Forcing context switch in Windows - windows

Is there a way to force a context switch in C++ to a specific thread, assuming I have the thread handle or thread ID?

No, you won't be able to force operating system to run the thread you want. You can use yield to force a context switch though...
yield in Win32 API is function SwitchToThread. If there is no other thread available for running, then a ZERO value will be returned and current thread will keep running anyway.

You can only encourage the Windows thread scheduler to pick a certain thread, you can't force it. You do so first by making the thread block on a synchronization object and signaling it. Secondary by bumping up its priority.
Explicit context switching is supported, you'll have to use fibers. Review SwitchToFiber(). A fiber is not a thread by a long shot, it is similar to a co-routine of old. Fibers' heyday has come and gone, they are not competitive with threads anymore. They have very crappy cpu cache locality and cannot take advantage of multiple cores.

The only way to force a particular thread to run is by using process/thread affinity, but I can't imagine ever having a problem for which this was a reasonable solution.
The only way to force a context switch is to force a thread onto a different processor using affinity.
In other words, what you are trying to do isn't really viable.
Calling SwitchToThread() will result in a context switch if there is another thread ready to run that are eligible to run on this processor. The documentation states it as follows:
If calling the SwitchToThread function
causes the operating system to switch
execution to another thread, the
return value is nonzero.
If there are no other threads ready to
execute, the operating system does not
switch execution to another thread,
and the return value is zero.

You can temporarily bump the priority of the other thread, while looping with Sleep(0) calls: this passes control to other threads. Suppose that the other thread has increased a lock variable and you need to wait until it becomes zero again:
// Wait until other thread releases lock
SetThreadPriority(otherThread, THREAD_PRIORITY_HIGHER);
while (InterlockedRead(&lock) != 0)
Sleep(0);
SetThreadPriority(otherThread, THREAD_PRIORITY_NORMAL);

I would check out the book Concurrent Programming for Windows. The scheduler seems to do a few things worth noting.
Sleep(0) only yields to higher priority threads (or possibly others at the same priority). This means you cannot fix priority inversion situations with just a Sleep(0), where other lower priority threads need to run. You must use SwitchToThread, Sleep a non-zero duration, or fully block on some kernel HANDLE.

You can create two synchronization objects (such as two events) and use the API SignalObjectAndWait.
If the hObjectToWaitOn is non-signaled and your other thread is waiting on the hObjectToSignal, the OS can theoretically perform quick context switch inside this API, before end of time slice.
And if you want the current thread to automatically resume, simply inform a small value (such as 50 or 100) on the dwMilliseconds.

Related

Is the thread in MS Windows with C++ code a time slice or the execution of a function?

Is the thread in MS Windows with C++ a time slice or the execution of a function or both?
A thread is executing a function which is a block of code inside an outer loop. If you send a signal (via a global variable) to break from the outer loop. The function returns, but what happens to the running thread assuming it is a time slice of execution?
Neither.
If your scheduler is set to a time-slice algorithm then the time-slice represents when and how long your thread will run.
A thread is an object that manages a block of executable code that can be scheduled. Typically, as part of thread creation you pass a function pointer to that block of code. When the "job" of the executable code is done the thread is destroyed.
In 32-bit and 64-bit Windows, every thread runs a specified function. Conceptually speaking, the initial thread of a new process runs the application's main function, and every additional thread runs a function specified by the programmer when the thread is created. See the documentation for CreateThread; the lpStartAddress argument specifies the function for the thread to run.
(In fact, each thread also runs operating system code, and usually runtime library code as well, but that's an implementation detail that doesn't matter for our purposes.)
Conceptually, when any particular thread is running on a particular CPU core, it might stop for either of two reasons: because the thread has stopped running altogether, or because of a context switch. In the case of a context switch, the thread will be started up again at a later time, and from the thread's point of view everything will look the same as it did when it was interrupted.
(In fact, the OS may also interrupt the thread in order to run device driver or other operating system code. This doesn't involve a context switch; the device driver code runs in the context of the interrupted thread, which is one of the reasons device drivers are hard to write.)
Here are some of the reasons the thread might stop running altogether ["exit"]:
The function the thread was created to run has exited.
The thread calls ExitThread().
Some other thread calls TerminateThread().
Here are some of the reasons there might be a context switch:
The thread's timeslice has expired.
Another thread with a higher priority has become ready to run.
The thread calls Sleep() or one of the wait functions.
It's hard to tell what you're trying to ask, so this may not have addressed it. But perhaps it will clarify things enough to allow you to ask your question in words I can understand.

MFC CEvent class member function SetEvent , difference with Thread Lock() function?

what i s the difference between SetEvent() and Thread Lock() function? anyone please help me
Events are used when you want to start/continue processing once a certain task is completed i.e. you want to wait until that event occurs. Other threads can inform the waiting thread about the completion of this task using SetEvent.
On the other hand, critical section is used when you want only one thread to execute a block of code at a time i.e. you want a set of instructions to be executed by one thread without any other thread changing the state at that time. For example, you are inserting an item into a linked list which involves multiple steps, at that time you don't want another thread to come and try to insert one more object into the list. So you block the other thread until first one finishes using critical sections.
Events can be used for inter-process communication, ie synchronising activity amongst different processes. They are typically used for 'signalling' the occurrence of an activity (e.g. file write has finished). More information on events:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686915%28v=vs.85%29.aspx
Critical sections can only be used within a process for synchronizing threads and use a basic lock/unlock concept. They are typically used to protect a resource from multi-threaded access (e.g. a variable). They are very cheap (in CPU terms) to use. The inter-process variant is called a Mutex in Windows. More info:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682530%28v=vs.85%29.aspx

Question about message loop

I have a question haunting me for a long time.
Short version:
What's the working paradigm of Windows Message Loop?
Detailed version:
When we start a Windows application (not a console application), we can interact with it through mouse or keyboard. The application retrieve all kinds of messages representing our movements from its meesage queue. And it is Windows that is responsible for collecting our actions and properly feeding messages into this queue. But doesn't this scenario mean that Windows has to run infinitively?
I think the Windows scheduler should be running all the time. It could possibly be invoked by a time interrupt at a pre-defined interval. When the scheduler is trigged by the time interrupt, it swithes current thread for the next pending thread. A single thread can only get its message with GetMessage() when it is scheduled to run.
I am wondering if there's only one Windows application running, will this application got more chance to get its message?
Update - 1 (9:59 AM 11/22/2010)
Here is my latest finding:
According to < Windows via C/C++ 5th Edition > Chapter 7 Section: Thread Priorities
...For example, if your process'
primary thread calls GetMessage() and
the system sees that no messages are
pending, the system suspends your
porcess' thread, relinquishes the
remainder of the thread's time slice,
and immediately assigns the CPU to
another waiting thread.
If no messages show up for GetMessage
to retrieve, the process' primary
thread stays suspended and is never
assigned to a CPU. However, when a
message is placed in the thread's
queue, the system knows that the
thread should no longer be suspended
and assigns the thread to a CPU if no
higher-priority threads need to
execute.
My current understanding is:
In order for the system to know when a message is placed in a thread's queue, I can think of 2 possible approaches:
1 - Centralized approach: It is the system who is responsible to always check EVERY thread's queue. Even that thread is blocked for the lacking of messages. If any message is availabe, the system will change the state of that thread to schedulable. But this checking could be a real burden to the system in my opinion.
2 - Distributed approach: The system doesn't check every thread's queue. When a thread calls GetMessage and find that no message is available, the system will just change the thread's state to blocked, thus not schedulable any more. And in the future no matter who places a message into a blocked thread's queue, it is this "who"(not the system) that is responsible to change the the thread's state from blocked to ready (or whatever state). So this thread is dis-qualified for scheduling by the system and re-qualified by someone else in the regard of GetMessage. What the system cares is just to schedule the runable threads. The system doesn't care where these schedulable threads come from. This approach will avoid the burden in approach 1, and thus avoid the possible bottleneck.
In fact, the key point here is, how are the states of the threads changed? I am not sure if it is really a distributed paradigm as shown in appraoch 2, but could it be a good option?
Applications call GetMessage() in their message loop. If the message queue is empty, the process will just block until another message becomes available. Thus, GetMessage is a processes' way of telling Windows that it doesn't have anything to do at the moment.
I am wondering if there's only one
Windows application running, will this
application got more chance to get its
message?
Well yeah probably, but I think you might be missing a crucial point. Extracting a message from the queue is a blocking call. The data structure used is usually referred to as a blocking queue. The dequeue operation is designed to voluntarily yield the current thread's execution if the queue is empty. Threads can stay parked using a various different methods, but it is likely that thread remains in a waiting state using kernel level mechanisms in this case. Once the signal is given that the queue has items available the thread may go into a ready state and the scheduler will start assigning its fair share of the CPU. In other words, if there are no messages pending for that application then it just sits there in an idle state consuming close to zero CPU time.
The fewer threads you have running (time slices are scheduled to threads, not processes), the more chances any single application will have to pull messages from its queue. Actually, this has nothing to do with Windows messages; it's true for all multithreading; the more threads of the same or higher priority which are running, the fewer time slices any thread will get.
Beyond that, I'm not sure what you are really asking, though...

Clarification on Threads and Run Loops In Cocoa

I'm trying to learn about threading and I'm thoroughly confused. I'm sure all the answers are there in the apple docs but I just found it really hard to breakdown and digest. Maybe somebody could clear a thing or 2 up for me.
1)performSelectorOnMainThread
Does the above simply register an event in the main run loop or is it somehow a new thread even though the method says "mainThread"? If the purpose of threads is to relieve processing on the main thread how does this help?
2) RunLoops
Is it true that if I want to create a completely seperate thread I use
"detachNewThreadSelector"? Does calling start on this initiate a default run loop for the thread that has been created? If so where do run loops come into it?
3) And Finally , I've seen examples using NSOperationQueue. Is it true to say that If you use performSelectorOnMainThread the threads are in a queue anyway so NSOperation is not needed?
4) Should I forget about all of this and just use the Grand Central Dispatch instead?
Run Loops
You can think of a Run Loop to be an event processing for-loop associated to a thread. This is provided by the system for every thread, but it's only run automatically for the main thread.
Note that running run loops and executing a thread are two distinct concepts. You can execute a thread without running a run loop, when you're just performing long calculations and you don't have to respond to various events.
If you want to respond to various events from a secondary thread, you retrieve the run loop associated to the thread by
[NSRunLoop currentRunLoop]
and run it. The events run loops can handle is called input sources. You can add input sources to a run-loop.
PerformSelector
performSelectorOnMainThread: adds the target and the selector to a special input source called performSelector input source. The run loop of the main thread dequeues that input source and handles the method call one by one, as part of its event processing loop.
NSOperation/NSOperationQueue
I think of NSOperation as a way to explicitly declare various tasks inside an app which takes some time but can be run mostly independently. It's easier to use than to detach the new thread yourself and maintain various things yourself, too. The main NSOperationQueue automatically maintains a set of background threads which it reuses, and run NSOperations in parallel.
So yes, if you just need to queue up operations in the main thread, you can do away with NSOperationQueue and just use performSelectorOnMainThread:, but that's not the main point of NSOperation.
GCD
GCD is a new infrastructure introduced in Snow Leopard. NSOperationQueue is now implemented on top of it.
It works at the level of functions / blocks. Feeding blocks to dispatch_async is extremely handy, but for a larger chunk of operations I prefer to use NSOperation, especially when that chunk is used from various places in an app.
Summary
You need to read Official Apple Doc! There are many informative blog posts on this point, too.
1)performSelectorOnMainThread
Does the above simply register an event in the main run loop …
You're asking about implementation details. Don't worry about how it works.
What it does is perform that selector on the main thread.
… or is it somehow a new thread even though the method says "mainThread"?
No.
If the purpose of threads is to relieve processing on the main thread how does this help?
It helps you when you need to do something on the main thread. A common example is updating your UI, which you should always do on the main thread.
There are other methods for doing things on new secondary threads, although NSOperationQueue and GCD are generally easier ways to do it.
2) RunLoops
Is it true that if I want to create a completely seperate thread I use "detachNewThreadSelector"?
That has nothing to do with run loops.
Yes, that is one way to start a new thread.
Does calling start on this initiate a default run loop for the thread that has been created?
No.
I don't know what you're “calling start on” here, anyway. detachNewThreadSelector: doesn't return anything, and it starts the thread immediately. I think you mixed this up with NSOperations (which you also don't start yourself—that's the queue's job).
If so where do run loops come into it?
Run loops just exist, one per thread. On the implementation side, they're probably lazily created upon demand.
3) And Finally , I've seen examples using NSOperationQueue. Is it true to say that If you use performSelectorOnMainThread the threads are in a queue anyway so NSOperation is not needed?
These two things are unrelated.
performSelectorOnMainThread: does exactly that: Performs the selector on the main thread.
NSOperations run on secondary threads, one per operation.
An operation queue determines the order in which the operations (and their threads) are started.
Threads themselves are not queued (except maybe by the scheduler, but that's part of the kernel, not your application). The operations are queued, and they are started in that order. Once started, their threads run in parallel.
4) Should I forget about all of this and just use the Grand Central Dispatch instead?
GCD is more or less the same set of concepts as operation queues. You won't understand one as long as you don't understand the other.
So what are all these things good for?
Run loops
Within a thread, a way to schedule things to happen. Some may be scheduled at a specific date (timers), others simply “whenever you get around to it” (sources). Most of these are zero-cost when idle, only consuming any CPU time when the thing happens (timer fires or source is signaled), which makes run loops a very efficient way to have several things going on at once without any threads.
You generally don't handle a run loop yourself when you create a scheduled timer; the timer adds itself to the run loop for you.
Threads
Threads enable multiple things to happen at the exact same time on different processors. Thing 1 can happen on thread A (on processor 1) while thing 2 happens on thread B (on processor 0).
This can be a problem. Multithreaded programming is a dance, and when two threads try to step in the same place, pain ensues. This is called contention, and most discussion of threaded programming is on the topic of how to avoid it.
NSOperationQueue and GCD
You have a thing you need done. That's an operation. You can't have it done on the main thread, or you'd simply send a message like normal; you need to run it in the background, on a secondary thread.
To achieve this, express it as either an NSOperation object (you create a subclass of NSOperation and instantiate it) or a block (or both), then add it to either an NSOperationQueue (NSOperations, including NSBlockOperation) or a dispatch queue (bare block).
GCD can be used to make things happen on the main thread, as well; you can create serial queues and add blocks to them. A serial queue, as its name suggests, will run exactly one block at a time, rather than running a bunch of them in parallel.
So what should I do?
I would not recommend creating threads directly. Use NSOperationQueue or GCD instead; they force you into better thinking habits that will reduce the risk of your threaded code inducing headaches.
For things that run periodically, not fitting into the “thing I need done” model of NSOperations and GCD blocks, consider just using the run loop on the main thread. Chances are, you don't need to put it on a thread after all. A rendering loop in a 3D game, for example, can be a simple timer.

Why use ReadDirectoryChangesW asynchronously?

I've read the documentation for ReadDirectoryChangesW() and also seen the CDirectoryChangeWatcher project, but neither say why one would want to call it asynchronously. I understand that the current thread will not block, but, at least for the CDirectoryChangeWatcher code that uses a completion port, when it calls GetQueuedCompletionStatus(), that thread blocks anyway (if there are no changes).
So if I call ReadDirectoryChangesW() synchronously in a separate thread in the first place that I don't care if it blocks, why would I ever want to call ReadDirectoryChangesW() asynchronously?
When you call it asynchronously, you have more control over which thread does the waiting. It also allows you to have a single thread wait for multiple things, such as a directory change, an event, and a message. Finally, even if you're doing the waiting in the same thread that set up the watch in the first place, it gives you control over how long you're willing to wait. GetQueuedCompletionStatus has a timeout parameter that ReadDirectoryChangesW doesn't offer by itself.
You would call ReadDirectoryChangesW such that it returns its results asynchronously if you ever needed the calling thread to not block. A tautology, but the truth.
Candidates for such threads: the UI thread & any thread that is solely responsible for servicing a number of resources (Sockets, any sort of IPC, independent files, etc.).
Not being familiar with the project, I'd guess the CDirectoryChangeWatcher doesn't care if its worker thread blocks. Generally, that's the nature of worker threads.
I tried using ReadDirectoryChanges in a worker thread synchronously, and guess what, it blocked so that the thread wouldn't exit by itself at the program exit.
So if you don't want to use evil things like TerminateThread, you should use asynchronous calls.

Resources