I have a code where we first need to generate n + 1 numbers in a range with a given step. However, I don't understand how and why it works:
a = 2;
b = 7;
h = (b-a)/n;
x[0] = a;
Array[x, n+1, 0];
For[i = 0, i < n + 1, i++, x[i] = a + h*i]
My questions are:
Are elements of x automatically generated when accessed? There's no mention of x before the line x[0] = a
Shouldn't index access be like x[[i]]?
What exactly does Array do here? It isn't assigned to anything which confuses me
Try Range[2,10,2] for a range of numbers from 2 to 10 in steps of 2, etc.
Beyond that there some faults in your code, or perhaps in your understanding of Mathematica ...
x[0] = a defines a function called x which, when presented with argument 0 returns a (or a's value since it is previously defined). Mathematica is particular about the bracketing characters used [ and ] enclose function argument lists. Since there is no other definition for the function x (at least not that we can see here) then it will return unevaluated for any argument other than 0.
And you are right, doubled square brackets, ie [[ and ]], are used to enclose index values. x[[2]] would indeed refer to the second element of a list called x. Note that Mathematica indexes from 1 so x[[0]] would produce an error if x existed and was a list.
The expression Array[x, n+1, 0] does return a value, but it is not assigned to any symbol so is lost. And the trailing ; on the line suppresses Mathematica's default behaviour to print the return value of any expression you execute.
Finally, on the issue of the use of For to make lists of values, refer to https://mathematica.stackexchange.com/questions/7924/alternatives-to-procedural-loops-and-iterating-over-lists-in-mathematica. And perhaps ask further Mathematica questions at that site, the real experts on the system are much more likely to be found there.
I suppose I might add ... if you are committed to using Array for some reason ask another question specifically about that. As you might (not) realise, I recommend not using that function to create a list of numbers.
From the docs, Array[f, n, r] generates a list using the index origin r.
On its own Array[x, n + 1, 0] just produces a list of x functions, e.g.
n = 4;
Array[x, n + 1, 0]
{x[0], x[1], x[2], x[3], x[4]}
If x is defined it is applied, e.g.
x[arg_] := arg^2
Array[x, 4 + 1, 0]
{0, 1, 4, 9, 16}
Alternatively, to use x as a function variable the Array can be set like so
Clear[x]
With[{z = Array[x, n + 1, 0]}, z = {m, n, o, p, q}]
{x[0], x[1], x[2], x[3], x[4]}
{m, n, o, p, q}
The OP's code sets function variables of x in the For loop, e.g.
Still with n = 4
a = 2;
b = 7;
h = (b - a)/n;
For[i = 0, i < n + 1, i++, x[i] = a + h*i]
which can be displayed by Array[x, n + 1, 0]
{2, 13/4, 9/2, 23/4, 7}
also x[0] == 2
True
The same could be accomplished thusly
Clear[x]
With[{z = Array[x, n + 1, 0]}, z = Table[a + h*i, {i, 0, 4}]]
{2, 13/4, 9/2, 23/4, 7}
Note also DownValues[x] shows the function definitions
{HoldPattern[x[0]] :> 2,
HoldPattern[x[1]] :> 13/4,
HoldPattern[x[2]] :> 9/2,
HoldPattern[x[3]] :> 23/4,
HoldPattern[x[4]] :> 7}
Related
My aim is to create a lot of functions f_i in a loop. These functions depend on parameters a[[i]], which can be taken from array A = {a1, a2, ...}. In order to eliminate the influence of the interator i, which leads to the situation when all functions are the same, I aspire to create variable names for each iteration.
The example: suppose I have got the array W = {1,2,3, ..., 100} and I should create variables w1 = 1, w2 = 2, ..., w100 = 100. I am trying to do this with the help of a for-loop:
loc[expr1_, expr2_] :=
ToExpression[StringJoin[ToString[expr1], ToString[expr2]]];
For[i = 1, i <= 100, i++,
{
loc[w, i] = W[[i]];
}]
When I need to see which value variable wk contains, then wk is not defined. But loc[w, k] = k is known.
How can I define variables wi? Or is there another way to create functions in a loop?
Thanks in advance
The way you are using {} leads me to believe that you have prior experience with other programming languages.
Mathematica is a very different language and some of what you know and expect will be wrong. Mathematica only uses {} to mean that is a list of elements. It is not used to group blocks of code. ; is more often used to group blocks of code.
Next, try
W={1,2,3};
For[i=i,i<=3,i++,
ToExpression["w"<>ToString[i]<>"="<>ToString[i]]
];
w2
and see that that returns
2
I understand that there is an intense desire in people who have been trained in other programming languages to use For to accomplish things. There are other ways o doing that for most purposes in Mathematica.
For one simple example
W={1,2,3};
Map[ToExpression["z"<>ToString[#]<>"="<>ToString[#]]&,W];
z2
returns
2
where I used z instead of w just to be certain that it wasn't showing me a prior cached value of w2
You can even do things like
W={1,2,3};
loc[n_,v_]:=ToExpression[ToString[n]<>ToString[v]<>"="<>ToString[v]];
Map[loc[a,#]&,W];
a3
which returns
3
Ordinarily, you will use indexed variables for this. E.g.,
ClearAll[x, xs]
n = 4
xs = Array[Indexed[x, #] &, 4]
Example use with random data:
RandomSeed[314]
mA = RandomInteger[{0, 99}, {n, n}]
vb = RandomInteger[{0, 99}, n]
Solve[mA.xs == vb, xs]
This is just for illustration; one would ordinarily use LinearSolve for the example problem. E.g., MapThread[Rule, {xs, LinearSolve[mA, vb]}].
It would be simpler to use a function variable, e.g. w[1], but here is a method to define w1 etc.
Note Clear can clear assignments using string versions of the symbols.
W = {1, 2, 7, 9};
Clear ## Map["w" <> ToString[#] &, W]
Map[(Evaluate[Symbol["w" <> ToString[#]]] = #) &, W];
w9
9
Symbol /# Map["w" <> ToString[#] &, W]
{1, 2, 7, 9}
Alternatively, with a function variable . . .
Map[(w[#] = #) &, W]
{1, 2, 7, 9}
w[9]
9
Also, using the OP's structure
Clear[loc]
Clear[w]
Clear ## Map["w" <> ToString[#] &, W]
W = {1, 2, 3, 4};
loc[expr1_, expr2_] := StringJoin[ToString[expr1], ToString[expr2]]
For[i = 1, i <= 4, i++, Evaluate[Symbol[loc[w, i]]] = W[[i]]]
Symbol /# Map["w" <> ToString[#] &, W]
{1, 2, 3, 4}
Note Evaluate[Symbol[loc[w, i]]] = W[[i]]] has the advantage that if the data at W[[i]] is a string it does not get transformed as it would by using ToExpression.
I am trying to compute an equation x = (a/(1+r)^1) + (a/(1+r)^2) + (a/(1+r)^3) ... (to infinity); (or to some point like ... +(a/(1+r)^10)
How to input those dots which matheamtica can understand?
Also, how can it, using same or somewhat similar technique understand the input for some simpler expression like 1+3+5+7...+113 (which should be sum of first 114/2 odd numbers)
Thank you
Try these
x = Sum[a/(1 + r)^i, {i, 1, Infinity}]
x = Sum[a/(1 + r)^i, {i, 1, 10}]
x = Sum[2*i - 1, {i, 1, 114/2}]
This is an example. I want to know if there is a general way to deal with this kind of problems.
Suppose I have a function (a ε ℜ) :
f[a_, n_Integer, m_Integer] := Sum[a^i k[i],{i,0,n}]^m
And I need a closed form for the coefficient a^p. What is the better way to proceed?
Note 1:In this particular case, one could go manually trying to represent the sum through Multinomial[ ], but it seems difficult to write down the Multinomial terms for a variable number of arguments, and besides, I want Mma to do it.
Note 2: Of course
Collect[f[a, 3, 4], a]
Will do, but only for a given m and n.
Note 3: This question is related to this other one. My application is different, but probably the same methods apply. So, feel free to answer both with a single shot.
Note 4:
You can model the multinomial theorem with a function like:
f[n_, m_] :=
Sum[KroneckerDelta[m - Sum[r[i], {i, n}]]
(Multinomial ## Sequence#Array[r, n])
Product[x[i]^r[i], {i, n}],
Evaluate#(Sequence ## Table[{r[i], 0, m}, {i, 1, n}])];
So, for example
f[2,3]
is the cube of a binomial
x[1]^3+ 3 x[1]^2 x[2]+ 3 x[1] x[2]^2+ x[2]^3
The coefficient by a^k can be viewed as derivative of order k at zero divided by k!. In version 8, there is a function BellY, which allows to construct a derivative at a point for composition of functions, out of derivatives of individual components. Basically, for f[g[x]] and expanding around x==0 we find Derivative[p][Function[x,f[g[x]]][0] as
BellY[ Table[ { Derivative[k][f][g[0]], Derivative[k][g][0]}, {k, 1, p} ] ]/p!
This is also known as generalized Bell polynomial, see wiki.
In the case at hand:
f[a_, n_Integer, m_Integer] := Sum[a^i k[i], {i, 0, n}]^m
With[{n = 3, m = 4, p = 7},
BellY[ Table[{FactorialPower[m, s] k[0]^(m - s),
If[s <= n, s! k[s], 0]}, {s, 1, p}]]/p!] // Distribute
(*
Out[80]= 4 k[1] k[2]^3 + 12 k[1]^2 k[2] k[3] + 12 k[0] k[2]^2 k[3] +
12 k[0] k[1] k[3]^2
*)
With[{n = 3, m = 4, p = 7}, Coefficient[f[a, n, m], a, p]]
(*
Out[81]= 4 k[1] k[2]^3 + 12 k[1]^2 k[2] k[3] + 12 k[0] k[2]^2 k[3] +
12 k[0] k[1] k[3]^2
*)
Doing it this way is more computationally efficient than building the entire expression and extracting coefficients.
EDIT The approach here outlined will work for symbolic orders n and m, but requires explicit value for p. When using it is this circumstances, it is better to replace If with its Piecewise analog, e.g. Boole:
With[{p = 2},
BellY[Table[{FactorialPower[m, s] k[0]^(m - s),
Boole[s <= n] s! k[s]}, {s, 1, p}]]/p!]
(* 1/2 (Boole[1 <= n]^2 FactorialPower[m, 2] k[0]^(-2 + m)
k[1]^2 + 2 m Boole[2 <= n] k[0]^(-1 + m) k[2]) *)
I am finally working on my n-point Pade code, again, and I am running across an error that was not occurring previously. The heart of the matter revolves around this code:
zi = {0.1, 0.2, 0.3}
ai = {0.904837, 1.05171, -0.499584}
Quiet[ RecurrenceTable[ {A[0] == 0, A[1] == ai[[1]],
A[n+1]==A[n] + (z - zi[[n]]) ai[[n+1]] A[n-1]},
A, {n, Length#ai -1 } ],
{Part::pspec}]
(The use of Quiet is necessary as Part complains about zi[[n]] and ai[[n+1]] when n is purely symbolic.) The code itself is part of a function that I want a symbolic result from, hence z is a Symbol. But, when I run the above code I get the error:
RecurrenceTable::nlnum1:
The function value {0.904837,0.904837+0. z} is not a list of numbers with
dimensions {2} when the arguments are {0,0.,0.904837}.
Note the term {0.904837,0.904837+0. z} where 0. z is not reduced to zero. What do I need to do to force it to evaluate to zero, as it seems to be the source of the problem? Are there alternatives?
Additionally, as a general complaint about the help system for the Wolfram Research personnel who haunt stackoverflow: in v.7 RecurrenceTable::nlnum1 is not searchable! Nor, does the >> link at the end of the error take you to the error definition, but takes you to the definition of RecurrenceTable, instead, where the common errors are not cross-referenced.
Edit: After reviewing my code, the solution I came up with was to evaluate the RecurrenceTable completely symbolically, including the initial conditions. The working code is as follows:
Clear[NPointPade, NPointPadeFcn]
NPointPade[pts : {{_, _} ..}] := NPointPade ## Transpose[pts]
NPointPade[zi_List, fi_List] /; Length[zi] == Length[fi] :=
Module[{ap, fcn, rec},
ap = {fi[[1]]};
fcn = Module[{gp = #, zp, res},
zp = zi[[-Length#gp ;;]];
res = (gp[[1]] - #)/((#2 - zp[[1]]) #) &[Rest#gp, Rest#zp];
AppendTo[ap, res[[1]]];
res
] &;
NestWhile[fcn, fi, (Length[#] > 1 &)];
(*
The recurrence relation is used twice, with different initial conditions, so
pre-evaluate it to pass along to NPointPadeFcn
*)
rec[aif_, zif_, a_, b_][z_] :=
Evaluate[RecurrenceTable[
{A[n + 1] == A[n] + (z - zif[n])*aif[n + 1]*A[n - 1],
A[0] == a, A[1] == b},
A, {n, {Length#ap - 1}}][[1]]];
NPointPadeFcn[{zi, ap, rec }]
]
NPointPadeFcn[{zi_List, ai_List, rec_}][z_] /; Length[zi] == Length[ai] :=
Module[{aif, zif},
zif[n_Integer] /; 1 <= n <= Length[zi] := zi[[n]];
aif[n_Integer] /; 1 <= n <= Length[zi] := ai[[n]];
rec[aif, zif, 0, ai[[1]]][z]/rec[aif, zif, 1, 1][z]
]
Format[NPointPadeFcn[x_List]] := NPointPadeFcn[Shallow[x, 1]];
Like the built-in interpolation functions, NPointPade does some pre-processing, and returns a function that can be evaluated, NPointPadeFcn. The pre-processing done by NPointPade generates the list of ais from the zis and the function values at those points, in addition to pre-evaluating the recurrence relations. When NPointPadeFcn is supplied with a z value, it evaluates two linear recurrence relations by supplying it with the appropriate values.
Edit: for the curious, here's NPointPade in operation
In the first plot, it is difficult to tell the difference between the two functions, but the second plot shows the absolute (blue) and relative (red) errors. As written, it takes a very long time to create a Pade for 20 points, so I need to work on speeding it up. But, for now, it works.
You can hide part extraction behind a function:
In[122]:= zi = {0.1, 0.2, 0.3};
ai = {0.904837, 1.05171, -0.499584};
In[124]:= zif[n_Integer] /; 1 <= n <= Length[zi] := zi[[n]]
aif[n_Integer] /; 1 <= n <= Length[ai] := ai[[n]]
In[127]:= RecurrenceTable[{A[0] == 0, A[1] == aif[1],
A[n + 1] ==
A[n] + (z - zif[n]) aif[n + 1] A[n - 1]}, A, {n, (Length#ai) - 1}]
Out[127]= {0.904837, 0.904837,
0.904837 - 0.271451 aif[4] + 0.904837 z aif[4]}
EDIT
Here is the work-around for the problem:
In[4]:= zi = {0.1, 0.2, 0.3};
ai = {0.904837, 1.05171, -0.499584};
In[6]:= zif[n_Integer] /; 1 <= n <= Length[zi] := zi[[n]]
aif[n_Integer] /; 1 <= n <= Length[ai] := ai[[n]]
In[8]:= Block[{aif, zif},
RecurrenceTable[{A[0] == 0, A[1] == aif[1],
A[n + 1] == A[n] + (z - zif[n]) aif[n + 1] A[n - 1]},
A, {n, 0, (Length#ai) - 1}]]
Out[8]= {0, 0.904837, 0.904837}
Block serves to temporarily remove definitions of aif and zif while RecurrenceTable is executed. Then, when Block exits, the values are restored, and the output of RecurrenceTable evaluates.
It seems to me that Sasha's approach can be mimicked by just Blocking Part.
zi = {0.1, 0.2, 0.3};
ai = {0.904837, 1.05171, -0.499584};
Block[{Part},
RecurrenceTable[{A[0] == 0, A[1] == ai[[1]],
A[n + 1] == A[n] + (z - zi[[n]]) ai[[n + 1]] A[n - 1]},
A, {n, Length#ai - 1}]
]
{0, 0.904837, 0.904837}
Addressing Sasha's criticism, here are two other ways one might approach this:
With[{Part = $z},
RecurrenceTable[{A[0] == 0, A[1] == ai[[1]],
A[n + 1] == A[n] + (z - zi[[n]]) ai[[n + 1]] A[n - 1]},
A, {n, Length#ai - 1}]
] /. $z -> Part
-
With[{Part = Hold[Part]},
RecurrenceTable[{A[0] == 0, A[1] == ai[[1]],
A[n + 1] == A[n] + (z - zi[[n]]) ai[[n + 1]] A[n - 1]},
A, {n, Length#ai - 1}]
] // ReleaseHold
For example, I have the following recursion and I want to get f[3,n]:
f[m_, n_] := Module[{}, If[m < 0, Return[0];];
If[m == 0, Return[1];];
If[2*m - 1 >= n, Return[0];];
If[2*m == n, Return[2];];
If[m == 1, Return[n];];
Return[f[m, n - 1] + f[m - 1, n - 2]];]
f[3, n]
The code does not seem to work. Please help. Many thanks!
You have an infinite recursion because when m is not initialized, none of the boundary cases match.
Instead of using Return you'll get more predictable behavior if you use functional programming, ie
f[m_, n_] := Which[
m < 0, 0,
2 m - 1 >= n, 0,
2 m == n, 2,
m == 1, n,
True, f[m, n - 1] + f[m - 1, n - 2]
]
In this case Which can not decide which option to take with n not initialized, so f[3, n] will return an expression.
One way to get a formula is with RSolve. Doesn't look like it can solve this equation in full generality, but you can try it with one variable fixed using something like this
Block[{m = 3},
RSolve[f[m, n] == f[m, n - 1] + f[m - 1, n - 2], f[m, n], {n}]
]
In the result you will see K[1] which is an arbitrary iteration variable and C[1] which is a free constant. It's there because boundary case is not specified