What's the most insidious way to pose this problem? - algorithm

My best shot so far:
A delivery vehicle needs to make a series of deliveries (d1,d2,...dn), and can do so in any order--in other words, all the possible permutations of the set D = {d1,d2,...dn} are valid solutions--but the particular solution needs to be determined before it leaves the base station at one end of the route (imagine that the packages need to be loaded in the vehicle LIFO, for example).
Further, the cost of the various permutations is not the same. It can be computed as the sum of the squares of distance traveled between di -1 and di, where d0 is taken to be the base station, with the caveat that any segment that involves a change of direction costs 3 times as much (imagine this is going on on a railroad or a pneumatic tube, and backing up disrupts other traffic).
Given the set of deliveries D represented as their distance from the base station (so abs(di-dj) is the distance between two deliveries) and an iterator permutations(D) which will produce each permutation in succession, find a permutation which has a cost less than or equal to that of any other permutation.
Now, a direct implementation from this description might lead to code like this:
function Cost(D) ...
function Best_order(D)
for D1 in permutations(D)
Found = true
for D2 in permutations(D)
Found = false if cost(D2) > cost(D1)
return D1 if Found
Which is O(n*n!^2), e.g. pretty awful--especially compared to the O(n log(n)) someone with insight would find, by simply sorting D.
My question: can you come up with a plausible problem description which would naturally lead the unwary into a worse (or differently awful) implementation of a sorting algorithm?

I assume you're using this question for an interview to see if the applicant can notice a simple solution in a seemingly complex question.
[This assumption is incorrect -- MarkusQ]
You give too much information.
The key to solving this is realizing that the points are in one dimension and that a sort is all that is required. To make this question more difficult hide this fact as much as possible.
The biggest clue is the distance formula. It introduces a penalty for changing directions. The first thing an that comes to my mind is minimizing this penalty. To remove the penalty I have to order them in a certain direction, this ordering is the natural sort order.
I would remove the penalty for changing directions, it's too much of a give away.
Another major clue is the input values to the algorithm: a list of integers. Give them a list of permutations, or even all permutations. That sets them up to thinking that a O(n!) algorithm might actually be expected.
I would phrase it as:
Given a list of all possible
permutations of n delivery locations,
where each permutation of deliveries
(d1, d2, ...,
dn) has a cost defined by:
Return permutation P such that the
cost of P is less than or equal to any
other permutation.
All that really needs to be done is read in the first permutation and sort it.
If they construct a single loop to compare the costs ask them what the big-o runtime of their algorithm is where n is the number of delivery locations (Another trap).

This isn't a direct answer, but I think more clarification is needed.
Is di allowed to be negative? If so, sorting alone is not enough, as far as I can see.
For example:
d0 = 0
deliveries = (-1,1,1,2)
It seems the optimal path in this case would be 1 > 2 > 1 > -1.
Edit: This might not actually be the optimal path, but it illustrates the point.

YOu could rephrase it, having first found the optimal solution, as
"Give me a proof that the following convination is the most optimal for the following set of rules, where optimal means the smallest number results from the sum of all stage costs, taking into account that all stages (A..Z) need to be present once and once only.
Convination:
A->C->D->Y->P->...->N
Stage costs:
A->B = 5,
B->A = 3,
A->C = 2,
C->A = 4,
...
...
...
Y->Z = 7,
Z->Y = 24."
That ought to keep someone busy for a while.

This reminds me of the Knapsack problem, more than the Traveling Salesman. But the Knapsack is also an NP-Hard problem, so you might be able to fool people to think up an over complex solution using dynamic programming if they correlate your problem with the Knapsack. Where the basic problem is:
can a value of at least V be achieved
without exceeding the weight W?
Now the problem is a fairly good solution can be found when V is unique, your distances, as such:
The knapsack problem with each type of
item j having a distinct value per
unit of weight (vj = pj/wj) is
considered one of the easiest
NP-complete problems. Indeed empirical
complexity is of the order of O((log
n)2) and very large problems can be
solved very quickly, e.g. in 2003 the
average time required to solve
instances with n = 10,000 was below 14
milliseconds using commodity personal
computers1.
So you might want to state that several stops/packages might share the same vj, inviting people to think about the really hard solution to:
However in the
degenerate case of multiple items
sharing the same value vj it becomes
much more difficult with the extreme
case where vj = constant being the
subset sum problem with a complexity
of O(2N/2N).
So if you replace the weight per value to distance per value, and state that several distances might actually share the same values, degenerate, some folk might fall in this trap.

Isn't this just the (NP-Hard) Travelling Salesman Problem? It doesn't seem likely that you're going to make it much harder.
Maybe phrasing the problem so that the actual algorithm is unclear - e.g. by describing the paths as single-rail railway lines so the person would have to infer from domain knowledge that backtracking is more costly.
What about describing the question in such a way that someone is tempted to do recursive comparisions - e.g. "can you speed up the algorithm by using the optimum max subset of your best (so far) results"?
BTW, what's the purpose of this - it sounds like the intent is to torture interviewees.

You need to be clearer on whether the delivery truck has to return to base (making it a round trip), or not. If the truck does return, then a simple sort does not produce the shortest route, because the square of the return from the furthest point to base costs so much. Missing some hops on the way 'out' and using them on the way back turns out to be cheaper.
If you trick someone into a bad answer (for example, by not giving them all the information) then is it their foolishness or your deception that has caused it?
How great is the wisdom of the wise, if they heed not their ego's lies?

Related

Mutually Overlapping Subset of Activites

I am prepping for a final and this was a practice problem. It is not a homework problem.
How do I go about attacking this? Also, more generally, how do I know when to use Greedy vs. Dynamic programming? Intuitively, I think this is a good place to use greedy. I'm also thinking that if I could somehow create an orthogonal line and "sweep" it, checking the #of intersections at each point and updating a global max, then I could just return the max at the end of the sweep. I'm not sure how to plane sweep algorithmically though.
a. We are given a set of activities I1 ... In: each activity Ii is represented by its left-point Li and its right-point Ri. Design a very efficient algorithm that finds the maximum number of mutually overlapping subset of activities (write your solution in English, bullet by bullet).
b. Analyze the time complexity of your algorithm.
Proposed solution:
Ex set: {(0,2) (3,7) (4,6) (7,8) (1,5)}
Max is 3 from interval 4-5
1) Split start and end points into two separate arrays and sort them in non-decreasing order
Start points: [0,1,3,4,7] (SP)
End points: [2,5,6,7,8] (EP)
I know that I can use two pointers to sort of simulate the plane sweep, but I'm not exactly sure how. I'm stuck here.
I'd say your idea of a sweep is good.
You don't need to worry about planar sweeping, just use the start/end points. Put the elements in a queue. In every step take the smaller element from the queue front. If it's a start point, increment current tasks count, otherwise decrement it.
Since you don't need to point which tasks are overlapping - just the count of them - you don't need to worry about specific tasks duration.
Regarding your greedy vs DP question, in my non-professional opinion greedy may not always provide valid answer, whereas DP only works for problem that can be divided into smaller subproblems well. In this case, I wouldn't call your sweep-solution either.

Suggestions for fragment proposal algorithm

I'm currently trying to solve the following problem, but am unsure which algorithm I should be using. Its in the area of mass identification.
I have a series of "weights", *w_i*, which can sum up to a total weight. The as-measured total weight has an error associated with it, so is thus inexact.
I need to find, given the total weight T, the closest k possible combinations of weights that can sum up to the total, where k is an input from the user. Each weight can be used multiple times.
Now, this sounds suspiciously like the bounded-integer multiple knapsack problem, however
it is possible to go over the weight, and
I also want all of the ranked solutions in terms of error
I can probably solve it using multiple sweeps of the knapsack problem, from weight-error->weight+error, by stepping in small enough increments, however it is possible if the increment is too large to miss certain weight combinations that could be used.
The number of weights is usually small (4 ->10 weights) and the ratio of the total weight to the mean weight is usually around 2 or 3
Does anyone know the names of an algorithm that might be suitable here?
Your problem effectively resembles the knapsack problem which is a NP-complete problem.
For really limited number of weights, you could run over every combinations with repetition followed by a sorting which gives you a quite high number of manipulations; at best: (n + k - 1)! / ((n - 1)! · k!) for the combination and n·log(n) for the sorting part.
Solving this kind of problem in a reasonable amount of time is best done by evolutionary algorithms nowadays.
If you take the following example from deap, an evolutionary algorithm framework in Python:
ga_knapsack.py, you realise that by modifying lines 58-59 that automatically discards an overweight solution for something smoother (a linear relation, for instance), it will give you solutions close to the optimal one in a shorter time than brute force. Solutions are already sorted for you at the end, as you requested.
As a first attempt I'd go for constraint programming (but then I almost always do, so take the suggestion with a pinch of salt):
Given W=w_1, ..., w_i for weights and E=e_1,.., e_i for the error (you can also make it asymmetric), and T.
Find all sets S (if the weights are unique, or a list) st sum w_1+e_1,..., w_k+e_k (where w_1, .., w_k \elem and e_1, ..., e_k \elem E) \approx T within some delta which you derive from k. Or just set it to some reasonably large value and decrease it as you are solving the constraints.
I just realise that you also want to parametrise the expression w_n op e_m over op \elem +, - (any combination of weights and error terms) and off the top of my head I don't know which constraint solver would allow you to do that. In any case, you can always fall back to prolog. It may not fly, especially if you have a lot of weights, but it will give you solutions quickly.

Calculating taxi movements

Let's say I have N taxis, and N customers waiting to be picked up by the taxis. The initial positions of both customers and taxis are random/arbitrary.
Now I want to assign each taxi to exactly one customer.
The customers are all stationary, and the taxis all move at identical speed. For simplicity, let's assume there are no obstacles, and the taxis can move in straight lines to assigned customers.
I now want to minimize the time until the last customer enters his/her taxi.
Is there a standard algorithm to solve this? I have tens of thousands of taxis/customers. Solution doesn't have to be optimal, just ‘good’.
The problem can almost be modelled as the standard “Assignment Problem”, solvable using the Hungarian algorithm (the Kuhn–Munkres algorithm or Munkres assignment algorithm). However, I want to minimize the cost of the costliest assignment, not minimize the sum of costs of the assignments.
Since you mentioned Hungarian Algorithm, I guess one thing you could do is using some different measure of distance rather than the euclidean distance and then run t Hungarian Algorithm on it. For example, instead of using
d = sqrt((x0 - x1) ^ 2 + (y1 - y0) ^ 2)
use
d = ((x0 - x1) ^ 2 + (y1 - y0) ^ 2) ^ 10
that could cause the algorithm to penalize big numbers heavily, which could constrain the length of the max distance.
EDIT: This paper "Geometry Helps in Bottleneck Matching and Related
Problems" may contains a better algorithm. However, I am still in the process of reading it.
I'm not sure that the Hungarian algorithm will work for your problem here. According to the link, it runs in n ^ 3 time. Plugging in 25,000 as n would yield 25,000 ^ 3 = 15,625,000,000,000. That could take quite a while to run.
Since the solution does not need to be optimal, you might consider using simulated annealing or possibly a genetic algorithm instead. Either of these should be much faster and still produce close to optimal solutions.
If using a genetic algorithm, the fitness function can be designed to minimize the longest period of time that an individual would need to wait. But, you would have to be careful because if that is the sole criteria, then the solution won't work too well for cases when there is just one cab that is closest to the passenger that is furthest away. So, the fitness function would need to take into account the other waiting times as well. One idea to solve this would be to run the model iteratively and remove the longest cab trip (both cab & person) after each iteration. But, doing that for all 10,000+ cabs/people could be expensive time wise.
I don't think any cab owner or manager would even consider minimizing the waiting time for the last customer entering his cab over minimizing the sum of the waiting time for all cabs - simply because they make more money overall when minimizing the sum of the waiting times. At least Louie DePalma would never do that... So, I suspect that the real problem you have has little or nothing to do with cabs...
A "good" algorithm that would solve your problem is a Greedy Algorithm. Since taxis and people have a position, these positions can be related to a "central" spot. Sort the taxis and people needing to get picked up in order (in relation to the "centre"). Then start assigning taxis, in order, to pick up people in order. This greedy rule will ensure taxis closest to the centre will pick up people closest to the centre and taxis farthest away pick up people farthest away.
A better way might be to use Dynamic Programming however, I am not sure nor have the time to invest. A good tutorial for Dynamic Programming can be found here
For an optimal solution: construct a weighted bipartite graph with a vertex for each taxi and customer and an edge from each taxi to each customer whose weight is the travel time. Scan the edges in order of nondecreasing weight, maintaining a maximum matching of the subgraph containing the edges scanned so far. Stop when the matching is perfect.

Find the priority function / alphabet order for extreme higher order elements relation

This question is an extension to the following one. The difference is that now our function to optimize will have higher order relations between elements:
We have an array of elements a1,a2,...aN from an alphabet E. Assuming |N| >> |E|.
For each symbol of the alphabet we define an unique integer priority = V(sym). Let's define V{i} := V(symbol(ai)) for the simplicity.
The task is to find a priority function V for which:
Count(i)->MIN | V{i} > V{i+1} <= V{i+2}
In other words, I need to find the priorities / permutation of the alphabet for which the number of positions i, satisfying the condition V{i}>V{i+1}<=V{i+2}, is minimum.
Maximum required abstraction (low priority for me). I guess once the solution model for the initial question is extended to cover the first part of this one, extending it farther (see below) will be easier.
Given a matrix of signs B of size MxK (basically B[i,j] is from the set {<,>,<=,>=}), find the priority function V for which:
Sum(for all j in range [1,M]) {Count(i)}->EXTREMUM | V{i} B[j,1] V{i+1} B[j,2] ... B[j,K] V{i+K}
As an example, find the priority function V, for which the number of i, satisfying V{i}<V{i+1}<V{i+2} or V{i}>V{i+1}>V{i+2}, is minimum.
My intuition is that all variations on this problem will prove to be NP-hard. So I'd begin looking for heuristics that produce reasonable answers. This may involve some trial and error.
A simplistic approach is to write down a possible permutation. And then try possible swaps until you've arrived at a local minimum. Try several times, and pick the best answer.
Simulated annealing provides a more sophisticated version of this approach, see http://en.wikipedia.org/wiki/Simulated_annealing for a description. It may take some experimentation to find a set of parameters that seems to converge relatively well.
Another idea is to look for a genetic algorithm. Based on a quick Google search it looks like the standard way to do this is to try to turn an NP-complete problem into a SAT problem, and then use a genetic algorithm on that problem. This approach would require turning this into a SAT problem in some reasonable way. Unfortunately it is not obvious to me how one would go about doing this reduction. Indeed in the first version that you had, your problem was closely connected to a classic NP-hard problem. The fact that it is labeled NP-hard rather than NP-complete is evidence that people haven't found a good way to transform it into a SAT problem. So if it isn't obvious how to turn the simple version into a SAT problem, then you are unlikely to convert the hard problem either.
But you could still try some variation on genetic algorithms. Mutation is pretty simple, just swap some elements around. One way to combine elements would be to take 3 permutations and use quicksort to find the combination as follows: take a random pivot, and then use "majority wins" to bucket elements into bigger and smaller. Sort each half in the same way.
I'm sorry that I can't just give you an approach and say, "This should work." You've got what looks like an open-ended research project, and the best I can do is give you some ideas about things you can try that might work reasonably well.

Looking for a multidimensional optimization algorithm

Problem description
There are different categories which contain an arbitrary amount of elements.
There are three different attributes A, B and C. Each element does have an other distribution of these attributes. This distribution is expressed through a positive integer value. For example, element 1 has the attributes A: 42 B: 1337 C: 18. The sum of these attributes is not consistent over the elements. Some elements have more than others.
Now the problem:
We want to choose exactly one element from each category so that
We hit a certain threshold on attributes A and B (going over it is also possible, but not necessary)
while getting a maximum amount of C.
Example: we want to hit at least 80 A and 150 B in sum over all chosen elements and want as many C as possible.
I've thought about this problem and cannot imagine an efficient solution. The sample sizes are about 15 categories from which each contains up to ~30 elements, so bruteforcing doesn't seem to be very effective since there are potentially 30^15 possibilities.
My model is that I think of it as a tree with depth number of categories. Each depth level represents a category and gives us the choice of choosing an element out of this category. When passing over a node, we add the attributes of the represented element to our sum which we want to optimize.
If we hit the same attribute combination multiple times on the same level, we merge them so that we can stripe away the multiple computation of already computed values. If we reach a level where one path has less value in all three attributes, we don't follow it anymore from there.
However, in the worst case this tree still has ~30^15 nodes in it.
Does anybody of you can think of an algorithm which may aid me to solve this problem? Or could you explain why you think that there doesn't exist an algorithm for this?
This question is very similar to a variation of the knapsack problem. I would start by looking at solutions for this problem and see how well you can apply it to your stated problem.
My first inclination to is try branch-and-bound. You can do it breadth-first or depth-first, and I prefer depth-first because I think it's cleaner.
To express it simply, you have a tree-walk procedure walk that can enumerate all possibilities (maybe it just has a 5-level nested loop). It is augmented with two things:
At every step of the way, it keeps track of the cost at that point, where the cost can only increase. (If the cost can also decrease, it becomes more like a minimax game tree search.)
The procedure has an argument budget, and it does not search any branches where the cost can exceed the budget.
Then you have an outer loop:
for (budget = 0; budget < ... ; budget++){
walk(budget);
// if walk finds a solution within the budget, halt
}
The amount of time it takes is exponential in the budget, so easier cases will take less time. The fact that you are re-doing the search doesn't matter much because each level of the budget takes as much or more time than all the previous levels combined.
Combine this with some sort of heuristic about the order in which you consider branches, and it may give you a workable solution for typical problems you give it.
IF that doesn't work, you can fall back on basic heuristic programming. That is, do some cases by hand, and pay attention to how you did it. Then program it the same way.
I hope that helps.

Resources