What Simple Changes Made the Biggest Improvements to Your Delphi Programs [closed] - performance

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
I have a Delphi 2009 program that handles a lot of data and needs to be as fast as possible and not use too much memory.
What small simple changes have you made to your Delphi code that had the biggest impact on the performance of your program by noticeably reducing execution time or memory use?
Thanks everyone for all your answers. Many great tips.
For completeness, I'll post a few important articles on Delphi optimization that I found.
Before you start optimizing Delphi code at About.com
Speed and Size: Top 10 Tricks also at About.com
Code Optimization Fundamentals and Delphi Optimization Guidelines at High Performance Delphi, relating to Delphi 7 but still very pertinent.

.BeginUpdate;
.EndUpdate;
;)

Use a Delphi Profiling tool (Some here or here) and discover your own bottle necks. Optimizing the wrong bottlenecks is a waste of time. In other words, if you apply all of these suggestions here, but ignore the fact someone put a sleep(1000) (or similar) in some very important code is a waste of your time. Fix your actual bottlenecks first.

Stop using TStringList for everything.
TStringList is not a general purpose datastructure for effective storage and handling of everything from simple to complex types. Look for alternatives. I use Delphi Container and Algorithm Library (DeCAL, formerly known as SDL). Julians EZDSL should also be a good alternative.

Pre-allocating lists and arrays, rather than growing them with each iteration.
This has probably had the biggest impact for me in terms of speed.

If you need to use Application.processmesssages (or similar) in a loop, try calling it only every Nth iteration.
Similarly, if updating a progressbar, don't update it every iteration. Instead, increment it by x units every x iterations, or scale the updates according to time or as a percentage of overall task length.

FastMM
FastCode (lib)
Use high performance data structures, like hash table (etc). Many places it is faster to make one loop which makes lookup hash table for your data. Uses quite lot of memory but it surely is fast. (this maybe is most important one, but 2 first are dead simple and need very little of effort to do)

Reduce disk operations. If there's enough memory, load the file entirely to RAM and do all operations in memory.

Consider the careful use of threads. If you are not using threads now, then consider adding a couple. If you are, make sure you are not using too many. If you are running on a Dual or Quad core computer (which most are any more) then proper thread tuning is very important.
You could look at OmniThread Library by Gabr, but there are a number of thread libraries in development for Delphi. You could easily implement your own parallel for using anonymous types.

Before you do anything, identify slow parts. Do not touch working code which performs fast enough.

The biggest improvement came when I started using AsyncCalls to convert single-threaded applications that used to freeze up the UI, into (sort of) multi-threaded apps.
Although AsyncCalls can do a lot more, I've found it useful for this very simple purpose. Let's say you have a subroutine blocked like this: Disable Button, Do Work, Enable Button.
You move the 'Do Work' part to a local function (call it AsyncDoWork), and add four lines of code:
var a: IAsyncCall;
a := LocalAsyncCall(#AsyncDoWork);
while (NOT a.Finished) do
application.ProcessMessages;
a.Sync;
What this does for you is run AsyncDoWork in a separate thread, while your main thread remains available to respond to the UI (like dragging the window or clicking Abort.) When AsyncDoWork is finished the code continues. Because I moved it to a local function, all local vars are available, an the code does not need to be changed.
This is a very limited type of 'multi-threading'. Specifically, it's dual threading. You must ensure that your Async function and the UI do not both access the same VCL components or data structures. (I disable all controls except the stop button.)
I don't use this to write new programs. It's just a really quick & easy way to make old programs more responsive.

When working with a tstringlist (or similar), set "sorted := false" until needed (if at all). Seems like a no-brainer...

Create unit tests
Verify tests all pass
Profile your application
Refactor looking for bottlenecks and memory
Repeat from Step 2 (comparing to previous pass)

Make intelligent use of SetLength() for strings and arrays. Optimise initialisation with FillChar or ZeroMemory.
Local variables created on stack (e.g. record types) are faster than heap allocated (objects and New()) variables.
Reuse objects rather than Destroy then create. But make sure management code for this is faster than memory manager!

Check heavily-used loops for calculations that could be (at least partially) pre-calculated or handled with a lookup table. Trig functions are a classic for this, but it applies to many others.

If you have a list, use a dynamic array of anything, even a record as follows:
This needs no classes, no freeing and access to it is very fast. Even if it needs to grow you can do this - see below. Only use TList or TStringList if you need lots of size changing flexibility.
type
TMyRec = record
SomeString : string;
SomeValue : double;
end;
var
Data : array of TMyRec;
I : integer;
..begin
SetLength( Data, 100 ); // defines the length and CLEARS ALL DATA
Data[32].SomeString := 'Hello';
ShowMessage( Data[32] );
// Grow the list by 1 item.
I := Length( Data );
SetLength( Data, I+1 );
..end;

Separating the program logic from user interface, refactoring, then optimizing the most-used, most resource-intensive elements independently.

Turn debugging OFF
Turn optimizations ON
Remove all references to units that
you don't actually use
Look for memory leaks

Use a lot of assertions to debug, then turn them off in shipping code.

Turn off range and overflow checking after you have tested extensively.

If you really, really, really need to be light weight then you can shed the VCL. Take a look at the KOL & MCK. Granted if you do that then you are trading features for reduced footprint.

Use the full FastMM and study the documentation and source and see if you can tweak it to your specifications.

For an old BDE development when I first started Delphi, I was using lots of TQuery components. Someone told me to use TTable master-detail after I explained him what I was doing, and that made the program run much faster.
Calling DisableControls can omit unnecessary UI updates.

When identifying records, use integers if at all possible for record comparison. While a primary key of "company name" might seem logical, the time spent generating and storing a hash of this will greatly improve overall search times.

You might consider using runtime packages. This could reduce your memory foot print if there are more then one program running that is written using the same packages.

If you use threads, set their processor affinity. If you don't use threads yet, consider using them, or look into asynchronous I/O (completion ports) if your application does lots of I/O.

Consider if a DBMS database is really the perfect choice. If you are only reading data and never changing it, then a flat fixed record file could work faster, especially if the path to the data can be easily mapped (ie, one index). A trivial binary search on a fixed record file is still extremely fast.

BeginUpdate ... EndUpdate
ShortString vs. String
Use arrays instead of TStrings and TList
But the sad answer is that tuning and optimization will give you maybe 10% improvement (and it's dangerous); re-design can give you 90%. Once you really understand the goal, you often can restate the problem (and therefore the solution) in much better terms.
Cheers

Examine all loops, and look for ways to short circuit. If your looking for something specific and find it in a loop, then use the BREAK command to immediately bail...no sense looping thru the rest. If you know that you don't have a match, then use a CONTINUE as quickly as possible.

Take advantage of some of the FastCode project code. Parts of it were incorporated into VCL/RTL proper (like FastMM was), but there is more out there you can use!
Note, they have a new site they are moving too, but it seems to be a bit inactive.

Consider hardware issues. If you really need performance then consider the type of hard drive(s) your program and your databases are running on. There are a lot of variables especially if you are running a database. RAID is not always the best answer either.

Related

When should I use AsParallel() in linq/plinq

I'm looking make use of the advantages of parallel programming in linq by using plinq, im not sure I understand the use entirely apart from the fact its going to make use of all cpu cores more efficiently so for a large query it might be quicker. Can I just simply call AsParallel() on linq calls to make use of th eplinq functionality and it will always be quicker? Or should I only use it when there is a lot of data to query or process?
You can't just assume that execution in parallel is always faster. It depends. In some situations you will gain a lot on multi-core processors by doing things in parallel. In other cases, you will just slow the things down, since parallel loops have a small overheat over simple loops.
For example, see my other answer which explains why embedded parallel loops can be a disaster.
Now, the best way to know if it is a good idea to use parallel loop in a precise context is to test both parallel and not parallel implementations and to measure the time they take.
To further add to the answer, it also depends on your data. Going a little 'old school' for a moment you could go down the road of loop unrolling, using for instead of foreach and so on and so forth.
However, you really need to ensure you aren't micro-optimising. Depending on your data fetches and the size of data (certainly with paged data) then you can probably get away with not using it.
That's not to say that making your linq mult-core aware isn't cool. But be aware of the setup costs of doing something like that and so be able to weigh up the benefits against the complexities of maintaining and debugging that code.
If your algorithm is already top notch then looking at the plinq extensions, a map reduce mechanism or similar may be the way to go. But first check your algorithm and your overall benefits. Operating on the right kind of collection (etc) in the right kind of way will always bring its own benefits (and problems!).
What are you trying to solve?

Proactively using 'lines of code' (LOC) metric in your software-development process? [closed]

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 6 years ago.
Improve this question
Codebase size has a lot to do with complexity of a software system (the higher the size the higher the costs for maintenance and extensions). A way to map codebase size is the simple 'lines of code (LOC)' metric (see also blog-entry 'implications of codebase-size').
I wondered how many of you out there are using this metric as a part for retrospective to create awareness (for removing unused functionality or dead code). I think creating awareness that more lines-of-code mean more complexity in maintenance and extension can be valuable.
I am not taking the LOC as fine grained metric (on method or function level), but on subcomponent or complete product level.
I find it a bit useless. Some kinds of functions - user input handling, for example , are going to be a bit long winded no matter what. I'd much rather use some form of complexity metric. Of course, you can combine the two, and/or any other metrics that take your fancy. All you need is a good tool - I use Source Monitor (with whom I have no relationship other than satisfied user) which is free and can do you both LOC and complexity metrics.
I use SM when writing code to make me notice methods that have got too complex. I then go back and take a look at them. About half the time I say, OK, that NEEDS to be that complicated. What I'd really like is (free) tool as good as SM but which also supports a tag list of some sort which says "ignore methods X,Y & Z - they need to be complicated". But I guess that could be dangerous, which is why I have so far not suggested the feature to SM's author.
I'm thinking it could be used to reward the team when the LOC decreases (assuming they are still producing valuable software and readable code...).
Not always true. While it is usually preferable to have a low LOC, it doesn't mean the code is any less complex. In fact, its usually more-so. Code thats been optimized to get the minimal number of cycles can be completely unreadable, even by the person who wrote it a week later.
As an example from a recent project, imagine setting individual color values (RGBa) from a PNG file. You can do this a bunch of ways, the most compact being just 1 line using bitshifts. This is a lot less readable and maintainable then another approach, such as using bitfields, which would take a structure definition and many more lines.
It also depends on the tool doing the LOC calculations. Does it consider lines with just a single symbol on them as code (Ex: { and } in C-style languages)? That definitely doesn't make it more complex, but does make it more readable.
Just my two cents.
LOCs are easy to obtain and deliver reasonable information whithin one not trivial project. My first step in a new project is always counting LOCs.

Do many old ColdFusion Performance admonitions still apply in CFMX 8?

I have an old standards document that has gone through several iterations and has its roots back in the ColdFusion 5 days. It contains a number of admonitions, primarily for performance, that I'm not so sure are still valid.
Do any of these still apply in ColdFusion MX 8? Do they really make that much difference in performance?
Use compare() or compareNoCase() instead of is not when comparing strings
Don't use evaluate() unless there is no other way to write your code
Don't use iif()
Always use struct.key or struct[key] instead of structFind(struct,key)
Don't use incrementValue()
I agree with Tomalak's thoughts on premature optimization. Compare is not as readable as "eq."
That being said there is a great article on the Adobe Developer Center about ColdFusion Performance: http://www.adobe.com/devnet/coldfusion/articles/coldfusion_performance.html
Compare()/CompareNoCase(): comparing case-insensitively is more expensive in Java, too. I'd say this still holds true.
Don't use evaluate(): Absolutely - unless there's no way around it. Most of the time, there is.
Don't use Iif(): I can't say much about this one. I don't use it anyway because the whole DE() stuff that comes with it sucks so much.
struct.key over StructFind(struct,key): I'd suspect that internally both use the same Java method to get a struct item. StructFind() is just one more function call on the stack. I've never used it, since I have no idea what benefit it would bring. I guess it's around for backwards compatibility only.
IncrementValue(): I've never used that one. I mean, it's 16 characters and does not even increment the variable in-place. Which would have been the only excuse for it's existence.
Some of the concerns fall in the "premature optimization" corner, IMHO. Personal preference or coding style apart, I would only start to care about some of the subtleties in a heavy inner loop that bogs down the app.
For instance, if you do not need a case-insensitive string compare, it makes no sense using CompareNoCase(). But I'd say 99.9% of the time the actual performance difference is negligible. Sure you can write a loop that times 100000 iterations of different operations and you'd find they perform differently. But in real-world situations these academic differences rarely make any measurable impact.
Coldfusion MX 8 is several times faster than MX 7 from all accounts. When it came out, I read many opinions that simply upgrading for the performance boost without changing a line of code was well worth it... It was worth it. With the gains in processing power, memory availability, generally, you can do a lot more with less optimized code.
Does this mean we should stop caring and write whatever? No. Chances are where we take the most shortcuts, we'll have to grow the system the most there.
Finding that find line between enough engineering and not over-engineering a solution is a fine balance. There's a quote there by Knuth I believe that says "Premature optimizations is the root of all evil"
For me, I try to base it on:
how much it will be used,
how expensive that will be across my expected user base,
how critical/central it is to everything,
how often I may be coming back to the code to extend it into other areas
The more that these types of ideas lie in the "probably or one way or another I will", I pay more attention to it. If it needs to be readable and a small performance hit results, it's the better way to go for sustainability of the code.
Otherwise, I let items fight for my attention while I solve and build things of real(er) value.
The single biggest favour we can do ourselves is use a framework with any project, no matter how small and do the small things right from the beginning.
That way there is no sense of dread in going back to work on a system that was originally meant to be a temporary hack but never got re-factored.

Performance optimization strategies of last resort [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 9 years ago.
Improve this question
There are plenty of performance questions on this site already, but it occurs to me that almost all are very problem-specific and fairly narrow. And almost all repeat the advice to avoid premature optimization.
Let's assume:
the code already is working correctly
the algorithms chosen are already optimal for the circumstances of the problem
the code has been measured, and the offending routines have been isolated
all attempts to optimize will also be measured to ensure they do not make matters worse
What I am looking for here is strategies and tricks to squeeze out up to the last few percent in a critical algorithm when there is nothing else left to do but whatever it takes.
Ideally, try to make answers language agnostic, and indicate any down-sides to the suggested strategies where applicable.
I'll add a reply with my own initial suggestions, and look forward to whatever else the Stack Overflow community can think of.
OK, you're defining the problem to where it would seem there is not much room for improvement. That is fairly rare, in my experience. I tried to explain this in a Dr. Dobbs article in November 1993, by starting from a conventionally well-designed non-trivial program with no obvious waste and taking it through a series of optimizations until its wall-clock time was reduced from 48 seconds to 1.1 seconds, and the source code size was reduced by a factor of 4. My diagnostic tool was this. The sequence of changes was this:
The first problem found was use of list clusters (now called "iterators" and "container classes") accounting for over half the time. Those were replaced with fairly simple code, bringing the time down to 20 seconds.
Now the largest time-taker is more list-building. As a percentage, it was not so big before, but now it is because the bigger problem was removed. I find a way to speed it up, and the time drops to 17 seconds.
Now it is harder to find obvious culprits, but there are a few smaller ones that I can do something about, and the time drops to 13 sec.
Now I seem to have hit a wall. The samples are telling me exactly what it is doing, but I can't seem to find anything that I can improve. Then I reflect on the basic design of the program, on its transaction-driven structure, and ask if all the list-searching that it is doing is actually mandated by the requirements of the problem.
Then I hit upon a re-design, where the program code is actually generated (via preprocessor macros) from a smaller set of source, and in which the program is not constantly figuring out things that the programmer knows are fairly predictable. In other words, don't "interpret" the sequence of things to do, "compile" it.
That redesign is done, shrinking the source code by a factor of 4, and the time is reduced to 10 seconds.
Now, because it's getting so quick, it's hard to sample, so I give it 10 times as much work to do, but the following times are based on the original workload.
More diagnosis reveals that it is spending time in queue-management. In-lining these reduces the time to 7 seconds.
Now a big time-taker is the diagnostic printing I had been doing. Flush that - 4 seconds.
Now the biggest time-takers are calls to malloc and free. Recycle objects - 2.6 seconds.
Continuing to sample, I still find operations that are not strictly necessary - 1.1 seconds.
Total speedup factor: 43.6
Now no two programs are alike, but in non-toy software I've always seen a progression like this. First you get the easy stuff, and then the more difficult, until you get to a point of diminishing returns. Then the insight you gain may well lead to a redesign, starting a new round of speedups, until you again hit diminishing returns. Now this is the point at which it might make sense to wonder whether ++i or i++ or for(;;) or while(1) are faster: the kinds of questions I see so often on Stack Overflow.
P.S. It may be wondered why I didn't use a profiler. The answer is that almost every one of these "problems" was a function call site, which stack samples pinpoint. Profilers, even today, are just barely coming around to the idea that statements and call instructions are more important to locate, and easier to fix, than whole functions.
I actually built a profiler to do this, but for a real down-and-dirty intimacy with what the code is doing, there's no substitute for getting your fingers right in it. It is not an issue that the number of samples is small, because none of the problems being found are so tiny that they are easily missed.
ADDED: jerryjvl requested some examples. Here is the first problem. It consists of a small number of separate lines of code, together taking over half the time:
/* IF ALL TASKS DONE, SEND ITC_ACKOP, AND DELETE OP */
if (ptop->current_task >= ILST_LENGTH(ptop->tasklist){
. . .
/* FOR EACH OPERATION REQUEST */
for ( ptop = ILST_FIRST(oplist); ptop != NULL; ptop = ILST_NEXT(oplist, ptop)){
. . .
/* GET CURRENT TASK */
ptask = ILST_NTH(ptop->tasklist, ptop->current_task)
These were using the list cluster ILST (similar to a list class). They are implemented in the usual way, with "information hiding" meaning that the users of the class were not supposed to have to care how they were implemented. When these lines were written (out of roughly 800 lines of code) thought was not given to the idea that these could be a "bottleneck" (I hate that word). They are simply the recommended way to do things. It is easy to say in hindsight that these should have been avoided, but in my experience all performance problems are like that. In general, it is good to try to avoid creating performance problems. It is even better to find and fix the ones that are created, even though they "should have been avoided" (in hindsight). I hope that gives a bit of the flavor.
Here is the second problem, in two separate lines:
/* ADD TASK TO TASK LIST */
ILST_APPEND(ptop->tasklist, ptask)
. . .
/* ADD TRANSACTION TO TRANSACTION QUEUE */
ILST_APPEND(trnque, ptrn)
These are building lists by appending items to their ends. (The fix was to collect the items in arrays, and build the lists all at once.) The interesting thing is that these statements only cost (i.e. were on the call stack) 3/48 of the original time, so they were not in fact a big problem at the beginning. However, after removing the first problem, they cost 3/20 of the time and so were now a "bigger fish". In general, that's how it goes.
I might add that this project was distilled from a real project I helped on. In that project, the performance problems were far more dramatic (as were the speedups), such as calling a database-access routine within an inner loop to see if a task was finished.
REFERENCE ADDED:
The source code, both original and redesigned, can be found in www.ddj.com, for 1993, in file 9311.zip, files slug.asc and slug.zip.
EDIT 2011/11/26:
There is now a SourceForge project containing source code in Visual C++ and a blow-by-blow description of how it was tuned. It only goes through the first half of the scenario described above, and it doesn't follow exactly the same sequence, but still gets a 2-3 order of magnitude speedup.
Suggestions:
Pre-compute rather than re-calculate: any loops or repeated calls that contain calculations that have a relatively limited range of inputs, consider making a lookup (array or dictionary) that contains the result of that calculation for all values in the valid range of inputs. Then use a simple lookup inside the algorithm instead.
Down-sides: if few of the pre-computed values are actually used this may make matters worse, also the lookup may take significant memory.
Don't use library methods: most libraries need to be written to operate correctly under a broad range of scenarios, and perform null checks on parameters, etc. By re-implementing a method you may be able to strip out a lot of logic that does not apply in the exact circumstance you are using it.
Down-sides: writing additional code means more surface area for bugs.
Do use library methods: to contradict myself, language libraries get written by people that are a lot smarter than you or me; odds are they did it better and faster. Do not implement it yourself unless you can actually make it faster (i.e.: always measure!)
Cheat: in some cases although an exact calculation may exist for your problem, you may not need 'exact', sometimes an approximation may be 'good enough' and a lot faster in the deal. Ask yourself, does it really matter if the answer is out by 1%? 5%? even 10%?
Down-sides: Well... the answer won't be exact.
When you can't improve the performance any more - see if you can improve the perceived performance instead.
You may not be able to make your fooCalc algorithm faster, but often there are ways to make your application seem more responsive to the user.
A few examples:
anticipating what the user is going
to request and start working on that
before then
displaying results as
they come in, instead of all at once
at the end
Accurate progress meter
These won't make your program faster, but it might make your users happier with the speed you have.
I spend most of my life in just this place. The broad strokes are to run your profiler and get it to record:
Cache misses. Data cache is the #1 source of stalls in most programs. Improve cache hit rate by reorganizing offending data structures to have better locality; pack structures and numerical types down to eliminate wasted bytes (and therefore wasted cache fetches); prefetch data wherever possible to reduce stalls.
Load-hit-stores. Compiler assumptions about pointer aliasing, and cases where data is moved between disconnected register sets via memory, can cause a certain pathological behavior that causes the entire CPU pipeline to clear on a load op. Find places where floats, vectors, and ints are being cast to one another and eliminate them. Use __restrict liberally to promise the compiler about aliasing.
Microcoded operations. Most processors have some operations that cannot be pipelined, but instead run a tiny subroutine stored in ROM. Examples on the PowerPC are integer multiply, divide, and shift-by-variable-amount. The problem is that the entire pipeline stops dead while this operation is executing. Try to eliminate use of these operations or at least break them down into their constituent pipelined ops so you can get the benefit of superscalar dispatch on whatever the rest of your program is doing.
Branch mispredicts. These too empty the pipeline. Find cases where the CPU is spending a lot of time refilling the pipe after a branch, and use branch hinting if available to get it to predict correctly more often. Or better yet, replace branches with conditional-moves wherever possible, especially after floating point operations because their pipe is usually deeper and reading the condition flags after fcmp can cause a stall.
Sequential floating-point ops. Make these SIMD.
And one more thing I like to do:
Set your compiler to output assembly listings and look at what it emits for the hotspot functions in your code. All those clever optimizations that "a good compiler should be able to do for you automatically"? Chances are your actual compiler doesn't do them. I've seen GCC emit truly WTF code.
Throw more hardware at it!
More suggestions:
Avoid I/O: Any I/O (disk, network, ports, etc.) is
always going to be far slower than any code that is
performing calculations, so get rid of any I/O that you do
not strictly need.
Move I/O up-front: Load up all the data you are going
to need for a calculation up-front, so that you do not
have repeated I/O waits within the core of a critical
algorithm (and maybe as a result repeated disk seeks, when
loading all the data in one hit may avoid seeking).
Delay I/O: Do not write out your results until the
calculation is over, store them in a data structure and
then dump that out in one go at the end when the hard work
is done.
Threaded I/O: For those daring enough, combine 'I/O
up-front' or 'Delay I/O' with the actual calculation by
moving the loading into a parallel thread, so that while
you are loading more data you can work on a calculation on
the data you already have, or while you calculate the next
batch of data you can simultaneously write out the results
from the last batch.
Since many of the performance problems involve database issues, I'll give you some specific things to look at when tuning queries and stored procedures.
Avoid cursors in most databases. Avoid looping as well. Most of the time, data access should be set-based, not record by record processing. This includes not reusing a single record stored procedure when you want to insert 1,000,000 records at once.
Never use select *, only return the fields you actually need. This is especially true if there are any joins as the join fields will be repeated and thus cause unnecesary load on both the server and the network.
Avoid the use of correlated subqueries. Use joins (including joins to derived tables where possible) (I know this is true for Microsoft SQL Server, but test the advice when using a differnt backend).
Index, index, index. And get those stats updated if applicable to your database.
Make the query sargable. Meaning avoid things which make it impossible to use the indexes such as using a wildcard in the first character of a like clause or a function in the join or as the left part of a where statement.
Use correct data types. It is faster to do date math on a date field than to have to try to convert a string datatype to a date datatype, then do the calculation.
Never put a loop of any kind into a trigger!
Most databases have a way to check how the query execution will be done. In Microsoft SQL Server this is called an execution plan. Check those first to see where problem areas lie.
Consider how often the query runs as well as how long it takes to run when determining what needs to be optimized. Sometimes you can gain more perfomance from a slight tweak to a query that runs millions of times a day than you can from wiping time off a long_running query that only runs once a month.
Use some sort of profiler tool to find out what is really being sent to and from the database. I can remember one time in the past where we couldn't figure out why the page was so slow to load when the stored procedure was fast and found out through profiling that the webpage was asking for the query many many times instead of once.
The profiler will also help you to find who are blocking who. Some queries that execute quickly while running alone may become really slow due to locks from other queries.
The single most important limiting factor today is the limited memory bandwitdh. Multicores are just making this worse, as the bandwidth is shared betwen cores. Also, the limited chip area devoted to implementing caches is also divided among the cores and threads, worsening this problem even more. Finally, the inter-chip signalling needed to keep the different caches coherent also increase with an increased number of cores. This also adds a penalty.
These are the effects that you need to manage. Sometimes through micro managing your code, but sometimes through careful consideration and refactoring.
A lot of comments already mention cache friendly code. There are at least two distinct flavors of this:
Avoid memory fetch latencies.
Lower memory bus pressure (bandwidth).
The first problem specifically has to do with making your data access patterns more regular, allowing the hardware prefetcher to work efficiently. Avoid dynamic memory allocation which spreads your data objects around in memory. Use linear containers instead of linked lists, hashes and trees.
The second problem has to do with improving data reuse. Alter your algorithms to work on subsets of your data that do fit in available cache, and reuse that data as much as possible while it is still in the cache.
Packing data tighter and making sure you use all data in cache lines in the hot loops, will help avoid these other effects, and allow fitting more useful data in the cache.
What hardware are you running on? Can you use platform-specific optimizations (like vectorization)?
Can you get a better compiler? E.g. switch from GCC to Intel?
Can you make your algorithm run in parallel?
Can you reduce cache misses by reorganizing data?
Can you disable asserts?
Micro-optimize for your compiler and platform. In the style of, "at an if/else, put the most common statement first"
Although I like Mike Dunlavey's answer, in fact it is a great answer indeed with supporting example, I think it could be expressed very simply thus:
Find out what takes the largest amounts of time first, and understand why.
It is the identification process of the time hogs that helps you understand where you must refine your algorithm. This is the only all-encompassing language agnostic answer I can find to a problem that's already supposed to be fully optimised. Also presuming you want to be architecture independent in your quest for speed.
So while the algorithm may be optimised, the implementation of it may not be. The identification allows you to know which part is which: algorithm or implementation. So whichever hogs the time the most is your prime candidate for review. But since you say you want to squeeze the last few % out, you might want to also examine the lesser parts, the parts that you have not examined that closely at first.
Lastly a bit of trial and error with performance figures on different ways to implement the same solution, or potentially different algorithms, can bring insights that help identify time wasters and time savers.
HPH,
asoudmove.
You should probably consider the "Google perspective", i.e. determine how your application can become largely parallelized and concurrent, which will inevitably also mean at some point to look into distributing your application across different machines and networks, so that it can ideally scale almost linearly with the hardware that you throw at it.
On the other hand, the Google folks are also known for throwing lots of manpower and resources at solving some of the issues in projects, tools and infrastructure they are using, such as for example whole program optimization for gcc by having a dedicated team of engineers hacking gcc internals in order to prepare it for Google-typical use case scenarios.
Similarly, profiling an application no longer means to simply profile the program code, but also all its surrounding systems and infrastructure (think networks, switches, server, RAID arrays) in order to identify redundancies and optimization potential from a system's point of view.
Inline routines (eliminate call/return and parameter pushing)
Try eliminating tests/switches with table look ups (if they're faster)
Unroll loops (Duff's device) to the point where they just fit in the CPU cache
Localize memory access so as not to blow your cache
Localize related calculations if the optimizer isn't already doing that
Eliminate loop invariants if the optimizer isn't already doing that
When you get to the point that you're using efficient algorithms its a question of what you need more speed or memory. Use caching to "pay" in memory for more speed or use calculations to reduce the memory footprint.
If possible (and more cost effective) throw hardware at the problem - faster CPU, more memory or HD could solve the problem faster then trying to code it.
Use parallelization if possible - run part of the code on multiple threads.
Use the right tool for the job. some programing languages create more efficient code, using managed code (i.e. Java/.NET) speed up development but native programing languages creates faster running code.
Micro optimize. Only were applicable you can use optimized assembly to speed small pieces of code, using SSE/vector optimizations in the right places can greatly increase performance.
Divide and conquer
If the dataset being processed is too large, loop over chunks of it. If you've done your code right, implementation should be easy. If you have a monolithic program, now you know better.
First of all, as mentioned in several prior answers, learn what bites your performance - is it memory or processor or network or database or something else. Depending on that...
...if it's memory - find one of the books written long time ago by Knuth, one of "The Art of Computer Programming" series. Most likely it's one about sorting and search - if my memory is wrong then you'll have to find out in which he talks about how to deal with slow tape data storage. Mentally transform his memory/tape pair into your pair of cache/main memory (or in pair of L1/L2 cache) respectively. Study all the tricks he describes - if you don's find something that solves your problem, then hire professional computer scientist to conduct a professional research. If your memory issue is by chance with FFT (cache misses at bit-reversed indexes when doing radix-2 butterflies) then don't hire a scientist - instead, manually optimize passes one-by-one until you're either win or get to dead end. You mentioned squeeze out up to the last few percent right? If it's few indeed you'll most likely win.
...if it's processor - switch to assembly language. Study processor specification - what takes ticks, VLIW, SIMD. Function calls are most likely replaceable tick-eaters. Learn loop transformations - pipeline, unroll. Multiplies and divisions might be replaceable / interpolated with bit shifts (multiplies by small integers might be replaceable with additions). Try tricks with shorter data - if you're lucky one instruction with 64 bits might turn out replaceable with two on 32 or even 4 on 16 or 8 on 8 bits go figure. Try also longer data - eg your float calculations might turn out slower than double ones at particular processor. If you have trigonometric stuff, fight it with pre-calculated tables; also keep in mind that sine of small value might be replaced with that value if loss of precision is within allowed limits.
...if it's network - think of compressing data you pass over it. Replace XML transfer with binary. Study protocols. Try UDP instead of TCP if you can somehow handle data loss.
...if it's database, well, go to any database forum and ask for advice. In-memory data-grid, optimizing query plan etc etc etc.
HTH :)
Caching! A cheap way (in programmer effort) to make almost anything faster is to add a caching abstraction layer to any data movement area of your program. Be it I/O or just passing/creation of objects or structures. Often it's easy to add caches to factory classes and reader/writers.
Sometimes the cache will not gain you much, but it's an easy method to just add caching all over and then disable it where it doesn't help. I've often found this to gain huge performance without having to micro-analyse the code.
I think this has already been said in a different way. But when you're dealing with a processor intensive algorithm, you should simplify everything inside the most inner loop at the expense of everything else.
That may seem obvious to some, but it's something I try to focus on regardless of the language I'm working with. If you're dealing with nested loops, for example, and you find an opportunity to take some code down a level, you can in some cases drastically speed up your code. As another example, there are the little things to think about like working with integers instead of floating point variables whenever you can, and using multiplication instead of division whenever you can. Again, these are things that should be considered for your most inner loop.
Sometimes you may find benefit of performing your math operations on an integer inside the inner loop, and then scaling it down to a floating point variable you can work with afterwards. That's an example of sacrificing speed in one section to improve the speed in another, but in some cases the pay off can be well worth it.
I've spent some time working on optimising client/server business systems operating over low-bandwidth and long-latency networks (e.g. satellite, remote, offshore), and been able to achieve some dramatic performance improvements with a fairly repeatable process.
Measure: Start by understanding the network's underlying capacity and topology. Talking to the relevant networking people in the business, and make use of basic tools such as ping and traceroute to establish (at a minimum) the network latency from each client location, during typical operational periods. Next, take accurate time measurements of specific end user functions that display the problematic symptoms. Record all of these measurements, along with their locations, dates and times. Consider building end-user "network performance testing" functionality into your client application, allowing your power users to participate in the process of improvement; empowering them like this can have a huge psychological impact when you're dealing with users frustrated by a poorly performing system.
Analyze: Using any and all logging methods available to establish exactly what data is being transmitted and received during the execution of the affected operations. Ideally, your application can capture data transmitted and received by both the client and the server. If these include timestamps as well, even better. If sufficient logging isn't available (e.g. closed system, or inability to deploy modifications into a production environment), use a network sniffer and make sure you really understand what's going on at the network level.
Cache: Look for cases where static or infrequently changed data is being transmitted repetitively and consider an appropriate caching strategy. Typical examples include "pick list" values or other "reference entities", which can be surprisingly large in some business applications. In many cases, users can accept that they must restart or refresh the application to update infrequently updated data, especially if it can shave significant time from the display of commonly used user interface elements. Make sure you understand the real behaviour of the caching elements already deployed - many common caching methods (e.g. HTTP ETag) still require a network round-trip to ensure consistency, and where network latency is expensive, you may be able to avoid it altogether with a different caching approach.
Parallelise: Look for sequential transactions that don't logically need to be issued strictly sequentially, and rework the system to issue them in parallel. I dealt with one case where an end-to-end request had an inherent network delay of ~2s, which was not a problem for a single transaction, but when 6 sequential 2s round trips were required before the user regained control of the client application, it became a huge source of frustration. Discovering that these transactions were in fact independent allowed them to be executed in parallel, reducing the end-user delay to very close to the cost of a single round trip.
Combine: Where sequential requests must be executed sequentially, look for opportunities to combine them into a single more comprehensive request. Typical examples include creation of new entities, followed by requests to relate those entities to other existing entities.
Compress: Look for opportunities to leverage compression of the payload, either by replacing a textual form with a binary one, or using actual compression technology. Many modern (i.e. within a decade) technology stacks support this almost transparently, so make sure it's configured. I have often been surprised by the significant impact of compression where it seemed clear that the problem was fundamentally latency rather than bandwidth, discovering after the fact that it allowed the transaction to fit within a single packet or otherwise avoid packet loss and therefore have an outsize impact on performance.
Repeat: Go back to the beginning and re-measure your operations (at the same locations and times) with the improvements in place, record and report your results. As with all optimisation, some problems may have been solved exposing others that now dominate.
In the steps above, I focus on the application related optimisation process, but of course you must ensure the underlying network itself is configured in the most efficient manner to support your application too. Engage the networking specialists in the business and determine if they're able to apply capacity improvements, QoS, network compression, or other techniques to address the problem. Usually, they will not understand your application's needs, so it's important that you're equipped (after the Analyse step) to discuss it with them, and also to make the business case for any costs you're going to be asking them to incur. I've encountered cases where erroneous network configuration caused the applications data to be transmitted over a slow satellite link rather than an overland link, simply because it was using a TCP port that was not "well known" by the networking specialists; obviously rectifying a problem like this can have a dramatic impact on performance, with no software code or configuration changes necessary at all.
Very difficult to give a generic answer to this question. It really depends on your problem domain and technical implementation. A general technique that is fairly language neutral: Identify code hotspots that cannot be eliminated, and hand-optimize assembler code.
Last few % is a very CPU and application dependent thing....
cache architectures differ, some chips have on-chip RAM
you can map directly, ARM's (sometimes) have a vector
unit, SH4's a useful matrix opcode. Is there a GPU -
maybe a shader is the way to go. TMS320's are very
sensitive to branches within loops (so separate loops and
move conditions outside if possible).
The list goes on.... But these sorts of things really are
the last resort...
Build for x86, and run Valgrind/Cachegrind against the code
for proper performance profiling. Or Texas Instruments'
CCStudio has a sweet profiler. Then you'll really know where
to focus...
Not nearly as in depth or complex as previous answers, but here goes:
(these are more beginner/intermediate level)
obvious: dry
run loops backwards so you're always comparing to 0 rather than a variable
use bitwise operators whenever you can
break repetitive code into modules/functions
cache objects
local variables have slight performance advantage
limit string manipulation as much as possible
Did you know that a CAT6 cable is capable of 10x better shielding off external inteferences than a default Cat5e UTP cable?
For any non-offline projects, while having best software and best hardware, if your throughoutput is weak, then that thin line is going to squeeze data and give you delays, albeit in milliseconds...
Also the maximum throughput is higher on CAT6 cables because there is a higher chance that you will actually receive a cable whose strands exist of cupper cores, instead of CCA, Cupper Cladded Aluminium, which is often fount in all your standard CAT5e cables.
I if you are facing lost packets, packet drops, then an increase in throughput reliability for 24/7 operation can make the difference that you may be looking for.
For those who seek the ultimate in home/office connection reliability, (and are willing to say NO to this years fastfood restaurants, at the end of the year you can there you can) gift yourself the pinnacle of LAN connectivity in the form of CAT7 cable from a reputable brand.
Impossible to say. It depends on what the code looks like. If we can assume that the code already exists, then we can simply look at it and figure out from that, how to optimize it.
Better cache locality, loop unrolling, Try to eliminate long dependency chains, to get better instruction-level parallelism. Prefer conditional moves over branches when possible. Exploit SIMD instructions when possible.
Understand what your code is doing, and understand the hardware it's running on. Then it becomes fairly simple to determine what you need to do to improve performance of your code. That's really the only truly general piece of advice I can think of.
Well, that, and "Show the code on SO and ask for optimization advice for that specific piece of code".
If better hardware is an option then definitely go for that. Otherwise
Check you are using the best compiler and linker options.
If hotspot routine in different library to frequent caller, consider moving or cloning it to the callers module. Eliminates some of the call overhead and may improve cache hits (cf how AIX links strcpy() statically into separately linked shared objects). This could of course decrease cache hits also, which is why one measure.
See if there is any possibility of using a specialized version of the hotspot routine. Downside is more than one version to maintain.
Look at the assembler. If you think it could be better, consider why the compiler did not figure this out, and how you could help the compiler.
Consider: are you really using the best algorithm? Is it the best algorithm for your input size?
The google way is one option "Cache it.. Whenever possible don't touch the disk"
Here are some quick and dirty optimization techniques I use. I consider this to be a 'first pass' optimization.
Learn where the time is spent Find out exactly what is taking the time. Is it file IO? Is it CPU time? Is it the network? Is it the Database? It's useless to optimize for IO if that's not the bottleneck.
Know Your Environment Knowing where to optimize typically depends on the development environment. In VB6, for example, passing by reference is slower than passing by value, but in C and C++, by reference is vastly faster. In C, it is reasonable to try something and do something different if a return code indicates a failure, while in Dot Net, catching exceptions are much slower than checking for a valid condition before attempting.
Indexes Build indexes on frequently queried database fields. You can almost always trade space for speed.
Avoid lookups Inside of the loop to be optimized, I avoid having to do any lookups. Find the offset and/or index outside of the loop and reuse the data inside.
Minimize IO try to design in a manner that reduces the number of times you have to read or write especially over a networked connection
Reduce Abstractions The more layers of abstraction the code has to work through, the slower it is. Inside the critical loop, reduce abstractions (e.g. reveal lower-level methods that avoid extra code)
Spawn Threads for projects with a user interface, spawning a new thread to preform slower tasks makes the application feel more responsive, although isn't.
Pre-process You can generally trade space for speed. If there are calculations or other intense operations, see if you can precompute some of the information before you're in the critical loop.
If you have a lot of highly parallel floating point math-especially single-precision-try offloading it to a graphics processor (if one is present) using OpenCL or (for NVidia chips) CUDA. GPUs have immense floating point computing power in their shaders, which is much greater than that of a CPU.
Adding this answer since I didnt see it included in all the others.
Minimize implicit conversion between types and sign:
This applies to C/C++ at least, Even if you already think you're free of conversions - sometimes its good to test adding compiler warnings around functions that require performance, especially watch-out for conversions within loops.
GCC spesific: You can test this by adding some verbose pragmas around your code,
#ifdef __GNUC__
# pragma GCC diagnostic push
# pragma GCC diagnostic error "-Wsign-conversion"
# pragma GCC diagnostic error "-Wdouble-promotion"
# pragma GCC diagnostic error "-Wsign-compare"
# pragma GCC diagnostic error "-Wconversion"
#endif
/* your code */
#ifdef __GNUC__
# pragma GCC diagnostic pop
#endif
I've seen cases where you can get a few percent speedup by reducing conversions raised by warnings like this.
In some cases I have a header with strict warnings that I keep included to prevent accidental conversions, however this is a trade-off since you may end up adding a lot of casts to quiet intentional conversions which may just make the code more cluttered for minimal gains.
Sometimes changing the layout of your data can help. In C, you might switch from an array or structures to a structure of arrays, or vice versa.
Tweak the OS and framework.
It may sound an overkill but think about it like this: Operating Systems and Frameworks are designed to do many things. Your application only does very specific things. If you could get the OS do to exactly what your application needs and have your application understand how the the framework (php,.net,java) works, you could get much better out of your hardware.
Facebook, for example, changed some kernel level thingys in Linux, changed how memcached works (for example they wrote a memcached proxy, and used udp instead of tcp).
Another example for this is Window2008. Win2K8 has a version were you can install just the basic OS needed to run X applicaions (e.g. Web-Apps, Server Apps). This reduces much of the overhead that the OS have on running processes and gives you better performance.
Of course, you should always throw in more hardware as the first step...

Performance anti patterns

I am currently working for a client who are petrified of changing lousy un-testable and un-maintainable code because of "performance reasons". It is clear that there are many misconceptions running rife and reasons are not understood, but merely followed with blind faith.
One such anti-pattern I have come across is the need to mark as many classes as possible as sealed internal...
*RE-Edit: I see marking everything as sealed internal (in C#) as a premature optimisation.*
I am wondering what are some of the other performance anti-patterns people may be aware of or come across?
The biggest performance anti-pattern I have come across is:
Not measuring performance before and
after the changes.
Collecting performance data will show if a certain technique was successful or not. Not doing so will result in pretty useless activities, because someone has the "feeling" of increased performance when nothing at all has changed.
The elephant in the room: Focusing on implementation-level micro-optimization instead of on better algorithms.
Variable re-use.
I used to do this all the time figuring I was saving a few cycles on the declaration and lowering memory footprint. These savings were of minuscule value compared with how unruly it made the code to debug, especially if I ended up moving a code block around and the assumptions about starting values changed.
Premature performance optimizations comes to mind. I tend to avoid performance optimizations at all costs and when I decide I do need them I pass the issue around to my collegues several rounds trying to make sure we put the obfu... eh optimization in the right place.
One that I've run into was throwing hardware at seriously broken code, in an attempt to make it fast enough, sort of the converse of Jeff Atwood's article mentioned in Rulas' comment. I'm not talking about the difference between speeding up a sort that uses a basic, correct algorithm by running it on faster hardware vs. using an optimized algorithm. I'm talking about using a not obviously correct home brewed O(n^3) algorithm when a O(n log n) algorithm is in the standard library. There's also things like hand coding routines because the programmer doesn't know what's in the standard library. That one's very frustrating.
Using design patterns just to have them used.
Using #defines instead of functions to avoid the penalty of a function call.
I've seen code where expansions of defines turned out to generate huge and really slow code. Of course it was impossible to debug as well. Inline functions is the way to do this, but they should be used with care as well.
I've seen code where independent tests has been converted into bits in a word that can be used in a switch statement. Switch can be really fast, but when people turn a series of independent tests into a bitmask and starts writing some 256 optimized special cases they'd better have a very good benchmark proving that this gives a performance gain. It's really a pain from maintenance point of view and treating the different tests independently makes the code much smaller which is also important for performance.
Lack of clear program structure is the biggest code-sin of them all. Convoluted logic that is believed to be fast almost never is.
Do not refactor or optimize while writing your code. It is extremely important not to try to optimize your code before you finish it.
Julian Birch once told me:
"Yes but how many years of running the application does it actually take to make up for the time spent by developers doing it?"
He was referring to the cumulative amount of time saved during each transaction by an optimisation that would take a given amount of time to implement.
Wise words from the old sage... I often think of this advice when considering doing a funky optimisation. You can extend the same notion a little further by considering how much developer time is being spent dealing with the code in its present state versus how much time is saved by the users. You could even weight the time by hourly rate of the developer versus the user if you wanted.
Of course, sometimes its impossible to measure, for example, if an e-commerce application takes 1 second longer to respond you will loose some small % money from users getting bored during that 1 second. To make up that one second you need to implement and maintain optimised code. The optimisation impacts gross profit positively, and net profit negatively, so its much harder to balance. You could try - with good stats.
Exploiting your programming language. Things like using exception handling instead of if/else just because in PLSnakish 1.4 it's faster. Guess what? Chances are it's not faster at all and that two years from now someone maintaining your code will get really angry with you because you obfuscated the code and made it run much slower, because in PLSnakish 1.8 the language maintainers fixed the problem and now if/else is 10 times faster than using exception handling tricks. Work with your programming language and framework!
Changing more than one variable at a time. This drives me absolutely bonkers! How can you determine the impact of a change on a system when more than one thing's been changed?
Related to this, making changes that are not warranted by observations. Why add faster/more CPUs if the process isn't CPU bound?
General solutions.
Just because a given pattern/technology performs better in one circumstance does not mean it does in another.
StringBuilder overuse in .Net is a frequent example of this one.
Once I had a former client call me asking for any advice I had on speeding up their apps.
He seemed to expect me to say things like "check X, then check Y, then check Z", in other words, to provide expert guesses.
I replied that you have to diagnose the problem. My guesses might be wrong less often than someone else's, but they would still be wrong, and therefore disappointing.
I don't think he understood.
Some developers believe a fast-but-incorrect solution is sometimes preferable to a slow-but-correct one. So they will ignore various boundary conditions or situations that "will never happen" or "won't matter" in production.
This is never a good idea. Solutions always need to be "correct".
You may need to adjust your definition of "correct" depending upon the situation. What is important is that you know/define exactly what you want the result to be for any condition, and that the code gives those results.
Michael A Jackson gives two rules for optimizing performance:
Don't do it.
(experts only) Don't do it yet.
If people are worried about performance, tell 'em to make it real - what is good performance and how do you test for it? Then if your code doesn't perform up to their standards, at least it's something the code writer and the application user agree on.
If people are worried about non-performance costs of rewriting ossified code (for example, the time sink) then present your estimates and demonstrate that it can be done in the schedule. Assuming it can.
I believe it is a common myth that super lean code "close to the metal" is more performant than an elegant domain model.
This was apparently de-bunked by the creator/lead developer of DirectX, who re-wrote the c++ version in C# with massive improvements. [source required]
Appending to an array using (for example) push_back() in C++ STL, ~= in D, etc. when you know how big the array is supposed to be ahead of time and can pre-allocate it.

Resources