As part of an application for a client, I need to have a section which reports temperature information (motherboard, CPU, HDD). I know there are standalone applications such as Hardware Monitor by CPUID, but again, these are standalone and I require something that I could interface with.
Is there any app like this which has an API or is open source so I can utilize their source code? I have language preferences other than it needs to run on Windows XP. Thanks.
You get info like this from WMI. Download WMICodeCreator to find the query as well as the code you need to write. Beware that hardware queries like this tend to rely heavily on providers supplied by the hardware or BIOS manufacturer.
Related
I'd like to know if there is a way to monitor the interactions between an application and a driver? The scenario for me is that I am having an occasional problem when reading and writing to a USB printer using libusbdotnet. The normal application reads and writes to the USB printer driver directly. I would like to monitor what it is doing to see if there is something special that it is doing to control the printer. I have looked around and haven't found a good way to do this.
Thanks
As far as I know, there is no out-of-the-box tool that does this (mainly because there is a variety of driver types, each type must comply to a different OS-defined interface). You need a SW component that will sit between your application and your driver and intercept the interactions. This is usually achievable by creating a filter driver (preferably in User space, since it simplifies the development and usage). See here for more details: http://msdn.microsoft.com/en-us/library/windows/hardware/gg463453.aspx
How would I go about creating a "gamepad" which appears to DirectInput applications as a normal game controller but the state of its controls is actually defined by software?
Write a device driver to pretend to be one.
Specifically, Windows device drivers handle what are called Interrupt Requests via the Interrupt Request Protocol - which boils down to a wrapped up structure and a set of buffers internally in the driver.
Now the next thing you need to know is that many drivers are actually layered, or stacked, or whichever name you want to use. So for example to write a disk driver, you might interface with the driver above it (as a disk class) but use a driver below it (scsi port, for example) to actually send commands to your devices.
That's how real devices work. Fake devices need to conform to the top level interface requirements, e.g. a disk, or a controller, or a mouse, or whatever it is. However, underneath they can do anything they like - return whatever values they like.
This opens up the possibility of controlling a driver via a user-mode application and pretending to "be" a device. To send a driver messages, you can DeviceIoControl to it; then to actually get those messages you can either:
Stuff them in the Irp that makes up that DeviceIoControl.
Have the driver read them out of your process' memory space.
Drivers can also access \\Registry\\Machine and various other, non-user-specific non-explorer registry areas, so it is possible to communicate that way.
Finally, there's no saying you can't filter existing IO, rather than make it all up via a new device. There are a great many options and ways you can go about doing this.
If you're going to do this, you'll need:
VirtualKD or an expensive debugger cable and two PCs.
You probably also want to start with the references on this blog post. You'll find that there are essentially a bazillion different names for driver code, so I'll interpret some of them:
WDM = Windows Driver Model, basically the NT driver model mixed with (some of) Windows 9x.
KMDF = Kernel mode driver framework - drivers of the above type use this, plus additionally WDF (Windows Driver Foundation) which is a set of libraries on top of WDM to make it quicker to use.
UMDF = User mode driver framework - write a driver without the danger of kernel mode. If you can, use this, as kernel mode drivers that go wrong will bluescreen (in driver parlance, bugcheck) your system.
Edit: I'm not massively knowledgeable on DirectInput - there may be a way to override the various API controls in use via DLL redirection and the like, which may be simpler than the way I've described.
There is vJoy opensource project: http://sourceforge.net/projects/vjoystick/ - can be worth looking at.
The easiest solution may be to emulate an XInput device (Xbox 360 and One). These are supported in most modern games and the set up is very simple. Here is a C++ project here that provides this without any installed drivers or external dependencies: https://github.com/shauleiz/vXboxInterface/
I know it is an old question but for anyone which is interested in this topic it is also worth looking at this project called ViGEm.
You can emulate some well known gamepads like Microsoft Xbox 360 Controller, Sony DualShock 4 Controller and Microsoft Xbox One Controller. The project offers also some API to interact with these virtual controllers. E.g. the C# API can be found here
The simplest solution I found was using vJoy and its C# wrapper.
You need to download the vJoy driver from here.
You can use the vJoy SDK for implementing a feeder program: https://github.com/njz3/vJoy/tree/master/SDK/c%23
Use the C# starter project for this, or simply add the two .dll-s to your existing project as references from the x86 or x64 folder.
You can find instructions on how to use the api in the readme.odt file.
I want to write something like DaemonTools: a software that presents itself to the system as a real device (a DVD-ROM in the previous example) but it reads the data from a file instead. My requirement is not limited to DVD-ROM. The first goal is a joystick/gamepad for Windows.
I'm a web developer, so I don't know from where I could start such a project. I believe it will have to be written in C/C++, but other than that, I have no clue where to start.
Did anyone tried something like this and can give me some starting tips ?
Most drivers are written in either C or C++, so if you don't know those languages reasonably well, you'll want to get familiar with them before you start. Windows programming uses a lot of interesting shortcuts that might be confusing to a beginner - for example PVOIDs (typedef void* PVOID) and LPVOIDs (typedef void* far LPVOD;). You'll need to be happy with pointers as concepts as well as structures because you'll be using a lot of them. I'd suggest writing a really straightforward win32 app as an exercise in getting to grips with the Windows style of doing C/C++.
Your next port of call then is to navigate the Windows Driver Kit - specifically, you'll need it to build drivers for Windows. At this stage my ability to advise really depends on what you're doing and the hardware you have available etc, or whether or not you're really using hardware. You'll need to know how to drive your hardware and from there you'll need to choose an appropriate way of writing a driver - there are several different types of driver depending on what you need to achieve and it might be you can plug into one of these.
The windows driver kit contains quite a large number of samples, including a driver that implements a virtual toaster. These should provide you with starting points.
I strongly suggest you do the testing of this in a virtual machine. If your driver successfully builds, but causes a runtime error, the result could well crash windows entirely if you're in kernel-mode. You will therefore save yourself some pain by being able to revert the virtual machine if you damage it, as well as not having to wait on your system restarting. It'll also make debugging easier as virtual serial cables can be used.
This is quite a big undertaking, so before you start, I'd research Windows development more thoroughly - check you can't do it using the Windows APIs first, then have a look at the user-mode driver framework, then finally and only if you need to, look at the kernel level stuff.
I'm creating an application that needs to use some kernel level modules, for which I've divided the app into 2: one user-level program and one kernel level program.
After reading about device drivers and walking through some tutorials, I'm a little confused.
Can there be a device driver without any specific device associated with it? Is there anything other than the device driver (kernel code or something) which works in kernel mode?
How do anti-virus programs and other such applications work in kernel mode? Is device driver the correct way or am I missing something?
Yes, device drivers can work without an actual piece of hardware (i.e. the device) attached to the machine. Just think of the different programs that emulate a connected SCSI drive (CD-ROM, whatever) for mounting ISO images. Or think about TrueCrypt, which emulates (removable) drives using containers, which are nothing more than encrypted files on your hard drive.
A word of warning, though: Driver development requires much more thought and has to be done more carefully, no shortcuts, good testing and in general expects you to know quite a good deal about the Windows driver model. Remember that faulty and poor drivers put the whole system's stability in jeopardy.
Honestly, I don't think reading a tutorial is sufficient here. You might want to at least invest in a decent book on that subject. Just my 2 cents, though.
Sorry, but the Windows Internals book is more of a general reading for the curious. I cannot recommend it if you want to engage in driver development - or at most as prerequisite reading to understand the architecture. There are plenty of other books around, although most of them are a bit older.
Depending on your goal, you may get away with one of the simpler driver models. That is not to say that driver development is trivial - in fact I second all aspects of the warning above and would even go further - but it means that you can save some of the more tedious work, if instead of writing a legacy file system filter you'd write one based on the filter manager. However, Windows XP before SP2 did not have it installed by default and Windows 2000 would require SP4+SRP+patch if I remember correctly. WDF (Windows Driver Foundation) makes writing drivers even easier, but it is not suitable for all needs.
The term device is somewhat of bad choice here. Device has a meaning in drivers as well, and it does not necessarily refer to the hardware device (as pointed out). Roughly there is a distinction between PDOs (physical device objects) and CDOs (control device objects). The latter are usually what you get to see in user mode and what can be accessed by means of CreateFile, ReadFile, WriteFile, DeviceIoControl and friends. CDOs are usually made visible to the Win32 realm by means of symbolic links (not to be confused with the file system entities of the same name). Drive letter assignments like C: are actually symbolic links to an underlying device. It depends on the driver whether that'd be a CDO or PDO. The distinction is more of a conceptual one taught as such in classes.
And that's what I would actually recommend. Take a class about Windows driver development. Having attended two seminars from OSR myself, I can highly recommend it. Those folks know what they're talking about. Oh, and sign up to their mailing lists over at OSR Online.
Use Sysinternals' WinObj to find out more about the device and driver objects and symlinks.
As for the question about AVs, yes they use file system filter drivers (briefly mentioned above). The only alternative to a full-fledged legacy FSFD is a mini-filter.
It is possible to load a special kind of DLL in kernel mode, too. But in general a driver is the way into the kernel mode and well documented as such.
Books you may want to consider (by ISBN): Most importantly "Programming the Windows Driver Model" (0735618038), "Windows NT Device Driver Development" (1578700582), "Windows NT File System Internals" (0976717514 (OSR's new edition)), "Undocumented Windows NT" (0764545698) and "Undocumented Windows 2000 Secrets" (0201721872) - and of course "Windows NT/2000 Native API Reference" (9781578701995) (classic). Although the last three more or less give you a better insight and are not strictly needed as reading for driver developers.
Anti-virus (and system recovery) software generally make use of file-system filter drivers. A device can have multiple filter drivers arranged like a stack, and any event/operation on this device has to pass through all the stacked up drivers. For example, anti-viruses install a filter driver for disk device so that they can intercept and scan all file system (read/write) operation.
As mentioned in above post, going through a good book would be a nice way to start. Also, install DDK/WDK and refer the bundled examples.
I know that it is possible to check how much physical RAM is installed using GetPhysicallyInstalledSystemMemory or how much ram the operating system can see using GlobalMemoryStatusEx. However, I am wondering if there is any way to check how much ram a user has installed by slot. That is, to be able to programmatically tell the difference between 1x2GB of ram and 2x1GB of ram, thus checking if the computer can be upgraded easily via software. Ideally, a way to check this without .Net.
Use WMI to look at Win32_PhysicalMemory. Look at the Capacity and Bank Label properties.
UPDATED: You do not need .NET for this. See Creating a WMI Application Using C++ for examples in C++
Reviewing the MSDN docs for the functions listed here, I see that the function checks with the SMBIOS table, which is referenced by a standard here
It appears that you indeed can find the information you seek through the BIOS. You may have to install a driver to get that information out to your program.
Good luck!
You don't need WMI (always avoid WMI (slow)), neither any driver (of course)
Use standard Win32 SMB apis
On Linux, I can almost always find that information with dmidecode, which parses the DMI tables from the BIOS. It shows all the memory slots and what is on each one, together with other interesting information. I don't know how to get the DMI data on Windows, however.