Shrink a random range from 0–2 to 0–1 - algorithm

A random generator produces values from the list: 0, 1, 2 (with equal probabilty for all three values).
How to get a random number, 0 or 1, with equal probability, from no more than ten uses of the generator.

Your goal is ultimately to roll a 2-sided die given only a 3-sided die, using a fixed number of rolls of the 3-sided die.
However, this is impossible no matter how many rolls you do, since 2 does not divide 3 (and both are prime numbers). The best you can do here is keep rejecting 2's (and the probability of getting n 2's in a row is 1/3^n, a probability that shrinks rapidly with increasing n).
More generally, it's impossible to roll a k-sided die using a p-sided die using a fixed number of rolls of the p-sided die unless "every prime number dividing k also divides p" (see Lemma 3 in "Simulating a dice with a dice" by B. Kloeckner.
See also the following questions:
Expand a random range from 1–5 to 1–7
Frugal conversion of uniformly distributed random numbers from one range to another
Best way to generate U(1,5) from U(1,3)?

With the edit, in order to shrink the range, you can do a few things
discard rolls of 2
if you are certain to roll an even number of times, choose 2 to be 0 or 1 before every other roll
(1/3) * .5 + (2/3) * .5

Related

Hashing with the Division Method - Choosing number of slots?

So, in CLRS, there's this quote
A prime not too close to an exact power of 2 is often a good choice for m.
Several Questions...
I understand how a power of 2 will just be the lower order bits of your key...however, say you have keys from a universe of 1 to 1 million, with each key having an equal probability of being any number from universe (which I'm guessing is a common assumption about your universe if given no other data?) then wouldn't taking say the 4 lower order bits result in (2^4) lower order bit patterns that were pretty much equally likely for the keys from 1 to 1 million? How am I thinking about this incorrectly?
Why a prime number? So, if power of 2's aren't a good idea, why is a prime number a better choice as opposed to a composite number close to a power of 2 (Also why should it be close to a power of 2...lol)?
You are trying to find a hash table that works well for typical input data, and typical input data does things that you wouldn't expect from good random number generators. Very often you get formatted or semi-formatted strings which, when converted to numbers, end up as K, K+A, K+2A, K+3A,.... for some integers K and A. If K+xA and K+yA hash to the same number mod m, then (x-y)A must be 0 mod m. If m is prime, this can only happen if A = 0 mod m or if x = y mod m, so one time in m. But if m=pq and A happens to be divisible by p, then you get a collision every time x-y is divisible by q, which is more often since q < m.
I guess close to a power of 2 because it might be convenient for the memory management system to have blocks of memory of the resulting size - I really don't know. If you really care, and if you have the time, you could try different primes with some representative data and see which of them are best in practice.

How to pick two random numbers with no carry when adding

I'm trying to make this algorithm which inputs a lower and upper limit for two numbers (the two numbers may have different lower and upper limits) and outputs two random numbers within that range
The catch is however that when the two numbers are added, no "carry" should be there. This means the sum of the digits in each place should be no more than 9.
How can I make sure that the numbers are truly random and that no carrying occurs when adding the two numbers
Thanks a lot!
Edit: The ranges can vary, the widest range can be 0 to 999. Also, I'm using VBA (Excel)
An easy and distributionally correct way of doing this is to use Rejection Sampling, a.k.a. "Acceptance/Rejection". Generate the values independently, and if the carry constraint is violated repeat. In pseudocode
do {
generate x, y
} while (x + y > threshold)
The number of times the loop will iterate has a geometric distribution with an expected value of (proportion of sums below the threshold)-1. For example, if you're below the threshold 90% of the time then the long term number of iterations will average out to 10/9, 1.11... iterations per pair generated. For lower likelihoods of acceptance, it will take more attempts on average.

Given a true random number generator which outputs either a 1 or 0 per call, how do you use this to pick a number from an arbitrary range?

If I have a true random number generator (TRNG) which can give me either a 0 or a 1 each time I call it, then it is trivial to then generate any number in a range with a length equal to a power of 2. For example, if I wanted to generate a random number between 0 and 63, I would simply poll the TRNG 5 times, for a maximum value of 11111 and a minimum value of 00000. The problem is when I want a number in a rangle not equal to 2^n. Say I wanted to simulate the roll of a dice. I would need a range between 1 and 6, with equal weighting. Clearly, I would need three bits to store the result, but polling the TRNG 3 times would introduce two eroneous values. We could simply ignore them, but then that would give one side of the dice a much lower odds of being rolled.
My question of ome most effectively deals with this.
The easiest way to get a perfectly accurate result is by rejection sampling. For example, generate a random value from 1 to 8 (3 bits), rejecting and generating a new value (3 new bits) whenever you get a 7 or 8. Do this in a loop.
You can get arbitrarily close to accurate just by generating a large number of bits, doing the mod 6, and living with the bias. In cases like 32-bit values mod 6, the bias will be so small that it will be almost impossible to detect, even after simulating millions of rolls.
If you want a number in range 0 .. R - 1, pick least n such that R is less or equal to 2n. Then generate a random number r in the range 0 .. 2n-1 using your method. If it is greater or equal to R, discard it and generate again. The probability that your generation fails in this manner is at most 1/2, you will get a number in your desired range with less than two attempts on the average. This method is balanced and does not impair the randomness of the result in any fashion.
As you've observed, you can repeatedly double the range of a possible random values through powers of two by concatenating bits, but if you start with an integer number of bits (like zero) then you cannot obtain any range with prime factors other than two.
There are several ways out; none of which are ideal:
Simply produce the first reachable range which is larger than what you need, and to discard results and start again if the random value falls outside the desired range.
Produce a very large range, and distribute that as evenly as possible amongst your desired outputs, and overlook the small bias that you get.
Produce a very large range, distribute what you can evenly amongst your desired outputs, and if you hit upon one of the [proportionally] few values which fall outside of the set which distributes evenly, then discard the result and start again.
As with 3, but recycle the parts of the value that you did not convert into a result.
The first option isn't always a good idea. Numbers 2 and 3 are pretty common. If your random bits are cheap then 3 is normally the fastest solution with a fairly small chance of repeating often.
For the last one; supposing that you have built a random value r in [0,31], and from that you need to produce a result x [0,5]. Values of r in [0,29] could be mapped to the required output without any bias using mod 6, while values [30,31] would have to be dropped on the floor to avoid bias.
In the former case, you produce a valid result x, but there's some more randomness left over -- the difference between the ranges [0,5], [6,11], etc., (five possible values in this case). You can use this to start building your new r for the next random value you'll need to produce.
In the latter case, you don't get any x and are going to have to try again, but you don't have to throw away all of r. The specific value picked from the illegal range [30,31] is left-over and free to be used as a starting value for your next r (two possible values).
The random range you have from that point on needn't be a power of two. That doesn't mean it'll magically reach the range you need at the time, but it does mean you can minimise what you throw away.
The larger you make r, the more bits you may need to throw away if it overflows, but the smaller the chances of that happening. Adding one bit halves your risk but increases the cost only linearly, so it's best to use the largest r you can handle.

Create a random permutation of 1..N in constant space

I am looking to enumerate a random permutation of the numbers 1..N in fixed space. This means that I cannot store all numbers in a list. The reason for that is that N can be very large, more than available memory. I still want to be able to walk through such a permutation of numbers one at a time, visiting each number exactly once.
I know this can be done for certain N: Many random number generators cycle through their whole state space randomly, but entirely. A good random number generator with state size of 32 bit will emit a permutation of the numbers 0..(2^32)-1. Every number exactly once.
I want to get to pick N to be any number at all and not be constrained to powers of 2 for example. Is there an algorithm for this?
The easiest way is probably to just create a full-range PRNG for a larger range than you care about, and when it generates a number larger than you want, just throw it away and get the next one.
Another possibility that's pretty much a variation of the same would be to use a linear feedback shift register (LFSR) to generate the numbers in the first place. This has a couple of advantages: first of all, an LFSR is probably a bit faster than most PRNGs. Second, it is (I believe) a bit easier to engineer an LFSR that produces numbers close to the range you want, and still be sure it cycles through the numbers in its range in (pseudo)random order, without any repetitions.
Without spending a lot of time on the details, the math behind LFSRs has been studied quite thoroughly. Producing one that runs through all the numbers in its range without repetition simply requires choosing a set of "taps" that correspond to an irreducible polynomial. If you don't want to search for that yourself, it's pretty easy to find tables of known ones for almost any reasonable size (e.g., doing a quick look, the wikipedia article lists them for size up to 19 bits).
If memory serves, there's at least one irreducible polynomial of ever possible bit size. That translates to the fact that in the worst case you can create a generator that has roughly twice the range you need, so on average you're throwing away (roughly) every other number you generate. Given the speed an LFSR, I'd guess you can do that and still maintain quite acceptable speed.
One way to do it would be
Find a prime p larger than N, preferably not much larger.
Find a primitive root of unity g modulo p, that is, a number 1 < g < p such that g^k ≡ 1 (mod p) if and only if k is a multiple of p-1.
Go through g^k (mod p) for k = 1, 2, ..., ignoring the values that are larger than N.
For every prime p, there are φ(p-1) primitive roots of unity, so it works. However, it may take a while to find one. Finding a suitable prime is much easier in general.
For finding a primitive root, I know nothing substantially better than trial and error, but one can increase the probability of a fast find by choosing the prime p appropriately.
Since the number of primitive roots is φ(p-1), if one randomly chooses r in the range from 1 to p-1, the expected number of tries until one finds a primitive root is (p-1)/φ(p-1), hence one should choose p so that φ(p-1) is relatively large, that means that p-1 must have few distinct prime divisors (and preferably only large ones, except for the factor 2).
Instead of randomly choosing, one can also try in sequence whether 2, 3, 5, 6, 7, 10, ... is a primitive root, of course skipping perfect powers (or not, they are in general quickly eliminated), that should not affect the number of tries needed greatly.
So it boils down to checking whether a number x is a primitive root modulo p. If p-1 = q^a * r^b * s^c * ... with distinct primes q, r, s, ..., x is a primitive root if and only if
x^((p-1)/q) % p != 1
x^((p-1)/r) % p != 1
x^((p-1)/s) % p != 1
...
thus one needs a decent modular exponentiation (exponentiation by repeated squaring lends itself well for that, reducing by the modulus on each step). And a good method to find the prime factor decomposition of p-1. Note, however, that even naive trial division would be only O(√p), while the generation of the permutation is Θ(p), so it's not paramount that the factorisation is optimal.
Another way to do this is with a block cipher; see this blog post for details.
The blog posts links to the paper Ciphers with Arbitrary Finite Domains which contains a bunch of solutions.
Consider the prime 3. To fully express all possible outputs, think of it this way...
bias + step mod prime
The bias is just an offset bias. step is an accumulator (if it's 1 for example, it would just be 0, 1, 2 in sequence, while 2 would result in 0, 2, 4) and prime is the prime number we want to generate the permutations against.
For example. A simple sequence of 0, 1, 2 would be...
0 + 0 mod 3 = 0
0 + 1 mod 3 = 1
0 + 2 mod 3 = 2
Modifying a couple of those variables for a second, we'll take bias of 1 and step of 2 (just for illustration)...
1 + 2 mod 3 = 0
1 + 4 mod 3 = 2
1 + 6 mod 3 = 1
You'll note that we produced an entirely different sequence. No number within the set repeats itself and all numbers are represented (it's bijective). Each unique combination of offset and bias will result in one of prime! possible permutations of the set. In the case of a prime of 3 you'll see that there are 6 different possible permuations:
0,1,2
0,2,1
1,0,2
1,2,0
2,0,1
2,1,0
If you do the math on the variables above you'll not that it results in the same information requirements...
1/3! = 1/6 = 1.66..
... vs...
1/3 (bias) * 1/2 (step) => 1/6 = 1.66..
Restrictions are simple, bias must be within 0..P-1 and step must be within 1..P-1 (I have been functionally just been using 0..P-2 and adding 1 on arithmetic in my own work). Other than that, it works with all prime numbers no matter how large and will permutate all possible unique sets of them without the need for memory beyond a couple of integers (each technically requiring slightly less bits than the prime itself).
Note carefully that this generator is not meant to be used to generate sets that are not prime in number. It's entirely possible to do so, but not recommended for security sensitive purposes as it would introduce a timing attack.
That said, if you would like to use this method to generate a set sequence that is not a prime, you have two choices.
First (and the simplest/cheapest), pick the prime number just larger than the set size you're looking for and have your generator simply discard anything that doesn't belong. Once more, danger, this is a very bad idea if this is a security sensitive application.
Second (by far the most complicated and costly), you can recognize that all numbers are composed of prime numbers and create multiple generators that then produce a product for each element in the set. In other words, an n of 6 would involve all possible prime generators that could match 6 (in this case, 2 and 3), multiplied in sequence. This is both expensive (although mathematically more elegant) as well as also introducing a timing attack so it's even less recommended.
Lastly, if you need a generator for bias and or step... why don't you use another of the same family :). Suddenly you're extremely close to creating true simple-random-samples (which is not easy usually).
The fundamental weakness of LCGs (x=(x*m+c)%b style generators) is useful here.
If the generator is properly formed then x%f is also a repeating sequence of all values lower than f (provided f if a factor of b).
Since bis usually a power of 2 this means that you can take a 32-bit generator and reduce it to an n-bit generator by masking off the top bits and it will have the same full-range property.
This means that you can reduce the number of discard values to be fewer than N by choosing an appropriate mask.
Unfortunately LCG Is a poor generator for exactly the same reason as given above.
Also, this has exactly the same weakness as I noted in a comment on #JerryCoffin's answer. It will always produce the same sequence and the only thing the seed controls is where to start in that sequence.
Here's some SageMath code that should generate a random permutation the way Daniel Fischer suggested:
def random_safe_prime(lbound):
while True:
q = random_prime(lbound, lbound=lbound // 2)
p = 2 * q + 1
if is_prime(p):
return p, q
def random_permutation(n):
p, q = random_safe_prime(n + 2)
while True:
r = randint(2, p - 1)
if pow(r, 2, p) != 1 and pow(r, q, p) != 1:
i = 1
while True:
x = pow(r, i, p)
if x == 1:
return
if 0 <= x - 2 < n:
yield x - 2
i += 1

in a series of n elements of arithmetic progression, [n/2] elements are changed. Find the difference in the initial arithmetic progression

I have a list of size n which contains n consecutive members of an arithmetic progression which are not in order. I changed less than half of the elements in this list with some random integer. From this new list, how can I find the difference of the initial arithmetic progression?
I thought a lot about it but except brute force, I was not able to come up with any other thing :(
Thanks for thinking on this one :)
It's not possible to solve this in general and be 100% sure that your answer is correct. Let's say that the initial list is the following arithmetic progression (not in order):
1 3 2 4
Change less than half the elements at random... let's say for example that we changed 2 to 5:
1 3 5 4
If we can first find out which numbers we need to change to obtain a valid shuffled arithmetic sequence then we can easily solve the problem stated in the question. However we can see that there are multiple possible answers depending in which we number we choose to change:
6, 3, 5, 4 (difference is 1)
1, 3, 2, 4 (difference is 1)
1, 3, 5, 7 (difference is 2)
There is no way to know which of these possible sequence is the original sequence, so you cannot be sure what the original difference was.
Since there is no deterministic solution for the problem (as stated by #Mark Byers), you can try a probabilistic approach.
It's difficult to obtain the original progression, but its rate can be obtained easily by comparing the differences between elements. The difference of original ones will be multiples of rate.
Consider you take 2 elements from the list (probability that both of them belongs to the original sequence is 1/4), and compute the difference. This difference, with probability of 1/4, will be a multiple of the rate. Decompose it to prime factors and count them (for example, 12 = 2^^2 * 3 will add 2 to 2's counter and will increment 3's counter).
After many such iterations (it looks like a good problem for probabilistic methods, like Monte Carlo), you could analize the counters.
If a prime factor belongs to the rate, its counter will be at least num_iteartions/4 ( or num_iterations/2 if it appears twice).
The main problem is that small factors will have large probability on random input (for example, the difference between two random numbers will have 50% probability to be divisible by 2). So you'll have to compensate it: since 3/4 of your differences were random, you'll have to consider that (3/8)*num_iterations of 2's counter must be ignored. Since this also applies to all powers of two, the simpliest way is to pregenerate "white noise mask" by taking the differences only between random numbers.
EDIT: let's take this approach further. Consider that you create this "white noise mask" (let's call it spectrum) for random numbers, and consider that it's base-1 spectrum, since their smallest "largest common factor" is 1. By computing it for a differences of the arithmetic sequence, you'll obtain a base-R spectrum, where R is the rate, and it will equivalent to a shifted version of base-1 spectrum. So you have to find the value of R such that
your_spectrum ~= spectrum(1)*3/4 + spectrum(R)*1/4
You could also check for largest number R such that at least half of the elements will be equal modulo R.

Resources