Manually splitting projection queries and reassembling them client side - oracle

I have a seemingly horridly complex query that EF core is struggling with.
It executes it (with asSplitQuery) but I suspect its not splitting it in a completely sensible way.
In the old days of datasets you would write a projection of your database into each datatable, and then let the dataset manage the relationships between them.
Is there an EF equivalent? (for projected values) or do people actually project EF data into datasets?

Related

What is the difference between BO universes and Cognos cubes?

I'm currently trying to understand the mechanics behind BO and Cognos and to understand a bit more deeply how it actually works to start a BI project.
On the side on tradiationnal BI tools, i have trouble seeing the difference (other than the names) between the universes in Bo and the cubes .
Is there a real difference?
Thanks
BO Universe is a metadata layer. You query it - you query database.
In addition to similar metadata layer Cognos BI has two types of cubes. Cube is Data in dimensional structure. With Dimensions and Measures. In addition to basic measure's values it contains aggregates for higher levels of every dimensions.
Transformer Cube. Contains all data inside cube file. You even don't need a database to query it.
Using Dynamic Cube technology you load data into memory and make calculations there. You still need a database, but should be faster. If you have enough memory.

Is a fact table in normalized or de-normalized form?

I did a bit R&D on the fact tables, whether they are normalized or de-normalized.
I came across some findings which make me confused.
According to Kimball:
Dimensional models combine normalized and denormalized table structures. The dimension tables of descriptive information are highly denormalized with detailed and hierarchical roll-up attributes in the same table. Meanwhile, the fact tables with performance metrics are typically normalized. While we advise against a fully normalized with snowflaked dimension attributes in separate tables (creating blizzard-like conditions for the business user), a single denormalized big wide table containing both metrics and descriptions in the same table is also ill-advised.
The other finding, which I also I think is ok, by fazalhp at GeekInterview:
The main funda of DW is de-normalizing the data for faster access by the reporting tool...so if ur building a DW ..90% it has to be de-normalized and off course the fact table has to be de normalized...
So my question is, are fact tables normalized or de-normalized? If any of these then how & why?
From the point of relational database design theory, dimension tables are usually in 2NF and fact tables anywhere between 2NF and 6NF.
However, dimensional modelling is a methodology unto itself, tailored to:
one use case, namely reporting
mostly one basic type (pattern) of a query
one main user category -- business analyst, or similar
row-store RDBMS like Oracle, SQl Server, Postgres ...
one independently controlled load/update process (ETL); all other clients are read-only
There are other DW design methodologies out there, like
Inmon's -- data structure driven
Data Vault -- data structure driven
Anchor modelling -- schema evolution driven
The main thing is not to mix-up database design theory with specific design methodology. You may look at a certain methodology through database design theory perspective, but have to study each methodology separately.
Most people working with a data warehouse are familiar with transactional RDBMS and apply various levels of normalization, so those concepts are used to describe working a star schema. What they're doing is trying to get you to unlearn all those normalization habits. This can get confusing because there is a tendency to focus on what "not" to do.
The fact table(s) will probably be the most normalized since they usually contain just numerical values along with various id's for linking to dimensions. They key with fact tables is how granular do you need to get with your data. An example for Purchases could be specific line items by product in an order or aggregated at a daily, weekly, monthly level.
My suggestion is to keep searching and studying how to design a warehouse based on your needs. Don't look to get to high levels of normalized forms. Think more about the reports you want to generate and the analysis capabilities to give your users.

WHat is the best solution for large caching in Ruby?

I'm building an REST API in Ruby with JRuby+Sinatra running on top of Trinidad web server.
One of the functionalities of the API will be getting very large datasets from a database and storing them in a middle caching/non relational DB layer. This is for performing filter/sorting/actions on top of that dataset without having to rebuild it from the database.
We're looking into a good/the best solution for implementing this middle layer.
My thoughts:
Using a non relational database like Riak to store the datasets and having a caching layer (like Cache Money) on top.
Notes:
Our datasets can be fairly large
Since you asked for an opinion, I'll give you mine... I think MongoDB would be a good match for your needs:
http://www.mongodb.org/
I've used used it to store large, historical datasets for a couple of years now that just keep getting bigger and bigger, and it remains up to the task. I haven't even needed to delve into "sharding" or some of the advanced features.
The reasons I think it would be appropriate for the application you describe are:
It is an indexed, schemaless document store which means it can be very "dynamic" with fields being added or removed
I've benchmarked it's performance versus some SQL databases for large "flat" data it performs orders of magnitude better in some cases.
https://github.com/guyboertje/jmongo will let you access MongoDB from JRuby

Mixing column and row oriented databases?

I am currently trying to improve the performance of a web application. The goal of the application is to provide (real time) analytics. We have a database model that is similiar to a star schema, few fact tables and many dimensional tables. The database is running with Mysql and MyIsam engine.
The Fact table size can easily go into the upper millions and some dimension tables can also reach the millions.
Now the point is, select queries can get awfully slow if the dimension tables get joined on the fact tables and also aggretations are done. First thing that comes in mind when hearing this is, why not precalculate the data? This is not possible because the users are allowed to use several freely customizable filters.
So what I need is an all-in-one system suitable for every purpose ;) Sadly it wasn't invented yet. So I came to the idea to combine 2 existing systems. Mixing a row oriented and a column oriented database (e.g. like infinidb or infobright). Keeping the mysql MyIsam solution (for fast inserts and row based queries) and add a column oriented database (for fast aggregation operations on few columns) to it and fill it periodically (nightly) via cronjob. Problem would be when the current data (it must be real time) is queried, therefore I maybe would need to get data from both databases which can complicate things.
First tests with infinidb showed really good performance on aggregation of a few columns, so I really think this could help me speed up the application.
So the question is, is this a good idea? Has somebody maybe already done this? Maybe there is are better ways to do it.
I have no experience in column oriented databases yet and I'm also not sure how the schema of it should look like. First tests showed good performance on the same star schema like structure but also in a big table like structure.
I hope this question fits on SO.
Greenplum, which is a proprietary (but mostly free-as-in-beer) extension to PostgreSQL, supports both column-oriented and row-oriented tables with high customizable compression. Further, you can mix settings within the same table if you expect that some parts will experience heavy transactional load while others won't. E.g., you could have the most recent year be row-oriented and uncompressed, the prior year column-oriented and quicklz-compresed, and all historical years column-oriented and bz2-compressed.
Greenplum is free for use on individual servers, but if you need to scale out with its MPP features (which are its primary selling point) it does cost significant amounts of money, as they're targeting large enterprise customers.
(Disclaimer: I've dealt with Greenplum professionally, but only in the context of evaluating their software for purchase.)
As for the issue of how to set up the schema, it's hard to say much without knowing the particulars of your data, but in general having compressed column-oriented tables should make all of your intuitions about schema design go out the window.
In particular, normalization is almost never worth the effort, and you can sometimes get big gains in performance by denormalizing to borderline-comical levels of redundancy. If the data never hits disk in an uncompressed state, you might just not care that you're repeating each customer's name 40,000 times. Infobright's compression algorithms are designed specifically for this sort of application, and it's not uncommon at all to end up with 40-to-1 ratios between the logical and physical sizes of your tables.

Anyone know anything about OLAP Internals?

I know a bit about database internals. I've actually implemented a small, simple relational database engine before, using ISAM structures on disk and BTree indexes and all that sort of thing. It was fun, and very educational. I know that I'm much more cognizant about carefully designing database schemas and writing queries now that I know a little bit more about how RDBMSs work under the hood.
But I don't know anything about multidimensional OLAP data models, and I've had a hard time finding any useful information on the internet.
How is the information stored on disk? What data structures comprise the cube? If a MOLAP model doesn't use tables, with columns and records, then... what? Especially in highly dimensional data, what kinds of data structures make the MOLAP model so efficient? Do MOLAP implementations use something analogous to RDBMS indexes?
Why are OLAP servers so much better at processing ad hoc queries? The same sorts of aggregations that might take hours to process in an ordinary relational database can be processed in milliseconds in an OLTP cube. What are the underlying mechanics of the model that make that possible?
I've implemented a couple of systems that mimicked what OLAP cubes do, and here are a couple of things we did to get them to work.
The core data was held in an n-dimensional array, all in memory, and all the keys were implemented via hierarchies of pointers to the underlying array. In this way we could have multiple different sets of keys for the same data. The data in the array was the equivalent of the fact table, often it would only have a couple of pieces of data, in one instance this was price and number sold.
The underlying array was often sparse, so once it was created we used to remove all the blank cells to save memory - lots of hardcore pointer arithmetic but it worked.
As we had hierarchies of keys, we could write routines quite easily to drill down/up a hierarchy easily. For instance we would access year of data, by going through the month keys, which in turn mapped to days and/or weeks. At each level we would aggregate data as part of building the cube - made calculations much faster.
We didn't implement any kind of query language, but we did support drill down on all axis (up to 7 in our biggest cubes), and that was tied directly to the UI which the users liked.
We implemented core stuff in C++, but these days I reckon C# could be fast enough, but I'd worry about how to implement sparse arrays.
Hope that helps, sound interesting.
The book Microsoft SQL Server 2008 Analysis Services Unleashed spells out some of the particularities of SSAS 2008 in decent detail. It's not quite a "here's exactly how SSAS works under the hood", but it's pretty suggestive, especially on the data structure side. (It's not quite as detailed/specific about the exact algorithms.) A few of the things I, as an amateur in this area, gathered from this book. This is all about SSAS MOLAP:
Despite all the talk about multi-dimensional cubes, fact table (aka measure group) data is still, to a first approximation, ultimately stored in basically 2D tables, one row per fact. A number of OLAP operations seem to ultimately consist of iterating over rows in 2D tables.
The data is potentially much smaller inside MOLAP than inside a corresponding SQL table, however. One trick is that each unique string is stored only once, in a "string store". Data structures can then refer to strings in a more compact form (by string ID, basically). SSAS also compresses rows within the MOLAP store in some form. This shrinking I assume lets more of the data stay in RAM simultaneously, which is good.
Similarly, SSAS can often iterate over a subset of the data rather than the full dataset. A few mechanisms are in play:
By default, SSAS builds a hash index for each dimension/attribute value; it thus knows "right away" which pages on disk contain the relevant data for, say, Year=1997.
There's a caching architecture where relevant subsets of the data are stored in RAM separate from the whole dataset. For example, you might have cached a subcube that has only a few of your fields, and that only pertains to the data from 1997. If a query is asking only about 1997, then it will iterate only over that subcube, thereby speeding things up. (But note that a "subcube" is, to a first approximation, just a 2D table.)
If you're predefined aggregates, then these smaller subsets can also be precomputed at cube processing time, rather than merely computed/cached on demand.
SSAS fact table rows are fixed size, which presumibly helps in some form. (In SQL, in constrast, you might have variable-width string columns.)
The caching architecture also means that, once an aggregation has been computed, it doesn't need to be refetched from disk and recomputed again and again.
These are some of the factors in play in SSAS anyway. I can't claim that there aren't other vital things as well.

Resources