Persistent threads on Windows Thread Pool - windows

I copied this code from the windows samples
auto workItemHandler = ref new WorkItemHandler([this](IAsyncAction ^ action)
{
while (action->Status == AsyncStatus::Started)
{
// Main Loop
}
});
m_renderLoopWorker = ThreadPool::RunAsync(workItemHandler, WorkItemPriority::High, WorkItemOptions::TimeSliced);
but have experienced some unreproducible lag sometimes (although maybe its from the gpu).
On the other hand
WorkItemOptions::TimeSliced The work items should be run simultaneously with other work items sharing a processor.
doesn't sound like a high performance option.
WorkItemOptions::None The work item should be run when the thread pool has an available worker thread.
Where you would want to use WorkItemOptions::TimeSliced vs WorkItemOptions::None?
Is it ever advisable to use CreathThread over running a task on the thread pool for persistent work.

WorkItemOptions::TimeSliced => preemptive multitasking
WorkItemOptions::None => cooperative multitasking
When do you want to use each one... difficult to say.
If you use None and all the threads in the thread pool are currently used, your task wont run until a thread finishes its job.
With TimeSliced each task is allowed a time slice, when the time is up, your task is paused and the thread switch to another task. This way, if you have 100 work items, but only 10 thread, all work items will progress, little by little, but 10x slower.
If you need to update something regularly, lets say a progress bar, you would rather use TimeSliced.
It is perfectly acceptable to use CreateThread for a long task. A render loop fit that description. This way you have your own thread to yourself to do whatever you want. Even though at the OS level, there is preemptive multitasking anyway, otherwise if your processor had only 2 cores, and you ran 3 threads, the 3rd thread would hang.
The main point of thread pools is to avoid creating new threads for every little task you want to do, because it incurs an overhead.

Related

Spring Task Executor thread count keeps increasing

Following are the properties I have set -
spring.task.execution.pool.core-size=50
spring.task.execution.pool.max-size=200
spring.task.execution.pool.queue-capacity=100
spring.task.execution.shutdown.await-termination=true
spring.task.execution.shutdown.await-termination-period=10s
spring.task.execution.thread-name-prefix=async-task-exec-
I still see thread names as - "async-task-exec-7200"
Does it mean it is creating 7200 threads?
Also, another issue I observed that #Async would wait for more than 10min to get a thread and relieve the parent thread.
You specified core size of 50 and max size of 200. So your pool will normally run with 50 threads, and when there is extra work, it will spawn additional threads, you'll see "async-task-exec-51", "async-task-exec-52" created and so on. Later, if there is not enough work for all the threads, the pool will kill some threads to get back to just 50. So it may kill thread "async-task-exec-52". The next time it has too much work for 50 threads, it will create a new thread "async-task-exec-53".
So the fact that you see "async-task-exec-7200" means that over the life time of the thread pool it has created 7200 threads, but it will still never have more than the max of 200 running at the same time.
If #Async method is waiting 10 minutes for a thread it means that you have put so much work into the pool that it has already spawned all 200 threads and they are processing, and you have filled up the queue capacity of 100, so now the parent thread has to block(wait) until there is at least a spot in the queue to put the task.
If you need to consistently handle more tasks, you will need a powerful enough machine and enough max threads in the pool. But if your work load is just very spiky, and you don't want to spend on a bigger machine and you are ok with tasks waiting longer sometimes, you might be able to get away with just raising your queue-capacity, so the work will queue up and eventually your threads might catch up (if the task creation gets slower).
Keep trying combinations of these settings to see what will be right for your workload.

Is there a way to create a new thread with space allocated for that thread, but defer the execution in c++11?

Let's say i want to create a thread, I want the necessary spaces allocated for the thread, however, i'd like to defer launching that thread.
I'm working on a threadpool, so i'd like to have some threads ready(but not running) before I start the threadpool.
Is there a way to do so in C++11?
You could have all the threads wait on a semaphore as soon as they start up. And then you can just signal them when it's time for them to actually start running.
This sounds similar to the "Thread Pool / Task" behavior present in a number of languages (and probably several C++ libraries like boost). A Thread Pool has one or more threads, and can queue Tasks. When it doesn't have tasks, a Thread Pool just waits for input. They can also, as implied, queue up tasks if the threads are busy.

Continuously running code in Win32 app

I have a working GUI and now need to add some code that will need to run continuously and update the GUI with data. Where should this code go? I know that it should not go into the message loop because it might block incoming messages to the window, but I'm confused on where in my window process this code could run.
You have a choice: you can use a thread and post messages back to the main thread to update the GUI (or update the GUI directly, but don't try this if you used MFC), or you can use a timer that will post you messages periodically, you then simply implement a handler for the timer and do whatever you need to there.
The thread is best for a complicated, slow process that might block. If the process of getting data is quick (and/or can be set to timeout on error) then a timer is simpler.
Have you looked into threading at all?
Typically, you would create one thread that performs the background task (in this case, reading the voltage data) and storing it into a shared buffer. The GUI thread simply reads that buffer every so often (on redraw, every 30 seconds, when the user clicks refresh, etc) and displays the data.
Your background thread runs on its own schedule, getting CPU time from the OS, and is not bound to the UI or message pump. It can use some type of timer to monitor the data source and read things in as necessary.
Now, since the threads run separately and may run at the same time, you need to make them aware of one another. This can be done with locks (look into mutexes). For example:
The monitor reads the current voltage and stores it in the buffer.
The background/monitor thread locks the buffer holding the latest sample.
The monitor copies the internal buffer to the shared one.
The monitor unlocks the buffer.
Simultaneously, but separately, the UI thread:
Gets a redraw call.
Waits for the buffer to be unlocked, then reads the value.
Draws the UI with the buffer value.
Setting up a new thread and using it, in most Windows GUI-producing languages, is pretty simple. C/++ and C# both have very simple APIs for creating a new thread and having it work on some task, you usually just need to provide a function for the thread to process. See the MSDN docs on CreateThread for a C example.
The concept of threading and locking is for the most part language-agnostic, and similar in most C-inspired languages. You'll need to have your main (in this case, probably UI) thread control the lifetime of the worker: start the worker after the UI is created, and kill it before the UI is shut down.
This approach has a little bit of overhead up front, especially if your data fetch is very simple. If your data source changes (a network request, some blocking data source, reading over actual wires from a physical sensor, etc) then you only need to change the monitor thread and the UI doesn't need to know.

Forcing context switch in Windows

Is there a way to force a context switch in C++ to a specific thread, assuming I have the thread handle or thread ID?
No, you won't be able to force operating system to run the thread you want. You can use yield to force a context switch though...
yield in Win32 API is function SwitchToThread. If there is no other thread available for running, then a ZERO value will be returned and current thread will keep running anyway.
You can only encourage the Windows thread scheduler to pick a certain thread, you can't force it. You do so first by making the thread block on a synchronization object and signaling it. Secondary by bumping up its priority.
Explicit context switching is supported, you'll have to use fibers. Review SwitchToFiber(). A fiber is not a thread by a long shot, it is similar to a co-routine of old. Fibers' heyday has come and gone, they are not competitive with threads anymore. They have very crappy cpu cache locality and cannot take advantage of multiple cores.
The only way to force a particular thread to run is by using process/thread affinity, but I can't imagine ever having a problem for which this was a reasonable solution.
The only way to force a context switch is to force a thread onto a different processor using affinity.
In other words, what you are trying to do isn't really viable.
Calling SwitchToThread() will result in a context switch if there is another thread ready to run that are eligible to run on this processor. The documentation states it as follows:
If calling the SwitchToThread function
causes the operating system to switch
execution to another thread, the
return value is nonzero.
If there are no other threads ready to
execute, the operating system does not
switch execution to another thread,
and the return value is zero.
You can temporarily bump the priority of the other thread, while looping with Sleep(0) calls: this passes control to other threads. Suppose that the other thread has increased a lock variable and you need to wait until it becomes zero again:
// Wait until other thread releases lock
SetThreadPriority(otherThread, THREAD_PRIORITY_HIGHER);
while (InterlockedRead(&lock) != 0)
Sleep(0);
SetThreadPriority(otherThread, THREAD_PRIORITY_NORMAL);
I would check out the book Concurrent Programming for Windows. The scheduler seems to do a few things worth noting.
Sleep(0) only yields to higher priority threads (or possibly others at the same priority). This means you cannot fix priority inversion situations with just a Sleep(0), where other lower priority threads need to run. You must use SwitchToThread, Sleep a non-zero duration, or fully block on some kernel HANDLE.
You can create two synchronization objects (such as two events) and use the API SignalObjectAndWait.
If the hObjectToWaitOn is non-signaled and your other thread is waiting on the hObjectToSignal, the OS can theoretically perform quick context switch inside this API, before end of time slice.
And if you want the current thread to automatically resume, simply inform a small value (such as 50 or 100) on the dwMilliseconds.

Clarification on Threads and Run Loops In Cocoa

I'm trying to learn about threading and I'm thoroughly confused. I'm sure all the answers are there in the apple docs but I just found it really hard to breakdown and digest. Maybe somebody could clear a thing or 2 up for me.
1)performSelectorOnMainThread
Does the above simply register an event in the main run loop or is it somehow a new thread even though the method says "mainThread"? If the purpose of threads is to relieve processing on the main thread how does this help?
2) RunLoops
Is it true that if I want to create a completely seperate thread I use
"detachNewThreadSelector"? Does calling start on this initiate a default run loop for the thread that has been created? If so where do run loops come into it?
3) And Finally , I've seen examples using NSOperationQueue. Is it true to say that If you use performSelectorOnMainThread the threads are in a queue anyway so NSOperation is not needed?
4) Should I forget about all of this and just use the Grand Central Dispatch instead?
Run Loops
You can think of a Run Loop to be an event processing for-loop associated to a thread. This is provided by the system for every thread, but it's only run automatically for the main thread.
Note that running run loops and executing a thread are two distinct concepts. You can execute a thread without running a run loop, when you're just performing long calculations and you don't have to respond to various events.
If you want to respond to various events from a secondary thread, you retrieve the run loop associated to the thread by
[NSRunLoop currentRunLoop]
and run it. The events run loops can handle is called input sources. You can add input sources to a run-loop.
PerformSelector
performSelectorOnMainThread: adds the target and the selector to a special input source called performSelector input source. The run loop of the main thread dequeues that input source and handles the method call one by one, as part of its event processing loop.
NSOperation/NSOperationQueue
I think of NSOperation as a way to explicitly declare various tasks inside an app which takes some time but can be run mostly independently. It's easier to use than to detach the new thread yourself and maintain various things yourself, too. The main NSOperationQueue automatically maintains a set of background threads which it reuses, and run NSOperations in parallel.
So yes, if you just need to queue up operations in the main thread, you can do away with NSOperationQueue and just use performSelectorOnMainThread:, but that's not the main point of NSOperation.
GCD
GCD is a new infrastructure introduced in Snow Leopard. NSOperationQueue is now implemented on top of it.
It works at the level of functions / blocks. Feeding blocks to dispatch_async is extremely handy, but for a larger chunk of operations I prefer to use NSOperation, especially when that chunk is used from various places in an app.
Summary
You need to read Official Apple Doc! There are many informative blog posts on this point, too.
1)performSelectorOnMainThread
Does the above simply register an event in the main run loop …
You're asking about implementation details. Don't worry about how it works.
What it does is perform that selector on the main thread.
… or is it somehow a new thread even though the method says "mainThread"?
No.
If the purpose of threads is to relieve processing on the main thread how does this help?
It helps you when you need to do something on the main thread. A common example is updating your UI, which you should always do on the main thread.
There are other methods for doing things on new secondary threads, although NSOperationQueue and GCD are generally easier ways to do it.
2) RunLoops
Is it true that if I want to create a completely seperate thread I use "detachNewThreadSelector"?
That has nothing to do with run loops.
Yes, that is one way to start a new thread.
Does calling start on this initiate a default run loop for the thread that has been created?
No.
I don't know what you're “calling start on” here, anyway. detachNewThreadSelector: doesn't return anything, and it starts the thread immediately. I think you mixed this up with NSOperations (which you also don't start yourself—that's the queue's job).
If so where do run loops come into it?
Run loops just exist, one per thread. On the implementation side, they're probably lazily created upon demand.
3) And Finally , I've seen examples using NSOperationQueue. Is it true to say that If you use performSelectorOnMainThread the threads are in a queue anyway so NSOperation is not needed?
These two things are unrelated.
performSelectorOnMainThread: does exactly that: Performs the selector on the main thread.
NSOperations run on secondary threads, one per operation.
An operation queue determines the order in which the operations (and their threads) are started.
Threads themselves are not queued (except maybe by the scheduler, but that's part of the kernel, not your application). The operations are queued, and they are started in that order. Once started, their threads run in parallel.
4) Should I forget about all of this and just use the Grand Central Dispatch instead?
GCD is more or less the same set of concepts as operation queues. You won't understand one as long as you don't understand the other.
So what are all these things good for?
Run loops
Within a thread, a way to schedule things to happen. Some may be scheduled at a specific date (timers), others simply “whenever you get around to it” (sources). Most of these are zero-cost when idle, only consuming any CPU time when the thing happens (timer fires or source is signaled), which makes run loops a very efficient way to have several things going on at once without any threads.
You generally don't handle a run loop yourself when you create a scheduled timer; the timer adds itself to the run loop for you.
Threads
Threads enable multiple things to happen at the exact same time on different processors. Thing 1 can happen on thread A (on processor 1) while thing 2 happens on thread B (on processor 0).
This can be a problem. Multithreaded programming is a dance, and when two threads try to step in the same place, pain ensues. This is called contention, and most discussion of threaded programming is on the topic of how to avoid it.
NSOperationQueue and GCD
You have a thing you need done. That's an operation. You can't have it done on the main thread, or you'd simply send a message like normal; you need to run it in the background, on a secondary thread.
To achieve this, express it as either an NSOperation object (you create a subclass of NSOperation and instantiate it) or a block (or both), then add it to either an NSOperationQueue (NSOperations, including NSBlockOperation) or a dispatch queue (bare block).
GCD can be used to make things happen on the main thread, as well; you can create serial queues and add blocks to them. A serial queue, as its name suggests, will run exactly one block at a time, rather than running a bunch of them in parallel.
So what should I do?
I would not recommend creating threads directly. Use NSOperationQueue or GCD instead; they force you into better thinking habits that will reduce the risk of your threaded code inducing headaches.
For things that run periodically, not fitting into the “thing I need done” model of NSOperations and GCD blocks, consider just using the run loop on the main thread. Chances are, you don't need to put it on a thread after all. A rendering loop in a 3D game, for example, can be a simple timer.

Resources