connector that uses a HttpURLConnection. As I explained in this other self-answered question of mine, the documentation states:
Whereas filters are primarily intended to manipulate request and
response parameters like HTTP headers, URIs and/or HTTP methods,
interceptors are intended to manipulate entities, via manipulating
entity input/output streams
A WriterInterceptor is not supposed to manipulate the header values while a {Client,Server}RequestFilter is not supposed to manipulate the entity stream. If you need to use both, both components should be bundled within a javax.ws.rs.core.Feature or within the same class that implements two interfaces. (This can be problematic if you need to set two different Prioritys though.)
All this is very unfortunate though, since JerseyTest uses the Connector that uses a HttpURLConnection such that all my unit tests succeeded while the real life application misbehaved since it was configured with an ApacheConnector. Also, rather than suppressing changes, I wished, Jersey would throw me some exceptions. (This is a general issue I have with Jersey. When I for example used a too new version of the ClientConnectionManager where the interface was renamed to HttpClientConnectionManager I simply was informed in a one line log statement that all my configuration efforts were ignored. I did not discover this log statement til very late in development.)

Resources