Checking RAM Bays (Windows API) - winapi

I know that it is possible to check how much physical RAM is installed using GetPhysicallyInstalledSystemMemory or how much ram the operating system can see using GlobalMemoryStatusEx. However, I am wondering if there is any way to check how much ram a user has installed by slot. That is, to be able to programmatically tell the difference between 1x2GB of ram and 2x1GB of ram, thus checking if the computer can be upgraded easily via software. Ideally, a way to check this without .Net.

Use WMI to look at Win32_PhysicalMemory. Look at the Capacity and Bank Label properties.
UPDATED: You do not need .NET for this. See Creating a WMI Application Using C++ for examples in C++

Reviewing the MSDN docs for the functions listed here, I see that the function checks with the SMBIOS table, which is referenced by a standard here
It appears that you indeed can find the information you seek through the BIOS. You may have to install a driver to get that information out to your program.
Good luck!

You don't need WMI (always avoid WMI (slow)), neither any driver (of course)
Use standard Win32 SMB apis

On Linux, I can almost always find that information with dmidecode, which parses the DMI tables from the BIOS. It shows all the memory slots and what is on each one, together with other interesting information. I don't know how to get the DMI data on Windows, however.

Related

Starting point for coding a virtual device

I want to write something like DaemonTools: a software that presents itself to the system as a real device (a DVD-ROM in the previous example) but it reads the data from a file instead. My requirement is not limited to DVD-ROM. The first goal is a joystick/gamepad for Windows.
I'm a web developer, so I don't know from where I could start such a project. I believe it will have to be written in C/C++, but other than that, I have no clue where to start.
Did anyone tried something like this and can give me some starting tips ?
Most drivers are written in either C or C++, so if you don't know those languages reasonably well, you'll want to get familiar with them before you start. Windows programming uses a lot of interesting shortcuts that might be confusing to a beginner - for example PVOIDs (typedef void* PVOID) and LPVOIDs (typedef void* far LPVOD;). You'll need to be happy with pointers as concepts as well as structures because you'll be using a lot of them. I'd suggest writing a really straightforward win32 app as an exercise in getting to grips with the Windows style of doing C/C++.
Your next port of call then is to navigate the Windows Driver Kit - specifically, you'll need it to build drivers for Windows. At this stage my ability to advise really depends on what you're doing and the hardware you have available etc, or whether or not you're really using hardware. You'll need to know how to drive your hardware and from there you'll need to choose an appropriate way of writing a driver - there are several different types of driver depending on what you need to achieve and it might be you can plug into one of these.
The windows driver kit contains quite a large number of samples, including a driver that implements a virtual toaster. These should provide you with starting points.
I strongly suggest you do the testing of this in a virtual machine. If your driver successfully builds, but causes a runtime error, the result could well crash windows entirely if you're in kernel-mode. You will therefore save yourself some pain by being able to revert the virtual machine if you damage it, as well as not having to wait on your system restarting. It'll also make debugging easier as virtual serial cables can be used.
This is quite a big undertaking, so before you start, I'd research Windows development more thoroughly - check you can't do it using the Windows APIs first, then have a look at the user-mode driver framework, then finally and only if you need to, look at the kernel level stuff.

OpenCL distribution

I'm currently developing an OpenCL-application for a very heterogeneous set of computers (using JavaCL to be specific). In order to maximize performance I want to use a GPU if it's available otherwise I want to fall back to the CPU and use SIMD-instructions. My plan is to implement the OpenCL-code using vector-types because my understanding is that this allows CPUs to vectorize the instructions and use SIMD-instructions.
My question however is regarding which OpenCL-implementation to use. E.g. if the computer has a Nvidia GPU I assume it's best to use Nvidia's library but if no GPU is available I want to use Intel's library to use the SIMD-instructions.
How do I achieve this? Is this handled automatically or do I have to include all libraries and implement some logic to pick the right one? It feels like this is a problem that more people than I are facing.
Update
After testing the different OpenCL-drivers this is my experience so far:
Intel: crashed the JVM when JavaCL tried to call it. After a restart it didn't crash the JVM but it also didn't return any usable
devices (I was using an Intel I7-CPU). When I compiled the
OpenCL-code offline it seemed to be able to do some
auto-vectorization so Intel's compiler seems quite nice.
Nvidia: Refused to install their WHQL-drivers because it claimed I didn't have Nvidia-card (that computer has a Geforce GT 330M). When
I tried it on a different computer I managed to get all the way to
create a kernel but at the first execution it crashed the drivers
(the screen flickered for a while and Windows 7 said it had to
restart the drivers). The second execution caused a bluee-screen of
death.
AMD/ATI: Refused to install 32-bit SDK (I tried that since I will be using a 32-bit JVM) but 64-bit SDK worked well. This is the only
driver which I've managed to execute the code on (after a restart
because at first it gave a cryptic error-message when compiling).
However it doesn't seem to be able to do any implicit vectorization
and since I don't have any ATI GPU I didn't get any performance
increase compared to the Java-implementation. If I use vector-types I
might see some improvements though.
TL;DR None of the drivers seem ready for commercial use. I'm probably better of creating JNI-module with C-code compiled to use SSE-instructions.
First try to understand hosts & devices: http://www.streamcomputing.eu/blog/2011-07-14/basic-concept-hosts-and-devices/
Basically you can just do exactly what you described: check if a certain driver is available and if not, try the next one. What you choose first depends completely on your own preference. I would pick the device I have tested my kernel best on. In JavaCL you can pick the fastest device with JavaCL.createBestContext and CLPlatform.getBestDevice, check the host-code here: http://ochafik.com/blog/?p=501
Know NVidia does not support CPUs via their driver; only AMD and Intel do. Also is targeting multiple devices (say 2 GPUs and a CPU) a bit more difficult.
There is no API providing what you want. however, you can do the following:
i suggest you iterate over clGetPlatformIDs and query for the number of devices (clGetDeviceIDs), and device type for each device;
and pick the platform which has both types.
then build a map in u'r code, that maps for each type the list of platforms supporting it, ordered in some manner.
finally, just get the first item in the list corresponding for CL_DEVICE_TYPE_CPU and the first item corresponding for CL_DEVICE_TYPE_GPU.
if both returned results are equal (platform_cpu == platform_gpu) then pick one of them and use it for both.
if there is a platform supporting both, you will get match as before since you got order lists. then u can also do load balancing if u like on a single platform, like what Intel has.
Sorry for being late to the party, but regarding Intel's implementation behaviour under JavaCL, I'm afraid you've been bitten by a JavaCL bug :
https://github.com/ochafik/nativelibs4java/issues/297
Fixed in JavaCL 1.0.0-RC2 !
Cheers

Device driver without the device?

I'm creating an application that needs to use some kernel level modules, for which I've divided the app into 2: one user-level program and one kernel level program.
After reading about device drivers and walking through some tutorials, I'm a little confused.
Can there be a device driver without any specific device associated with it? Is there anything other than the device driver (kernel code or something) which works in kernel mode?
How do anti-virus programs and other such applications work in kernel mode? Is device driver the correct way or am I missing something?
Yes, device drivers can work without an actual piece of hardware (i.e. the device) attached to the machine. Just think of the different programs that emulate a connected SCSI drive (CD-ROM, whatever) for mounting ISO images. Or think about TrueCrypt, which emulates (removable) drives using containers, which are nothing more than encrypted files on your hard drive.
A word of warning, though: Driver development requires much more thought and has to be done more carefully, no shortcuts, good testing and in general expects you to know quite a good deal about the Windows driver model. Remember that faulty and poor drivers put the whole system's stability in jeopardy.
Honestly, I don't think reading a tutorial is sufficient here. You might want to at least invest in a decent book on that subject. Just my 2 cents, though.
Sorry, but the Windows Internals book is more of a general reading for the curious. I cannot recommend it if you want to engage in driver development - or at most as prerequisite reading to understand the architecture. There are plenty of other books around, although most of them are a bit older.
Depending on your goal, you may get away with one of the simpler driver models. That is not to say that driver development is trivial - in fact I second all aspects of the warning above and would even go further - but it means that you can save some of the more tedious work, if instead of writing a legacy file system filter you'd write one based on the filter manager. However, Windows XP before SP2 did not have it installed by default and Windows 2000 would require SP4+SRP+patch if I remember correctly. WDF (Windows Driver Foundation) makes writing drivers even easier, but it is not suitable for all needs.
The term device is somewhat of bad choice here. Device has a meaning in drivers as well, and it does not necessarily refer to the hardware device (as pointed out). Roughly there is a distinction between PDOs (physical device objects) and CDOs (control device objects). The latter are usually what you get to see in user mode and what can be accessed by means of CreateFile, ReadFile, WriteFile, DeviceIoControl and friends. CDOs are usually made visible to the Win32 realm by means of symbolic links (not to be confused with the file system entities of the same name). Drive letter assignments like C: are actually symbolic links to an underlying device. It depends on the driver whether that'd be a CDO or PDO. The distinction is more of a conceptual one taught as such in classes.
And that's what I would actually recommend. Take a class about Windows driver development. Having attended two seminars from OSR myself, I can highly recommend it. Those folks know what they're talking about. Oh, and sign up to their mailing lists over at OSR Online.
Use Sysinternals' WinObj to find out more about the device and driver objects and symlinks.
As for the question about AVs, yes they use file system filter drivers (briefly mentioned above). The only alternative to a full-fledged legacy FSFD is a mini-filter.
It is possible to load a special kind of DLL in kernel mode, too. But in general a driver is the way into the kernel mode and well documented as such.
Books you may want to consider (by ISBN): Most importantly "Programming the Windows Driver Model" (0735618038), "Windows NT Device Driver Development" (1578700582), "Windows NT File System Internals" (0976717514 (OSR's new edition)), "Undocumented Windows NT" (0764545698) and "Undocumented Windows 2000 Secrets" (0201721872) - and of course "Windows NT/2000 Native API Reference" (9781578701995) (classic). Although the last three more or less give you a better insight and are not strictly needed as reading for driver developers.
Anti-virus (and system recovery) software generally make use of file-system filter drivers. A device can have multiple filter drivers arranged like a stack, and any event/operation on this device has to pass through all the stacked up drivers. For example, anti-viruses install a filter driver for disk device so that they can intercept and scan all file system (read/write) operation.
As mentioned in above post, going through a good book would be a nice way to start. Also, install DDK/WDK and refer the bundled examples.

Finding undocumented APIs in Windows

I was curious as to how does one go about finding undocumented APIs in Windows.
I know the risks involved in using them but this question is focused towards finding them and not whether to use them or not.
Use a tool to dump the export table from a shared library (for example, a .dll such as kernel32.dll). You'll see the named entry points and/or the ordinal entry points. Generally for windows the named entry points are unmangled (extern "C"). You will most likely need to do some peeking at the assembly code and derive the parameters (types, number, order, calling convention, etc) from the stack frame (if there is one) and register usage. If there is no stack frame it is a bit more difficult, but still doable. See the following links for references:
http://www.sf.org.cn/symbian/Tools/symbian_18245.html
http://msdn.microsoft.com/en-us/library/31d242h4.aspx
Check out tools such as dumpbin for investigating export sections.
There are also sites and books out there that try to keep an updated list of undocumented windows APIs:
The Undocumented Functions
A Primer of the Windows Architecture
How To Find Undocumented Constants Used by Windows API Functions
Undocumented Windows
Windows API
Edit:
These same principles work on a multitude of operating systems however, you will need to replace the tool you're using to dump the export table. For example, on Linux you could use nm to dump an object file and list its exports section (among other things). You could also use gdb to set breakpoints and step through the assembly code of an entry point to determine what the arguments should be.
IDA Pro is your best bet here, but please please double please don't actually use them for anything ever.
They're internal because they change; they can (and do) even change as a result of a Hotfix, so you're not even guaranteed your undocumented API will work for the specific OS version and Service Pack level you wrote it for. If you ship a product like that, you're living on borrowed time.
Everybody here so far is missing some substantial functionality that comprises hugely un-documented portions of the Windows OS RPC . RPC (think rpcrt4.dll, lsass.exe, csrss.exe, etc...) operations occur very frequently across all subsystems, via LPC ports or other interfaces, their functionality is buried in the mysticism incantations of various type/sub-type/struct-typedef's etc... which are substantially more difficult to debug, due to the asynchronous nature or the fact that they are destine for process's which if you were to debug via single stepping or what have you, you would find the entire system lockup due to blocking keyboard or other I/O from being passed ;)
ReactOS is probably the most expedient way to investigate undocumented API. They have a fairly mature kernel and other executive's built up. IDA is fairly time-intensive and it's unlikely you will find anything the ReactOS people have not already.
Here's a blurb from the linked page;
ReactOS® is a free, modern operating
system based on the design of Windows®
XP/2003. Written completely from
scratch, it aims to follow the
Windows® architecture designed by
Microsoft from the hardware level
right through to the application
level. This is not a Linux based
system, and shares none of the unix
architecture.
The main goal of the
ReactOS project is to provide an
operating system which is binary
compatible with Windows. This will
allow your Windows applications and
drivers to run as they would on your
Windows system. Additionally, the look
and feel of the Windows operating
system is used, such that people
accustomed to the familiar user
interface of Windows® would find using
ReactOS straightforward. The ultimate
goal of ReactOS is to allow you to
remove Windows® and install ReactOS
without the end user noticing the
change.
When I am investigating some rarely seen Windows construct, ReactOS is often the only credible reference.
Look at the system dlls and what functions they export. Every API function, whether documented or not, is exported in one of them (user, kernel, ...).
For user mode APIs you can open Kernel32.dll User32.dll Gdi32.dll, specially ntdll.dll in dependancy walker and find all the exported APIs. But you will not have the documentation offcourse.
Just found a good article on Native APIS by Mark Russinovich

Windows Temperature Monitor

As part of an application for a client, I need to have a section which reports temperature information (motherboard, CPU, HDD). I know there are standalone applications such as Hardware Monitor by CPUID, but again, these are standalone and I require something that I could interface with.
Is there any app like this which has an API or is open source so I can utilize their source code? I have language preferences other than it needs to run on Windows XP. Thanks.
You get info like this from WMI. Download WMICodeCreator to find the query as well as the code you need to write. Beware that hardware queries like this tend to rely heavily on providers supplied by the hardware or BIOS manufacturer.

Resources