Let's assume an algorithm is repeatedly processing buffers of data, it may be accessing say 2 to 16 of these buffers, all having the same size. What would you expect to be the optimum size of these buffers, assuming the algorithm can process the full data in smaller blocks.
I expect the potential bottleneck of cache misses if the blocks are too big, but of course the bigger the blocks the better for vectorization.
Let's expect current i7/i9 CPUs (2018)
Any ideas?
Do you have multiple threads? Can you arrange things so the same thread uses the same buffer repeatedly? (i.e. keep buffers associated with threads when possible).
Modern Intel CPUs have 32k L1d, 256k L2 private per-core. (Or Skylake-AVX512 has 1MiB private L2 caches, with less shared L3). (Which cache mapping technique is used in intel core i7 processor?)
Aiming for L2 hits most of the time is good. L2 miss / L3 hit some of the time isn't always terrible, but off-core is significantly slower. Remember that L2 is a unified cache, so it covers code as well, and of course there's stack memory and random other demands for L2. So aiming for a total buffer size of around half L2 size usually gives a good hit-rate for cache-blocking.
Depending on how much bandwidth your algorithm can use, you might even aim for mostly L1d hits, but small buffers can mean more startup / cleanup overhead and spending more time outside of the main loop.
Also remember that with Hyperthreading, each logical core competes for cache on the physical core it's running on. So if two threads end up on the same physical core, but are touching totally different memory, your effective cache sizes are about half.
Probably you should make the buffer size a tunable parameter, and profile with a few different sizes.
Use perf counters to check if you're actually avoiding L1d or L2 misses or not, with different sizes, to help you understand whether your code is sensitive to different amounts of memory latency or not.
Let assume that one row of cache has size 2^nB. Which hit ratio expected in the sequential reading byte by byte long contiguous memory?
To my eye it is (2^n - 1) / 2^n.
However, I am not sure if I am right. What do you think ?
yes, looks right for simple hardware (non-pipelined with no prefetching). e.g. 1 miss and 63 hits for 64B cache lines.
On real hardware, even in-order single-issue (non-superscalar) CPUs, miss under miss (multiple outstanding misses) is usually supported, so you will see misses until you run out of load buffers. This makes memory accesses pipelined as well, which is useful when misses to different cache lines can be in flight at once, instead of waiting the full latency for each one.
Real hardware will also have hardware prefetching. For example, have a look at Intel's article about disabling HW prefetching for some use-cases.
HW prefetching can probably keep up with a one-byte-at-a-time loop on most CPUs, so with good prefetching you might see hardly any L1 cache misses.
See Ulrich Drepper's What Every Programmer Should Know About Memory, and other links in the x86 tag wiki for more about real HW performance.
Eight years ago I can buy Core 2 Duo processor with 6Mb cache.
Today we can buy something like i7 with 8Mb cache
Why cache growing up so slow? It's to hard to implement, or maybe there is no reason to do, or maybe it's different cache?
This is a tricky question indeed. The 8 MB you are talking about, is the amount of L3 cache found in some high level CPUs like i7 and some xeons.
The optimal amount of cache is obtained by a calculus between the maximum amount of RAM for the system, the number of physical cores and the CPU cycles.
For instance this Xeon CPU got 45 MB of cache but can handle 8 threads and 1.5TB of memory..
The cache of the CPU is made of multiple types L1, L2, L3 and L4 (Also known as eDram, is a high bandwidth DRAM, first seen in video game consoles (like XBOX 360 and PlayStation 2) and dedicated to the internal GPU. The commercial name for the Intel Chips with internal GPU + eDRAM is Iris PRO. The Haswell microarchitecture was the first Intel microprocessor to propose this graphical enhanced design. This L4 is used as a Victim Cache for the L3 cache).
Look the complete specifications of one of the recent i7 cpu from intel to see an example of the kind of caches you can find internally.
But it's not only the amount of cache that matters but the nature of it. The latest CPUs have level 3 (L3), 8 ways memory type (to be compared with 2 or 4 ways in the past) providing synchronous access to the 8 virtual cores.
The closer the cache is to the cpu, the faster he is.
The L1 cache (the faster and the more expensive) is used per physical core, L2 more or less for the threads and the L3 for DMA channel (buffered) communication with the main memory.
The more cache you have the less 'cache hit misses' you get. The number of misses (errors) is related to the CPU cycles (speed in Mhz) and the amount of cache.
According to the statistics, above a specific limit increasing the amount of cache provides a little or no performance improvement. So the cost of the CPU increases for a very small improvement.
The amount of cache must respect a ratio between performance improvement and cost.
The same reason explains why you can find more ram on high end cpus.
The speed of the ram is also improving over the time, so the amount of cache is less critical for CPU performance has it was in the past.
For a full article on the subject I recommend this very good page.
I'm sorry if this is the wrong place to ask this but I've searched and always found different answer. My question is:
Which is faster? Cache or CPU Registers?
According to me, the registers are what directly load data to execute it while the cache is just a storage place close or internally in the CPU.
Here are the sources I found that confuses me:
2 for cache | 1 for registers
http://in.answers.yahoo.com/question/index?qid=20110503030537AAzmDGp
Cache is faster.
http://wiki.answers.com/Q/Is_cache_memory_faster_than_CPU_registers
So which really is it?
CPU register is always faster than the L1 cache. It is the closest. The difference is roughly a factor of 3.
Trying to make this as intuitive as possible without getting lost in the physics underlying the question: there is a simple correlation between speed and distance in electronics. The further you make a signal travel, the harder it gets to get that signal to the other end of the wire without the signal getting corrupted. It is the "there is no free lunch" principle of electronic design.
The corollary is that bigger is slower. Because if you make something bigger then inevitably the distances are going to get larger. Something that was automatic for a while, shrinking the feature size on the chip automatically produced a faster processor.
The register file in a processor is small and sits physically close to the execution engine. The furthest removed from the processor is the RAM. You can pop the case and actually see the wires between the two. In between sit the caches, designed to bridge the dramatic gap between the speed of those two opposites. Every processor has an L1 cache, relatively small (32 KB typically) and located closest to the core. Further down is the L2 cache, relatively big (4 MB typically) and located further from the core. More expensive processors also have an L3 cache, bigger and further away.
Specifically on x86 architecture:
Reading from register has 0 or 1 cycle latency.
Writing to registers has 0 cycle latency.
Reading/Writing L1 cache has a 3 to 5 cycle latency (varies by architecture age)
Actual load/store requests may execute within 0 or 1 cycles due to write-back buffer and store-forwarding features (details below)
Reading from register can have a 1 cycle latency on Intel Core 2 CPUs (and earlier models) due to its design: If enough simultaneously-executing instructions are reading from different registers, the CPU's register bank will be unable to service all the requests in a single cycle. This design limitation isn't present in any x86 chip that's been put on the consumer market since 2010 (but it is present in some 2010/11-released Xeon chips).
L1 cache latencies are fixed per-model but tend to get slower as you go back in time to older models. However, keep in mind three things:
x86 chips these days have a write-back cache that has a 0 cycle latency. When you store a value to memory it falls into that cache, and the instruction is able to retire in a single cycle. Memory latency then only becomes visible if you issue enough consecutive writes to fill the write-back cache. Writeback caches have been prominent in desktop chip design since about 2001, but was widely missing from the ARM-based mobile chip markets until much more recently.
x86 chips these days have store forwarding from the write-back cache. If you store an address to the WB cache and then read back the same address several instructions later, the CPU will fetch the value from the WB cache instead of accessing L1 memory for it. This reduces the visible latency on what appears to be an L1 request to 1 cycle. But in fact, the L1 isn't be referenced at all in that case. Store forwarding also has some other rules for it to work properly, which also vary a lot across the various CPUs available on the market today (typically requiring 128-bit address alignment and matched operand size).
The store forwarding feature can generate false positives where-in the CPU thinks the address is in the writeback buffer based on a fast partial-bits check (usually 10-14 bits, depending on chip). It uses an extra cycle to verify with a full check. If that fails then the CPU must re-route as a regular memory request. This miss can add an extra 1-2 cycles latency to qualifying L1 cache accesses. In my measurements, store forwarding misses happen quite often on AMD's Bulldozer, for example; enough so that its L1 cache latency over-time is about 10-15% higher than its documented 3-cycles. It is almost a non-factor on Intel's Core series.
Primary reference: http://www.agner.org/optimize/ and specifically http://www.agner.org/optimize/microarchitecture.pdf
And then manually graph info from that with the tables on architectures, models, and release dates from the various List of CPUs pages on wikipedia.
Why is the size of L1 cache smaller than that of the L2 cache in most of the processors ?
L1 is very tightly coupled to the CPU core, and is accessed on every memory access (very frequent). Thus, it needs to return the data really fast (usually within on clock cycle). Latency and throughput (bandwidth) are both performance-critical for L1 data cache. (e.g. four cycle latency, and supporting two reads and one write by the CPU core every clock cycle). It needs lots of read/write ports to support this high access bandwidth. Building a large cache with these properties is impossible. Thus, designers keep it small, e.g. 32KB in most processors today.
L2 is accessed only on L1 misses, so accesses are less frequent (usually 1/20th of the L1). Thus, L2 can have higher latency (e.g. from 10 to 20 cycles) and have fewer ports. This allows designers to make it bigger.
L1 and L2 play very different roles. If L1 is made bigger, it will increase L1 access latency which will drastically reduce performance because it will make all dependent loads slower and harder for out-of-order execution to hide. L1 size is barely debatable.
If we removed L2, L1 misses will have to go to the next level, say memory. This means that a lot of access will be going to memory which would imply we need more memory bandwidth, which is already a bottleneck. Thus, keeping the L2 around is favorable.
Experts often refer to L1 as a latency filter (as it makes the common case of L1 hits faster) and L2 as a bandwidth filter as it reduces memory bandwidth usage.
Note: I have assumed a 2-level cache hierarchy in my argument to make it simpler. In many of today's multicore chips, there's an L3 cache shared between all the cores, while each core has its own private L1 and maybe L2. In these chips, the shared last-level cache (L3) plays the role of memory bandwidth filter. L2 plays the role of on-chip bandwidth filter, i.e. it reduces access to the on-chip interconnect and the L3. This allows designers to use a lower-bandwidth interconnect like a ring, and a slow single-port L3, which allows them to make L3 bigger.
Perhaps worth mentioning that the number of ports is a very important design point because it affects how much chip area the cache consumes. Ports add wires to the cache which consumes a lot of chip area and power.
There are different reasons for that.
L2 exists in the system to speedup the case where there is a L1 cache miss. If the size of L1 was the same or bigger than the size of L2, then L2 could not accomodate for more cache lines than L1, and would not be able to deal with L1 cache misses. From the design/cost perspective, L1 cache is bound to the processor and faster than L2. The whole idea of caches is that you speed up access to the slower hardware by adding intermediate hardware that is more performing (and expensive) than the slowest hardware and yet cheaper than the faster hardware you have. Even if you decided to double the L1 cache, you would also increment L2, to speedup L1-cache misses.
So why is there L2 cache at all? Well, L1 cache is usually more performant and expensive to build, and it is bound to a single core. This means that increasing the L1 size by a fixed quantity will have that cost multiplied by 4 in a dual core processor, or by 8 in a quad core. L2 is usually shared by different cores --depending on the architecture it can be shared across a couple or all cores in the processor, so the cost of increasing L2 would be smaller even if the price of L1 and L2 were the same --which it is not.
#Aater's answer explains some of the basics. I'll add some more details + an examples of the real cache organization on Intel Haswell and AMD Piledriver, with latencies and other properties, not just size.
For some details on IvyBridge, see my answer on "How can cache be that fast?", with some discussion of the overall load-use latency including address-calculation time, and widths of the data busses between different levels of cache.
L1 needs to be very fast (latency and throughput), even if that means a limited hit-rate. L1d also needs to support single-byte stores on almost all architectures, and (in some designs) unaligned accesses. This makes it hard to use ECC (error correction codes) to protect the data, and in fact some L1d designs (Intel) just use parity, with better ECC only in outer levels of cache (L2/L3) where the ECC can be done on larger chunks for lower overhead.
It's impossible to design a single level of cache that could provide the low average request latency (averaged over all hits and misses) of a modern multi-level cache. Since modern systems have multiple very hungry cores all sharing a connection to the same relatively-high latency DRAM, this is essential.
Every core needs its own private L1 for speed, but at least the last level of cache is typically shared, so a multi-threaded program that reads the same data from multiple threads doesn't have to go to DRAM for it on each core. (And to act as a backstop for data written by one core and read by another). This requires at least two levels of cache for a sane multi-core system, and is part of the motivation for more than 2 levels in current designs. Modern multi-core x86 CPUs have a fast 2-level cache in each core, and a larger slower cache shared by all cores.
L1 hit-rate is still very important, so L1 caches are not as small / simple / fast as they could be, because that would reduce hit rates. Achieving the same overall performance would thus require higher levels of cache to be faster. If higher levels handle more traffic, their latency is a bigger component of the average latency, and they bottleneck on their throughput more often (or need higher throughput).
High throughput often means being able to handle multiple reads and writes every cycle, i.e. multiple ports. This takes more area and power for the same capacity as a lower-throughput cache, so that's another reason for L1 to stay small.
L1 also uses speed tricks that wouldn't work if it was larger. i.e. most designs use Virtually-Indexed, Physically Tagged (VIPT) L1, but with all the index bits coming from below the page offset so they behave like PIPT (because the low bits of a virtual address are the same as in the physical address). This avoids synonyms / homonyms (false hits or the same data being in the cache twice, and see Paul Clayton's detailed answer on the linked question), but still lets part of the hit/miss check happen in parallel with the TLB lookup. A VIVT cache doesn't have to wait for the TLB, but it has to be invalidated on every change to the page tables.
On x86 (which uses 4kiB virtual memory pages), 32kiB 8-way associative L1 caches are common in modern designs. The 8 tags can be fetched based on the low 12 bits of the virtual address, because those bits are the same in virtual and physical addresses (they're below the page offset for 4kiB pages). This speed-hack for L1 caches only works if they're small enough and associative enough that the index doesn't depend on the TLB result. 32kiB / 64B lines / 8-way associativity = 64 (2^6) sets. So the lowest 6 bits of an address select bytes within a line, and the next 6 bits index a set of 8 tags. This set of 8 tags is fetched in parallel with the TLB lookup, so the tags can be checked in parallel against the physical-page selection bits of the TLB result to determine which (if any) of the 8 ways of the cache hold the data. (Minimum associativity for a PIPT L1 cache to also be VIPT, accessing a set without translating the index to physical)
Making a larger L1 cache would mean it had to either wait for the TLB result before it could even start fetching tags and loading them into the parallel comparators, or it would have to increase in associativity to keep log2(sets) + log2(line_size) <= 12. (More associativity means more ways per set => fewer total sets = fewer index bits). So e.g. a 64kiB cache would need to be 16-way associative: still 64 sets, but each set has twice as many ways. This makes increasing L1 size beyond the current size prohibitively expensive in terms of power, and probably even latency.
Spending more of your power budget on L1D cache logic would leave less power available for out-of-order execution, decoding, and of course L2 cache and so on. Getting the whole core to run at 4GHz and sustain ~4 instructions per clock (on high-ILP code) without melting requires a balanced design. See this article: Modern Microprocessors: A 90-Minute Guide!.
The larger a cache is, the more you lose by flushing it, so a large VIVT L1 cache would be worse than the current VIPT-that-works-like-PIPT. And a larger but higher-latency L1D would probably also be worse.
According to #PaulClayton, L1 caches often fetch all the data in a set in parallel with the tags, so it's there ready to be selected once the right tag is detected. The power cost of doing this scales with associativity, so a large highly-associative L1 would be really bad for power-use as well as die-area (and latency). (Compared to L2 and L3, it wouldn't be a lot of area, but physical proximity is important for latency. Speed-of-light propagation delays matter when clock cycles are 1/4 of a nanosecond.)
Slower caches (like L3) can run at a lower voltage / clock speed to make less heat. They can even use different arrangements of transistors for each storage cell, to make memory that's more optimized for power than for high speed.
There are a lot of power-use related reasons for multi-level caches. Power / heat is one of the most important constraints in modern CPU design, because cooling a tiny chip is hard. Everything is a tradeoff between speed and power (and/or die area). Also, many CPUs are powered by batteries or are in data-centres that need extra cooling.
L1 is almost always split into separate instruction and data caches. Instead of an extra read port in a unified L1 to support code-fetch, we can have a separate L1I cache tied to a separate I-TLB. (Modern CPUs often have an L2-TLB, which is a second level of cache for translations that's shared by the L1 I-TLB and D-TLB, NOT a TLB used by the regular L2 cache). This gives us 64kiB total of L1 cache, statically partitioned into code and data caches, for much cheaper (and probably lower latency) than a monster 64k L1 unified cache with the same total throughput. Since there is usually very little overlap between code and data, this is a big win.
L1I can be placed physically close to the code-fetch logic, while L1D can be physically close to the load/store units. Speed-of-light transmission-line delays are a big deal when a clock cycle lasts only 1/3rd of a nanosecond. Routing the wiring is also a big deal: e.g. Intel Broadwell has 13 layers of copper above the silicon.
Split L1 helps a lot with speed, but unified L2 is the best choice.
Some workloads have very small code but touch lots of data. It makes sense for higher-level caches to be unified to adapt to different workloads, instead of statically partitioning into code vs. data. (e.g. almost all of L2 will be caching data, not code, while running a big matrix multiply, vs. having a lot of code hot while running a bloated C++ program, or even an efficient implementation of a complicated algorithm (e.g. running gcc)). Code can be copied around as data, not always just loaded from disk into memory with DMA.
Caches also need logic to track outstanding misses (since out-of-order execution means that new requests can keep being generated before the first miss is resolved). Having many misses outstanding means you overlap the latency of the misses, achieving higher throughput. Duplicating the logic and/or statically partitioning between code and data in L2 would not be good.
Larger lower-traffic caches are also a good place to put pre-fetching logic. Hardware pre-fetching enables good performance for things like looping over an array without every piece of code needing software-prefetch instructions. (SW prefetch was important for a while, but HW prefetchers are smarter than they used to be, so that advice in Ulrich Drepper's otherwise excellent What Every Programmer Should Know About Memory is out-of-date for many use cases.)
Low-traffic higher level caches can afford the latency to do clever things like use an adaptive replacement policy instead of the usual LRU. Intel IvyBridge and later CPUs do this, to resist access patterns that get no cache hits for a working set just slightly too large to fit in cache. (e.g. looping over some data in the same direction twice means it probably gets evicted just before it would be reused.)
A real example: Intel Haswell. Sources: David Kanter's microarchitecture analysis and Agner Fog's testing results (microarch pdf). See also Intel's optimization manuals (links in the x86 tag wiki).
Also, I wrote up a separate answer on: Which cache mapping technique is used in intel core i7 processor?
Modern Intel designs use a large inclusive L3 cache shared by all cores as a backstop for cache-coherence traffic. It's physically distributed between the cores, with 2048 sets * 16-way (2MiB) per core (with an adaptive replacement policy in IvyBridge and later).
The lower levels of cache are per-core.
L1: per-core 32kiB each instruction and data (split), 8-way associative. Latency = 4 cycles. At least 2 read ports + 1 write port. (Maybe even more ports to handle traffic between L1 and L2, or maybe receiving a cache line from L2 conflicts with retiring a store.) Can track 10 outstanding cache misses (10 fill buffers).
L2: unified per-core 256kiB, 8-way associative. Latency = 11 or 12 cycles. Read bandwidth: 64 bytes / cycle. The main prefetching logic prefetches into L2. Can track 16 outstanding misses. Can supply 64B per cycle to the L1I or L1D. Actual port counts unknown.
L3: unified, shared (by all cores) 8MiB (for a quad-core i7). Inclusive (of all the L2 and L1 per-core caches). 12 or 16 way associative. Latency = 34 cycles. Acts as a backstop for cache-coherency, so modified shared data doesn't have to go out to main memory and back.
Another real example: AMD Piledriver: (e.g. Opteron and desktop FX CPUs.) Cache-line size is still 64B, like Intel and AMD have used for several years now. Text mostly copied from Agner Fog's microarch pdf, with additional info from some slides I found, and more details on the write-through L1 + 4k write-combining cache on Agner's blog, with a comment that only L1 is WT, not L2.
L1I: 64 kB, 2-way, shared between a pair of cores (AMD's version of SMD has more static partitioning than Hyperthreading, and they call each one a core. Each pair shares a vector / FPU unit, and other pipeline resources.)
L1D: 16 kB, 4-way, per core. Latency = 3-4 c. (Notice that all 12 bits below the page offset are still used for index, so the usual VIPT trick works.) (throughput: two operations per clock, up to one of them being a store). Policy = Write-Through, with a 4k write-combining cache.
L2: 2 MB, 16-way, shared between two cores. Latency = 20 clocks. Read throughput 1 per 4 clock. Write throughput 1 per 12 clock.
L3: 0 - 8 MB, 64-way, shared between all cores. Latency = 87 clock. Read throughput 1 per 15 clock. Write throughput 1 per 21 clock
Agner Fog reports that with both cores of a pair active, L1 throughput is lower than when the other half of a pair is idle. It's not known what's going on, since the L1 caches are supposed to be separate for each core.
The other answers here give specific and technical reasons why L1 and L2 are sized as they are, and while many of them are motivating considerations for particular architectures, they aren't really necessary: the underlying architectural pressure leading to increasing (private) cache sizes as you move away from the core is fairly universal and is the same as the reasoning for multiple caches in the first place.
The three basic facts are:
The memory accesses for most applications exhibit a high degree of temporal locality, with a non-uniform distribution.
Across a large variety of process and designs, cache size and cache speed (latency and throughput) can be traded off against each other1.
Each distinct level of cache involves incremental design and performance cost.
So at a basic level, you might be able to say double the size of the cache, but incur a latency penalty of 1.4 compared to the smaller cache.
So it becomes an optimization problem: how many caches should you have and how large should they be? If memory access was totally uniform within the working set size, you'd probably end up with a single fairly large cache, or no cache at all. However, access is strongly non-uniform, so a small-and-fast cache can capture a large number of accesses, disproportionate to it's size.
If fact 2 didn't exist, you'd just create a very big, very fast L1 cache within the other constraints of your chip and not need any other cache levels.
If fact 3 didn't exist, you'd end up with a huge number of fine-grained "caches", faster and small at the center, and slower and larger outside, or perhaps a single cache with variable access times: faster for the parts closest to the core. In practice, rule 3 means that each level of cache has an additional cost, so you usually end up with a few quantized levels of cache2.
Other Constraints
This gives a basic framework to understand cache count and cache sizing decisions, but there are secondary factors at work as well. For example, Intel x86 has 4K page sizes and their L1 caches use a VIPT architecture. VIPT means that the size of the cache divided by the number of ways cannot be larger3 than 4 KiB. So an 8-way L1 cache as used on the half dozen Intel designs can be at most 4 KiB * 8 = 32 KiB. It is probably no coincidence that that's exactly the size of the L1 cache on those designs! If it weren't for this constraint, it is entirely possible you'd have seen lower-associativity and/or larger L1 caches (e.g., 64 KiB, 4-way).
1 Of course, there are other factors involved in the tradeoff as well, such as area and power, but holding those factors constant the size-speed tradeoff applies, and even if not held constant the basic behavior is the same.
2 In addition to this pressure, there is a scheduling benefit to known-latency caches, like most L1 designs: and out-of-order scheduler can optimistically submit operations that depend on a memory load on the cycle that the L1 cache would return, reading the result off the bypass network. This reduces contention and perhaps shaves a cycle of latency off the critical path. This puts some pressure on the innermost cache level to have uniform/predictable latency and probably results in fewer cache levels.
3 In principle, you can use VIPT caches without this restriction, but only by requiring OS support (e.g., page coloring) or with other constraints. The x86 arch hasn't done that and probably can't start now.
For those interested in this type of questions, my university recommends Computer Architecture: A Quantitative Approach and Computer Organization and Design: The Hardware/Software Interface. Of course, if you don't have time for this, a quick overview is available on Wikipedia.
I think the main reason for this is, that L1-Cache is faster and so it's more expensive.
https://en.wikichip.org/wiki/amd/microarchitectures/zen#Die
Compare the size of the L1, L2, and L3 caches physical size for an AMD Zen core, for example. The density increases dramatically with the cache level.
logically, the question answers itself.
If L1 were bigger than L2 (combined), then there would be no need of L2 Cache.
Why would you store your stuff on tape-drive if you can store all of it on HDD ?