Mutually Overlapping Subset of Activites - algorithm

I am prepping for a final and this was a practice problem. It is not a homework problem.
How do I go about attacking this? Also, more generally, how do I know when to use Greedy vs. Dynamic programming? Intuitively, I think this is a good place to use greedy. I'm also thinking that if I could somehow create an orthogonal line and "sweep" it, checking the #of intersections at each point and updating a global max, then I could just return the max at the end of the sweep. I'm not sure how to plane sweep algorithmically though.
a. We are given a set of activities I1 ... In: each activity Ii is represented by its left-point Li and its right-point Ri. Design a very efficient algorithm that finds the maximum number of mutually overlapping subset of activities (write your solution in English, bullet by bullet).
b. Analyze the time complexity of your algorithm.
Proposed solution:
Ex set: {(0,2) (3,7) (4,6) (7,8) (1,5)}
Max is 3 from interval 4-5
1) Split start and end points into two separate arrays and sort them in non-decreasing order
Start points: [0,1,3,4,7] (SP)
End points: [2,5,6,7,8] (EP)
I know that I can use two pointers to sort of simulate the plane sweep, but I'm not exactly sure how. I'm stuck here.

I'd say your idea of a sweep is good.
You don't need to worry about planar sweeping, just use the start/end points. Put the elements in a queue. In every step take the smaller element from the queue front. If it's a start point, increment current tasks count, otherwise decrement it.
Since you don't need to point which tasks are overlapping - just the count of them - you don't need to worry about specific tasks duration.
Regarding your greedy vs DP question, in my non-professional opinion greedy may not always provide valid answer, whereas DP only works for problem that can be divided into smaller subproblems well. In this case, I wouldn't call your sweep-solution either.

Related

A good randomizer for puzzle-15

I have implemented a puzzle 15 for people to compete online. My current randomizer works by starting from the good configuration and moving tiles around for 100 moves (arbitrary number)
Everything is fine, however, once in a little while the tiles are shuffled too easy and it takes only a few moves to solve the puzzle, therefore the game is really unfair for some people reaching better scores in a much higher speed.
What would be a good way to randomize the initial configuration so it is not "too easy"?
You can generate a completely random configuration (that is solvable) and then use some solver to determine the optimal sequence of moves. If the sequence is long enough for you, good, otherwise generate a new configuration and repeat.
Update & details
There is an article on Wikipedia about the 15-puzzle and when it is (and isn't) solvable. In short, if the empty square is in the lower-right corner, then the puzzle is solvable if and only if the number of inversions (an inversion is a swap of two elements in the sequence, not necessarily adjacent elements) with respect to the goal permutation is even.
You can then easily generate a solvable start state by doing an even number of inversions, which may lead to a not-so-easy-to-solve state far quicker than by doing regular moves, and it is guaranteed that it will remain solvable.
In fact, you don't need to use a search algorithm as I mentioned above, but an admissible heuristic. Such one always underestimates never overestimates the number of moves needed to solve the puzzle, i.e. you are guaranteed that it will not take less moves that the heuristic tells you.
A good heuristic is the sum of manhattan distances of each number to its goal position.
Summary
In short, a possible (very simple) algorithm for generating starting positions might look like this:
1: current_state <- goal_state
2: swap two arbitrary (randomly selected) pieces
3: swap two arbitrary (randomly selected) pieces again (to ensure solvability)
4: h <- heuristic(current_state)
5: if h > desired threshold
6: return current_state
7: else
8: go to 2.
To be absolutely certain about how difficult a state is, you need to find the optimal solution using some solver. Heuristics will give you only an estimate.
I would do this
start from solution (just like you did)
make valid turn in random direction
so you must keep track where the gap is and generate random direction (N,E,S,W) and do the move. I think this part you have done too.
compute the randomness of your placements
So compute some coefficient dependent on the order of the array. So ordered (solved) solutions will have low values and random will have high values. The equation for the coefficiet however is a matter of trial and error. Here some ideas what to use:
correlation coefficient
sum of average difference of value and its neighbors
1 2 4
3 6 5
9 8 7
coeff(6)= (|6-3|+|6-5|+|6-2|+|6-8|)/4
coeff=coeff(1)+coeff(2)+...coeff(15)
abs distance from ordered array
You can combine more approaches together. You can divide this to separated rows and columns and then combine the sub coefficients together.
loop #2 unit coefficient from #3 is high enough (treshold)
The treshold can be used also to change the difficulty.

Finding fastest cycle that gains at least x bonus points using backtracking algorithm

There's a map with points:
The green number next to each point is that point's ID and the red number is the bonus for that point. I have to find fastest cycle that starts and ends at the point #1 and that gains at least x (15 in this case) bonus points. I can use cities several times; however, I will gain bonus points only once.
I have to do this with the backtracking algorithm, but I don't really know where to start. I've stutied about it, but I can't see the connection between this and a backtracking.
The output would look like this:
(1,3,5,2,1) (11.813 length)
Backtracking is a technique applied to reduce the search space of a problem. So, you have a problem, you have a space with optimal and non-optimal solutions, and you have to pick up one optimal solution.
A simple strategy, in your problem, is to generate all the possible solutions. However, this solution would traverse the entire space of solutions, and, some times, being aware that no optimal solution will be found.
That's the main role of backtracking: you traverse the space of solutions and, when you reach a given point where you know no optimal answer will be achieved if the search continue on the same path, you can simply repent of the step taken, go back in the traversal, and select the step that comes right after the one you found to be helpless.
In your problem, since the nodes can be visited more than once, the idea is to maintain, for each vertex, a list of vertices sorted decreasingly by the distance from the vertex owner of the list.
Then, you can simply start in one of the vertices, and do the walk on the graph, vertex by vertex, always checking if the objective is still achievable, and backtracking in the solution whenever it's noticed that no solution will be possible from a certain point.
You can use a recursive backtracking algorithm to list all possible cycles and keep the best answer:
visitCycles(list<Int> cycleSoFar)
{
if cycle formed by closing (cycleSoFar) > best answer so far
{
best answer so far = cycle formed by closing (cycleSoFar)
}
if (cannot improve (cycleSoFar))
{
return
}
for each point that makes sense
{
add point to cycleSoFar
visitCycles(cycleSoFar)
remove point from cycleSoFar
}
}
To add a bit more detail:
1) A cycle is no good unless it has at least 15 bonus points. If it is any good, it is better than the best answer so far if it is shorter.
2) As you add more points to a cycle you only make it longer, not shorter. So if you have found a possible answer and cycleSoFar is already at least as long as that possible answer, then you cannot improve it and you might as well return.
3) Since you don't get any bonus points by reusing points already in the cycle, it doesn't make sense to try adding a point twice.
4) You may be able to speed up the program by iterating over "each point that makes sense" in a sensible order, for instance by choosing the closest point to the current point first. You might save time by pre-computing, for each point, a list of all the other points in ascending order of distance (or you might not - you might have to try different schemes by experiment).

Optimal placement of objects wrt pairwise similarity weights

Ok this is an abstract algorithmic challenge and it will remain abstract since it is a top secret where I am going to use it.
Suppose we have a set of objects O = {o_1, ..., o_N} and a symmetric similarity matrix S where s_ij is the pairwise correlation of objects o_i and o_j.
Assume also that we have an one-dimensional space with discrete positions where objects may be put (like having N boxes in a row or chairs for people).
Having a certain placement, we may measure the cost of moving from the position of one object to that of another object as the number of boxes we need to pass by until we reach our target multiplied with their pairwise object similarity. Moving from a position to the box right after or before that position has zero cost.
Imagine an example where for three objects we have the following similarity matrix:
1.0 0.5 0.8
S = 0.5 1.0 0.1
0.8 0.1 1.0
Then, the best ordering of objects in the tree boxes is obviously:
[o_3] [o_1] [o_2]
The cost of this ordering is the sum of costs (counting boxes) for moving from one object to all others. So here we have cost only for the distance between o_2 and o_3 equal to 1box * 0.1sim = 0.1, the same as:
[o_3] [o_1] [o_2]
On the other hand:
[o_1] [o_2] [o_3]
would have cost = cost(o_1-->o_3) = 1box * 0.8sim = 0.8.
The target is to determine a placement of the N objects in the available positions in a way that we minimize the above mentioned overall cost for all possible pairs of objects!
An analogue is to imagine that we have a table and chairs side by side in one row only (like the boxes) and you need to put N people to sit on the chairs. Now those ppl have some relations that is -lets say- how probable is one of them to want to speak to another. This is to stand up pass by a number of chairs and speak to the guy there. When the people sit on two successive chairs then they don't need to move in order to talk to each other.
So how can we put those ppl down so that every distance-cost between two ppl are minimized. This means that during the night the overall number of distances walked by the guests are close to minimum.
Greedy search is... ok forget it!
I am interested in hearing if there is a standard formulation of such problem for which I could find some literature, and also different searching approaches (e.g. dynamic programming, tabu search, simulated annealing etc from combinatorial optimization field).
Looking forward to hear your ideas.
PS. My question has something in common with this thread Algorithm for ordering a list of Objects, but I think here it is better posed as problem and probably slightly different.
That sounds like an instance of the Quadratic Assignment Problem. The speciality is due to the fact that the locations are placed on one line only, but I don't think this will make it easier to solve. The QAP in general is NP hard. Unless I misinterpreted your problem you can't find an optimal algorithm that solves the problem in polynomial time without proving P=NP at the same time.
If the instances are small you can use exact methods such as branch and bound. You can also use tabu search or other metaheuristics if the problem is more difficult. We have an implementation of the QAP and some metaheuristics in HeuristicLab. You can configure the problem in the GUI, just paste the similarity and the distance matrix into the appropriate parameters. Try starting with the robust Taboo Search. It's an older, but still quite well working algorithm. Taillard also has the C code for it on his website if you want to implement it for yourself. Our implementation is based on that code.
There has been a lot of publications done on the QAP. More modern algorithms combine genetic search abilities with local search heuristics (e. g. Genetic Local Search from Stützle IIRC).
Here's a variation of the already posted method. I don't think this one is optimal, but it may be a start.
Create a list of all the pairs in descending cost order.
While list not empty:
Pop the head item from the list.
If neither element is in an existing group, create a new group containing
the pair.
If one element is in an existing group, add the other element to whichever
end puts it closer to the group member.
If both elements are in existing groups, combine them so as to minimize
the distance between the pair.
Group combining may require reversal of order in a group, and the data structure should
be designed to support that.
Let me help the thread (of my own) with a simplistic ordering approach.
1. Order the upper half of the similarity matrix.
2. Start with the pair of objects having the highest similarity weight and place them in the center positions.
3. The next object may be put on the left or the right side of them. So each time you may select the object that when put to left or right
has the highest cost to the pre-placed objects. Goto Step 2.
The selection of Step 3 is because if you left this object and place it later this cost will be again the greatest of the remaining, and even more (farther to the pre-placed objects). So the costly placements should be done as earlier as it can be.
This is too simple and of course does not discover a good solution.
Another approach is to
1. start with a complete ordering generated somehow (random or from another algorithm)
2. try to improve it using "swaps" of object pairs.
I believe local minima would be a huge deterrent.

Sorting a list of numbers with modified cost

First, this was one of the four problems we had to solve in a project last year and I couldn’t find a suitable algorithm so we handle in a brute force solution.
Problem: The numbers are in a list that is not sorted and supports only one type of operation. The operation is defined as follows:
Given a position i and a position j the operation moves the number at position i to position j without altering the relative order of the other numbers. If i > j, the positions of the numbers between positions j and i - 1 increment by 1, otherwise if i < j the positions of the numbers between positions i+1 and j decreases by 1. This operation requires i steps to find a number to move and j steps to locate the position to which you want to move it. Then the number of steps required to move a number of position i to position j is i+j.
We need to design an algorithm that given a list of numbers, determine the optimal (in terms of cost) sequence of moves to rearrange the sequence.
Attempts:
Part of our investigation was around NP-Completeness, we make it a decision problem and try to find a suitable transformation to any of the problems listed in Garey and Johnson’s book: Computers and Intractability with no results. There is also no direct reference (from our point of view) to this kind of variation in Donald E. Knuth’s book: The art of Computer Programing Vol. 3 Sorting and Searching. We also analyzed algorithms to sort linked lists but none of them gives a good idea to find de optimal sequence of movements.
Note that the idea is not to find an algorithm that orders the sequence, but one to tell me the optimal sequence of movements in terms of cost that organizes the sequence, you can make a copy and sort it to analyze the final position of the elements if you want, in fact we may assume that the list contains the numbers from 1 to n, so we know where we want to put each number, we are just concerned with minimizing the total cost of the steps.
We tested several greedy approaches but all of them failed, divide and conquer sorting algorithms can’t be used because they swap with no cost portions of the list and our dynamic programing approaches had to consider many cases.
The brute force recursive algorithm takes all the possible combinations of movements from i to j and then again all the possible moments of the rest of the element’s, at the end it returns the sequence with less total cost that sorted the list, as you can imagine the cost of this algorithm is brutal and makes it impracticable for more than 8 elements.
Our observations:
n movements is not necessarily cheaper than n+1 movements (unlike swaps in arrays that are O(1)).
There are basically two ways of moving one element from position i to j: one is to move it directly and the other is to move other elements around i in a way that it reaches the position j.
At most you make n-1 movements (the untouched element reaches its position alone).
If it is the optimal sequence of movements then you didn’t move the same element twice.
This problem looks like a good candidate for an approximation algorithm but that would only give us a good enough answer. Since you want the optimal answer, this is what I'd do to improve on the brute force approach.
Instead of blindly trying every permutations, I'd use a backtracking approach that would maintain the best solution found and prune any branches that exceed the cost of our best solution. I would also add a transposition table to avoid redoing searches on states that were reached by previous branches using different move permutations.
I would also add a few heuristics to explore moves that are more likely to reach good results before any other moves. For example, prefer moves that have a small cost first. I'd need to experiment before I can tell which heuristics would work best if any.
I would also try to find the longest increasing subsequence of numbers in the original array. This will give us a sequence of numbers that don't need to be moved which should considerably cut the number of branches we need to explore. This also greatly speeds up searches on list that are almost sorted.
I'd expect these improvements to be able to handle lists that are far greater than 8 but when dealing with large lists of random numbers, I'd prefer an approximation algorithm.
By popular demand (1 person), this is what I'd do to solve this with a genetic algorithm (the meta-heuristique I'm most familiar with).
First, I'd start by calculating the longest increasing subsequence of numbers (see above). Every item that is not part of that set has to be moved. All we need to know now is in what order.
The genomes used as input for the genetic algorithm, is simply an array where each element represents an item to be moved. The order in which the items show up in the array represent the order in which they have to be moved. The fitness function would be the cost calculation described in the original question.
We now have all the elements needed to plug the problem in a standard genetic algorithm. The rest is just tweaking. Lots and lots of tweaking.

What's the most insidious way to pose this problem?

My best shot so far:
A delivery vehicle needs to make a series of deliveries (d1,d2,...dn), and can do so in any order--in other words, all the possible permutations of the set D = {d1,d2,...dn} are valid solutions--but the particular solution needs to be determined before it leaves the base station at one end of the route (imagine that the packages need to be loaded in the vehicle LIFO, for example).
Further, the cost of the various permutations is not the same. It can be computed as the sum of the squares of distance traveled between di -1 and di, where d0 is taken to be the base station, with the caveat that any segment that involves a change of direction costs 3 times as much (imagine this is going on on a railroad or a pneumatic tube, and backing up disrupts other traffic).
Given the set of deliveries D represented as their distance from the base station (so abs(di-dj) is the distance between two deliveries) and an iterator permutations(D) which will produce each permutation in succession, find a permutation which has a cost less than or equal to that of any other permutation.
Now, a direct implementation from this description might lead to code like this:
function Cost(D) ...
function Best_order(D)
for D1 in permutations(D)
Found = true
for D2 in permutations(D)
Found = false if cost(D2) > cost(D1)
return D1 if Found
Which is O(n*n!^2), e.g. pretty awful--especially compared to the O(n log(n)) someone with insight would find, by simply sorting D.
My question: can you come up with a plausible problem description which would naturally lead the unwary into a worse (or differently awful) implementation of a sorting algorithm?
I assume you're using this question for an interview to see if the applicant can notice a simple solution in a seemingly complex question.
[This assumption is incorrect -- MarkusQ]
You give too much information.
The key to solving this is realizing that the points are in one dimension and that a sort is all that is required. To make this question more difficult hide this fact as much as possible.
The biggest clue is the distance formula. It introduces a penalty for changing directions. The first thing an that comes to my mind is minimizing this penalty. To remove the penalty I have to order them in a certain direction, this ordering is the natural sort order.
I would remove the penalty for changing directions, it's too much of a give away.
Another major clue is the input values to the algorithm: a list of integers. Give them a list of permutations, or even all permutations. That sets them up to thinking that a O(n!) algorithm might actually be expected.
I would phrase it as:
Given a list of all possible
permutations of n delivery locations,
where each permutation of deliveries
(d1, d2, ...,
dn) has a cost defined by:
Return permutation P such that the
cost of P is less than or equal to any
other permutation.
All that really needs to be done is read in the first permutation and sort it.
If they construct a single loop to compare the costs ask them what the big-o runtime of their algorithm is where n is the number of delivery locations (Another trap).
This isn't a direct answer, but I think more clarification is needed.
Is di allowed to be negative? If so, sorting alone is not enough, as far as I can see.
For example:
d0 = 0
deliveries = (-1,1,1,2)
It seems the optimal path in this case would be 1 > 2 > 1 > -1.
Edit: This might not actually be the optimal path, but it illustrates the point.
YOu could rephrase it, having first found the optimal solution, as
"Give me a proof that the following convination is the most optimal for the following set of rules, where optimal means the smallest number results from the sum of all stage costs, taking into account that all stages (A..Z) need to be present once and once only.
Convination:
A->C->D->Y->P->...->N
Stage costs:
A->B = 5,
B->A = 3,
A->C = 2,
C->A = 4,
...
...
...
Y->Z = 7,
Z->Y = 24."
That ought to keep someone busy for a while.
This reminds me of the Knapsack problem, more than the Traveling Salesman. But the Knapsack is also an NP-Hard problem, so you might be able to fool people to think up an over complex solution using dynamic programming if they correlate your problem with the Knapsack. Where the basic problem is:
can a value of at least V be achieved
without exceeding the weight W?
Now the problem is a fairly good solution can be found when V is unique, your distances, as such:
The knapsack problem with each type of
item j having a distinct value per
unit of weight (vj = pj/wj) is
considered one of the easiest
NP-complete problems. Indeed empirical
complexity is of the order of O((log
n)2) and very large problems can be
solved very quickly, e.g. in 2003 the
average time required to solve
instances with n = 10,000 was below 14
milliseconds using commodity personal
computers1.
So you might want to state that several stops/packages might share the same vj, inviting people to think about the really hard solution to:
However in the
degenerate case of multiple items
sharing the same value vj it becomes
much more difficult with the extreme
case where vj = constant being the
subset sum problem with a complexity
of O(2N/2N).
So if you replace the weight per value to distance per value, and state that several distances might actually share the same values, degenerate, some folk might fall in this trap.
Isn't this just the (NP-Hard) Travelling Salesman Problem? It doesn't seem likely that you're going to make it much harder.
Maybe phrasing the problem so that the actual algorithm is unclear - e.g. by describing the paths as single-rail railway lines so the person would have to infer from domain knowledge that backtracking is more costly.
What about describing the question in such a way that someone is tempted to do recursive comparisions - e.g. "can you speed up the algorithm by using the optimum max subset of your best (so far) results"?
BTW, what's the purpose of this - it sounds like the intent is to torture interviewees.
You need to be clearer on whether the delivery truck has to return to base (making it a round trip), or not. If the truck does return, then a simple sort does not produce the shortest route, because the square of the return from the furthest point to base costs so much. Missing some hops on the way 'out' and using them on the way back turns out to be cheaper.
If you trick someone into a bad answer (for example, by not giving them all the information) then is it their foolishness or your deception that has caused it?
How great is the wisdom of the wise, if they heed not their ego's lies?

Resources