Continuously running code in Win32 app - winapi

I have a working GUI and now need to add some code that will need to run continuously and update the GUI with data. Where should this code go? I know that it should not go into the message loop because it might block incoming messages to the window, but I'm confused on where in my window process this code could run.

You have a choice: you can use a thread and post messages back to the main thread to update the GUI (or update the GUI directly, but don't try this if you used MFC), or you can use a timer that will post you messages periodically, you then simply implement a handler for the timer and do whatever you need to there.
The thread is best for a complicated, slow process that might block. If the process of getting data is quick (and/or can be set to timeout on error) then a timer is simpler.

Have you looked into threading at all?
Typically, you would create one thread that performs the background task (in this case, reading the voltage data) and storing it into a shared buffer. The GUI thread simply reads that buffer every so often (on redraw, every 30 seconds, when the user clicks refresh, etc) and displays the data.
Your background thread runs on its own schedule, getting CPU time from the OS, and is not bound to the UI or message pump. It can use some type of timer to monitor the data source and read things in as necessary.
Now, since the threads run separately and may run at the same time, you need to make them aware of one another. This can be done with locks (look into mutexes). For example:
The monitor reads the current voltage and stores it in the buffer.
The background/monitor thread locks the buffer holding the latest sample.
The monitor copies the internal buffer to the shared one.
The monitor unlocks the buffer.
Simultaneously, but separately, the UI thread:
Gets a redraw call.
Waits for the buffer to be unlocked, then reads the value.
Draws the UI with the buffer value.
Setting up a new thread and using it, in most Windows GUI-producing languages, is pretty simple. C/++ and C# both have very simple APIs for creating a new thread and having it work on some task, you usually just need to provide a function for the thread to process. See the MSDN docs on CreateThread for a C example.
The concept of threading and locking is for the most part language-agnostic, and similar in most C-inspired languages. You'll need to have your main (in this case, probably UI) thread control the lifetime of the worker: start the worker after the UI is created, and kill it before the UI is shut down.
This approach has a little bit of overhead up front, especially if your data fetch is very simple. If your data source changes (a network request, some blocking data source, reading over actual wires from a physical sensor, etc) then you only need to change the monitor thread and the UI doesn't need to know.

Related

MFC CEvent class member function SetEvent , difference with Thread Lock() function?

what i s the difference between SetEvent() and Thread Lock() function? anyone please help me
Events are used when you want to start/continue processing once a certain task is completed i.e. you want to wait until that event occurs. Other threads can inform the waiting thread about the completion of this task using SetEvent.
On the other hand, critical section is used when you want only one thread to execute a block of code at a time i.e. you want a set of instructions to be executed by one thread without any other thread changing the state at that time. For example, you are inserting an item into a linked list which involves multiple steps, at that time you don't want another thread to come and try to insert one more object into the list. So you block the other thread until first one finishes using critical sections.
Events can be used for inter-process communication, ie synchronising activity amongst different processes. They are typically used for 'signalling' the occurrence of an activity (e.g. file write has finished). More information on events:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686915%28v=vs.85%29.aspx
Critical sections can only be used within a process for synchronizing threads and use a basic lock/unlock concept. They are typically used to protect a resource from multi-threaded access (e.g. a variable). They are very cheap (in CPU terms) to use. The inter-process variant is called a Mutex in Windows. More info:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682530%28v=vs.85%29.aspx

without using DoEvents, how to detect if a button has been pressed?

Currently, I call DoEvents in order to check if Button Foo in Form Bar has been clicked. This approach works but it takes too much processing power, delaying the program.
I believe that the delay could be reduced if I could only check if Button Foo has been clicked, instead of all the other forms that DoEvents has to go through.
Any ideas on how can I check if Button Foo was clicked?
VB6 was not really designed for what you seem to be doing (some sort of long-running straight-line code that does not exit back to give the message loop control). Normally such a task would be delegated to a worker thread, and in VB6 this means some external component implemented in C++ most of the time.
There are only a very few kinds of approaches to take to do this for your ad-hoc logic:
Hacks creating separate threads via API calls, not very reliable in VB6 for a number of reasons.
A tricky thread-per-object ActiveX EXE implementing a class to handle your long-running workload.
A separate non-interactive worker process to be run and monitored by your GUI program.
That's pretty much it.
The prescribed method of doing this sort of thing is described in the VB6 documentation. You break your long-running loop up and invert the logic into a repeatable "quantum" of work (like n iterations of your processing loop), and maintain the state of your workload in Form-global data. Then you use a Timer control with its interval set to 1 or 16 (hardly matters, they normally take at least 16ms to trigger) and run your workload quantum within its event handler.
So if you simply had a loop that currently iterates 100,000 times doing something you might break it up so that it runs 500 times for each Timer tick. The quantum size will probably need to be tuned based on what is done within the loop - 500 is just a value chosen for illustration. You'll want to adjust this until it leaves the UI responsive without starving your background workload too much (slowing completion down).
If your code is heavy enough to not call DoEvents or just finish running periodically, then your app won't even know the button has been pressed. The DoEvents call allows windows, and your application to catch up on all notifications.
The correct way to resolve this is a worker thread (see this article on how to do something like this in VB6) but failing that, a periodic DoEvents is required and in turn, some re-entrancy blocking on the call into the long running code.

Forcing context switch in Windows

Is there a way to force a context switch in C++ to a specific thread, assuming I have the thread handle or thread ID?
No, you won't be able to force operating system to run the thread you want. You can use yield to force a context switch though...
yield in Win32 API is function SwitchToThread. If there is no other thread available for running, then a ZERO value will be returned and current thread will keep running anyway.
You can only encourage the Windows thread scheduler to pick a certain thread, you can't force it. You do so first by making the thread block on a synchronization object and signaling it. Secondary by bumping up its priority.
Explicit context switching is supported, you'll have to use fibers. Review SwitchToFiber(). A fiber is not a thread by a long shot, it is similar to a co-routine of old. Fibers' heyday has come and gone, they are not competitive with threads anymore. They have very crappy cpu cache locality and cannot take advantage of multiple cores.
The only way to force a particular thread to run is by using process/thread affinity, but I can't imagine ever having a problem for which this was a reasonable solution.
The only way to force a context switch is to force a thread onto a different processor using affinity.
In other words, what you are trying to do isn't really viable.
Calling SwitchToThread() will result in a context switch if there is another thread ready to run that are eligible to run on this processor. The documentation states it as follows:
If calling the SwitchToThread function
causes the operating system to switch
execution to another thread, the
return value is nonzero.
If there are no other threads ready to
execute, the operating system does not
switch execution to another thread,
and the return value is zero.
You can temporarily bump the priority of the other thread, while looping with Sleep(0) calls: this passes control to other threads. Suppose that the other thread has increased a lock variable and you need to wait until it becomes zero again:
// Wait until other thread releases lock
SetThreadPriority(otherThread, THREAD_PRIORITY_HIGHER);
while (InterlockedRead(&lock) != 0)
Sleep(0);
SetThreadPriority(otherThread, THREAD_PRIORITY_NORMAL);
I would check out the book Concurrent Programming for Windows. The scheduler seems to do a few things worth noting.
Sleep(0) only yields to higher priority threads (or possibly others at the same priority). This means you cannot fix priority inversion situations with just a Sleep(0), where other lower priority threads need to run. You must use SwitchToThread, Sleep a non-zero duration, or fully block on some kernel HANDLE.
You can create two synchronization objects (such as two events) and use the API SignalObjectAndWait.
If the hObjectToWaitOn is non-signaled and your other thread is waiting on the hObjectToSignal, the OS can theoretically perform quick context switch inside this API, before end of time slice.
And if you want the current thread to automatically resume, simply inform a small value (such as 50 or 100) on the dwMilliseconds.

Question about message loop

I have a question haunting me for a long time.
Short version:
What's the working paradigm of Windows Message Loop?
Detailed version:
When we start a Windows application (not a console application), we can interact with it through mouse or keyboard. The application retrieve all kinds of messages representing our movements from its meesage queue. And it is Windows that is responsible for collecting our actions and properly feeding messages into this queue. But doesn't this scenario mean that Windows has to run infinitively?
I think the Windows scheduler should be running all the time. It could possibly be invoked by a time interrupt at a pre-defined interval. When the scheduler is trigged by the time interrupt, it swithes current thread for the next pending thread. A single thread can only get its message with GetMessage() when it is scheduled to run.
I am wondering if there's only one Windows application running, will this application got more chance to get its message?
Update - 1 (9:59 AM 11/22/2010)
Here is my latest finding:
According to < Windows via C/C++ 5th Edition > Chapter 7 Section: Thread Priorities
...For example, if your process'
primary thread calls GetMessage() and
the system sees that no messages are
pending, the system suspends your
porcess' thread, relinquishes the
remainder of the thread's time slice,
and immediately assigns the CPU to
another waiting thread.
If no messages show up for GetMessage
to retrieve, the process' primary
thread stays suspended and is never
assigned to a CPU. However, when a
message is placed in the thread's
queue, the system knows that the
thread should no longer be suspended
and assigns the thread to a CPU if no
higher-priority threads need to
execute.
My current understanding is:
In order for the system to know when a message is placed in a thread's queue, I can think of 2 possible approaches:
1 - Centralized approach: It is the system who is responsible to always check EVERY thread's queue. Even that thread is blocked for the lacking of messages. If any message is availabe, the system will change the state of that thread to schedulable. But this checking could be a real burden to the system in my opinion.
2 - Distributed approach: The system doesn't check every thread's queue. When a thread calls GetMessage and find that no message is available, the system will just change the thread's state to blocked, thus not schedulable any more. And in the future no matter who places a message into a blocked thread's queue, it is this "who"(not the system) that is responsible to change the the thread's state from blocked to ready (or whatever state). So this thread is dis-qualified for scheduling by the system and re-qualified by someone else in the regard of GetMessage. What the system cares is just to schedule the runable threads. The system doesn't care where these schedulable threads come from. This approach will avoid the burden in approach 1, and thus avoid the possible bottleneck.
In fact, the key point here is, how are the states of the threads changed? I am not sure if it is really a distributed paradigm as shown in appraoch 2, but could it be a good option?
Applications call GetMessage() in their message loop. If the message queue is empty, the process will just block until another message becomes available. Thus, GetMessage is a processes' way of telling Windows that it doesn't have anything to do at the moment.
I am wondering if there's only one
Windows application running, will this
application got more chance to get its
message?
Well yeah probably, but I think you might be missing a crucial point. Extracting a message from the queue is a blocking call. The data structure used is usually referred to as a blocking queue. The dequeue operation is designed to voluntarily yield the current thread's execution if the queue is empty. Threads can stay parked using a various different methods, but it is likely that thread remains in a waiting state using kernel level mechanisms in this case. Once the signal is given that the queue has items available the thread may go into a ready state and the scheduler will start assigning its fair share of the CPU. In other words, if there are no messages pending for that application then it just sits there in an idle state consuming close to zero CPU time.
The fewer threads you have running (time slices are scheduled to threads, not processes), the more chances any single application will have to pull messages from its queue. Actually, this has nothing to do with Windows messages; it's true for all multithreading; the more threads of the same or higher priority which are running, the fewer time slices any thread will get.
Beyond that, I'm not sure what you are really asking, though...

Clarification on Threads and Run Loops In Cocoa

I'm trying to learn about threading and I'm thoroughly confused. I'm sure all the answers are there in the apple docs but I just found it really hard to breakdown and digest. Maybe somebody could clear a thing or 2 up for me.
1)performSelectorOnMainThread
Does the above simply register an event in the main run loop or is it somehow a new thread even though the method says "mainThread"? If the purpose of threads is to relieve processing on the main thread how does this help?
2) RunLoops
Is it true that if I want to create a completely seperate thread I use
"detachNewThreadSelector"? Does calling start on this initiate a default run loop for the thread that has been created? If so where do run loops come into it?
3) And Finally , I've seen examples using NSOperationQueue. Is it true to say that If you use performSelectorOnMainThread the threads are in a queue anyway so NSOperation is not needed?
4) Should I forget about all of this and just use the Grand Central Dispatch instead?
Run Loops
You can think of a Run Loop to be an event processing for-loop associated to a thread. This is provided by the system for every thread, but it's only run automatically for the main thread.
Note that running run loops and executing a thread are two distinct concepts. You can execute a thread without running a run loop, when you're just performing long calculations and you don't have to respond to various events.
If you want to respond to various events from a secondary thread, you retrieve the run loop associated to the thread by
[NSRunLoop currentRunLoop]
and run it. The events run loops can handle is called input sources. You can add input sources to a run-loop.
PerformSelector
performSelectorOnMainThread: adds the target and the selector to a special input source called performSelector input source. The run loop of the main thread dequeues that input source and handles the method call one by one, as part of its event processing loop.
NSOperation/NSOperationQueue
I think of NSOperation as a way to explicitly declare various tasks inside an app which takes some time but can be run mostly independently. It's easier to use than to detach the new thread yourself and maintain various things yourself, too. The main NSOperationQueue automatically maintains a set of background threads which it reuses, and run NSOperations in parallel.
So yes, if you just need to queue up operations in the main thread, you can do away with NSOperationQueue and just use performSelectorOnMainThread:, but that's not the main point of NSOperation.
GCD
GCD is a new infrastructure introduced in Snow Leopard. NSOperationQueue is now implemented on top of it.
It works at the level of functions / blocks. Feeding blocks to dispatch_async is extremely handy, but for a larger chunk of operations I prefer to use NSOperation, especially when that chunk is used from various places in an app.
Summary
You need to read Official Apple Doc! There are many informative blog posts on this point, too.
1)performSelectorOnMainThread
Does the above simply register an event in the main run loop …
You're asking about implementation details. Don't worry about how it works.
What it does is perform that selector on the main thread.
… or is it somehow a new thread even though the method says "mainThread"?
No.
If the purpose of threads is to relieve processing on the main thread how does this help?
It helps you when you need to do something on the main thread. A common example is updating your UI, which you should always do on the main thread.
There are other methods for doing things on new secondary threads, although NSOperationQueue and GCD are generally easier ways to do it.
2) RunLoops
Is it true that if I want to create a completely seperate thread I use "detachNewThreadSelector"?
That has nothing to do with run loops.
Yes, that is one way to start a new thread.
Does calling start on this initiate a default run loop for the thread that has been created?
No.
I don't know what you're “calling start on” here, anyway. detachNewThreadSelector: doesn't return anything, and it starts the thread immediately. I think you mixed this up with NSOperations (which you also don't start yourself—that's the queue's job).
If so where do run loops come into it?
Run loops just exist, one per thread. On the implementation side, they're probably lazily created upon demand.
3) And Finally , I've seen examples using NSOperationQueue. Is it true to say that If you use performSelectorOnMainThread the threads are in a queue anyway so NSOperation is not needed?
These two things are unrelated.
performSelectorOnMainThread: does exactly that: Performs the selector on the main thread.
NSOperations run on secondary threads, one per operation.
An operation queue determines the order in which the operations (and their threads) are started.
Threads themselves are not queued (except maybe by the scheduler, but that's part of the kernel, not your application). The operations are queued, and they are started in that order. Once started, their threads run in parallel.
4) Should I forget about all of this and just use the Grand Central Dispatch instead?
GCD is more or less the same set of concepts as operation queues. You won't understand one as long as you don't understand the other.
So what are all these things good for?
Run loops
Within a thread, a way to schedule things to happen. Some may be scheduled at a specific date (timers), others simply “whenever you get around to it” (sources). Most of these are zero-cost when idle, only consuming any CPU time when the thing happens (timer fires or source is signaled), which makes run loops a very efficient way to have several things going on at once without any threads.
You generally don't handle a run loop yourself when you create a scheduled timer; the timer adds itself to the run loop for you.
Threads
Threads enable multiple things to happen at the exact same time on different processors. Thing 1 can happen on thread A (on processor 1) while thing 2 happens on thread B (on processor 0).
This can be a problem. Multithreaded programming is a dance, and when two threads try to step in the same place, pain ensues. This is called contention, and most discussion of threaded programming is on the topic of how to avoid it.
NSOperationQueue and GCD
You have a thing you need done. That's an operation. You can't have it done on the main thread, or you'd simply send a message like normal; you need to run it in the background, on a secondary thread.
To achieve this, express it as either an NSOperation object (you create a subclass of NSOperation and instantiate it) or a block (or both), then add it to either an NSOperationQueue (NSOperations, including NSBlockOperation) or a dispatch queue (bare block).
GCD can be used to make things happen on the main thread, as well; you can create serial queues and add blocks to them. A serial queue, as its name suggests, will run exactly one block at a time, rather than running a bunch of them in parallel.
So what should I do?
I would not recommend creating threads directly. Use NSOperationQueue or GCD instead; they force you into better thinking habits that will reduce the risk of your threaded code inducing headaches.
For things that run periodically, not fitting into the “thing I need done” model of NSOperations and GCD blocks, consider just using the run loop on the main thread. Chances are, you don't need to put it on a thread after all. A rendering loop in a 3D game, for example, can be a simple timer.

Resources