What is "for" in Ruby - ruby

In Ruby:
for i in A do
# some code
end
is the same as:
A.each do |i|
# some code
end
for is not a kernel method:
What exactly is "for" in ruby
Is there a way to use other keywords to do similar things?
Something like:
total = sum i in I {x[i]}
mapping to:
total = I.sum {|i] x[i]}

It's almost syntax sugar. One difference is that, while for would use the scope of the code around it, each creates a separate scope within its block. Compare the following:
for i in (1..3)
x = i
end
p x # => 3
versus
(1..3).each do |i|
x = i
end
p x # => undefined local variable or method `x' for main:Object

for is just syntax sugar for the each method. This can be seen by running this code:
for i in 1 do
end
This results in the error:
NoMethodError: undefined method `each' for 1:Fixnum

For is just syntactic sugar.
From the pickaxe:
For ... In
Earlier we said that the only built-in Ruby looping primitives were while and until. What's this ``for'' thing, then? Well, for is almost a lump of syntactic sugar. When you write
for aSong in songList
aSong.play
end
Ruby translates it into something like:
songList.each do |aSong|
aSong.play
end
The only difference between the for loop and the each form is the scope of local variables that are defined in the body. This is discussed on page 87.
You can use for to iterate over any object that responds to the method each, such as an Array or a Range.
for i in ['fee', 'fi', 'fo', 'fum']
print i, " "
end
for i in 1..3
print i, " "
end
for i in File.open("ordinal").find_all { |l| l =~ /d$/}
print i.chomp, " "
end
produces:
fee fi fo fum 1 2 3 second third
As long as your class defines a sensible each method, you can use a for loop to traverse it.
class Periods
def each
yield "Classical"
yield "Jazz"
yield "Rock"
end
end
periods = Periods.new
for genre in periods
print genre, " "
end
produces:
Classical Jazz Rock
Ruby doesn't have other keywords for list comprehensions (like the sum example you made above). for isn't a terribly popular keyword, and the method syntax ( arr.each {} ) is generally preferred.

Related

calling an array defined in one method in another method

am learning ruby and i had come across this particular issue.
I have method which reads the user input data into an array and i have another method which displays the values in the same array to the user with some processing.
However this doesnt seem to be the correct way as the system always throws a
Arraypass.rb:23:in <main>': undefined local variable or methodnames' for main:Object (NameError)
Appreciate if someone can show a way forward in this,
for example:
class School
def askdetails
print "How many students are there"
n=(gets.chomp.to_i - 1)
print "Enter names one by one"
names=Array.new(n)
for i in (0..n)
names[i]=gets.chomp
end
return names,n
end
def showdetails(names,n)
for i in (0..n)
puts names[i]
end
end
end
stud=School.new
stud.askdetails
stud.showdetails(names,n)
Write the code as
#!/usr/bin/env ruby
class School
def askdetails
print "How many students are there"
n = gets.chomp.to_i - 1
print "Enter names one by one"
names = Array.new(n)
for i in (0..n)
names[i]=gets.chomp
end
return names,n
end
def showdetails(names,n)
for i in (0..n)
puts names[i]
end
end
end
stud = School.new
names, n = stud.askdetails
stud.showdetails(names,n)
The thing, you missed is #askdetails methods returning an Array, which you didn't assign any where before using those.
Read Array Decomposition, this is what I did here :
names, n = stud.askdetails
here is your answer:
names,n = stud.askdetails
stud.showdetails(names,n)

What do c == self and yield do?

Can you help me understand what this class does and how we can make use of it?
class Integer
def myt
c=0
until c == self
yield(c)
c+=1
end
self
end
end
Thank you.
x = Integer.new
x.myt
I tried to test it but it doesn't work. Error is: "no block given (yield)"
Also, in my book it says to test like this:
5.myt (|| puts "I'm on iteration #{i}! "} but it also gives an error - not sure why or what this line of code means.
allonhadaya and PNY did a good job explaining the purpose (enumeration) of the myt method.
Regarding your two questions mentioned in the title:
1.) What does 'c == self' do?
The '==' operator checks whether the integer c and Integer object you instantiate, are equal in value. If they are, the expression evaluates to true.
2.) What does 'yield' do?
The 'yield' statement passes control from the current method to a block which has been provided to the method. Blocks are ruby's implementation of a closure which, simple put, means that a method can be "extended" by calling the method with a block of additional code as long as the method supports a block (ie. incorporates yield statements)
The method seems to be a times implementation.
Basically 5.times { |i| puts i } and 5.myt { |i| puts i } will do exactly the same thing.
First, it sets a counter to 0, c = 0. Then you have a conditional where it checks if c is equal with self which will always be the integer attached to the method myt. It, then yields the counter and return self when is done.
Looks like it enumerates the values between zero inclusively and self exclusively.
allon#ahadaya:~$ irb
irb(main):001:0> class Integer
irb(main):002:1> def myt
irb(main):003:2> c=0
irb(main):004:2> until c == self
irb(main):005:3> yield(c)
irb(main):006:3> c+=1
irb(main):007:3> end
irb(main):008:2> self
irb(main):009:2> end
irb(main):010:1> end
=> nil
irb(main):011:0> 5.myt { |i| puts i }
0
1
2
3
4
=> 5
irb(main):012:0>
Using the example your book gave --
5.myt {|i| puts "I'm on iteration #{i}! "}
#You were missing an object in the pipes and a curly bracket before the pipes (not parentheses)
Allows you to see the internal workings of your myt method. Initializing variable c with a value of 0 the method executes an until look until the condition "c == self" is satisfied. Self references the object, here 5, which the method is acting on.
Therefore ...
def myt
until c == 5 #Until this is true
yield(c) #Do this .. here yield will do whatever the block specified
c+=1 #Increment on each iteration the value of variable c by 1
end #closing the until loop
self #return self
end
The yield within the method passes control from your method to the parameter, a block, back to the method.
Yield therefore allows you to build methods which can have similar patterns but with block you customize it to do your particular need.
If instead of putting each number maybe all you want to do is put the odd integers between 0 and the integer you call the method on --
5.myt {|i| puts i if i.odd?} # returns I am odd: 1 and I am odd: 3
I would suggest that you write your own blocks here to see how yield works and how you can keep the same method but pass in different blocks and create different method outputs!

"for" vs "each" in Ruby

I just had a quick question regarding loops in Ruby. Is there a difference between these two ways of iterating through a collection?
# way 1
#collection.each do |item|
# do whatever
end
# way 2
for item in #collection
# do whatever
end
Just wondering if these are exactly the same or if maybe there's a subtle difference (possibly when #collection is nil).
This is the only difference:
each:
irb> [1,2,3].each { |x| }
=> [1, 2, 3]
irb> x
NameError: undefined local variable or method `x' for main:Object
from (irb):2
from :0
for:
irb> for x in [1,2,3]; end
=> [1, 2, 3]
irb> x
=> 3
With the for loop, the iterator variable still lives after the block is done. With the each loop, it doesn't, unless it was already defined as a local variable before the loop started.
Other than that, for is just syntax sugar for the each method.
When #collection is nil both loops throw an exception:
Exception: undefined local variable or method `#collection' for main:Object
See "The Evils of the For Loop" for a good explanation (there's one small difference considering variable scoping).
Using each is considered more idiomatic use of Ruby.
Your first example,
#collection.each do |item|
# do whatever
end
is more idiomatic. While Ruby supports looping constructs like for and while, the block syntax is generally preferred.
Another subtle difference is that any variable you declare within a for loop will be available outside the loop, whereas those within an iterator block are effectively private.
One more different..
number = ["one", "two", "three"]
=> ["one", "two", "three"]
loop1 = []
loop2 = []
number.each do |c|
loop1 << Proc.new { puts c }
end
=> ["one", "two", "three"]
for c in number
loop2 << Proc.new { puts c }
end
=> ["one", "two", "three"]
loop1[1].call
two
=> nil
loop2[1].call
three
=> nil
source: http://paulphilippov.com/articles/enumerable-each-vs-for-loops-in-ruby
for more clear: http://www.ruby-forum.com/topic/179264#784884
Never ever use for it may cause almost untraceable bugs.
Don't be fooled, this is not about idiomatic code or style issues. Ruby's implementation of for has a serious flaw and should not be used.
Here is an example where for introduces a bug,
class Library
def initialize
#ary = []
end
def method_with_block(&block)
#ary << block
end
def method_that_uses_these_blocks
#ary.map(&:call)
end
end
lib = Library.new
for n in %w{foo bar quz}
lib.method_with_block { n }
end
puts lib.method_that_uses_these_blocks
Prints
quz
quz
quz
Using %w{foo bar quz}.each { |n| ... } prints
foo
bar
quz
Why?
In a for loop the variable n is defined once and only and then that one definition is use for all iterations. Hence each blocks refer to the same n which has a value of quz by the time the loop ends. Bug!
In an each loop a fresh variable n is defined for each iteration, for example above the variable n is defined three separate times. Hence each block refer to a separate n with the correct values.
It looks like there is no difference, for uses each underneath.
$ irb
>> for x in nil
>> puts x
>> end
NoMethodError: undefined method `each' for nil:NilClass
from (irb):1
>> nil.each {|x| puts x}
NoMethodError: undefined method `each' for nil:NilClass
from (irb):4
Like Bayard says, each is more idiomatic. It hides more from you and doesn't require special language features.
Per Telemachus's Comment
for .. in .. sets the iterator outside the scope of the loop, so
for a in [1,2]
puts a
end
leaves a defined after the loop is finished. Where as each doesn't. Which is another reason in favor of using each, because the temp variable lives a shorter period.
(1..4).each { |i|
a = 9 if i==3
puts a
}
#nil
#nil
#9
#nil
for i in 1..4
a = 9 if i==3
puts a
end
#nil
#nil
#9
#9
In 'for' loop, local variable is still lives after each loop. In 'each' loop, local variable refreshes after each loop.
As far as I know, using blocks instead of in-language control structures is more idiomatic.
I just want to make a specific point about the for in loop in Ruby. It might seem like a construct similar to other languages, but in fact it is an expression like every other looping construct in Ruby. In fact, the for in works with Enumerable objects just as the each iterator.
The collection passed to for in can be any object that has an each iterator method. Arrays and hashes define the each method, and many other Ruby objects do, too. The for/in loop calls the each method of the specified object. As that iterator yields values, the for loop assigns each value (or each set of values) to the specified variable (or variables) and then executes the code in body.
This is a silly example, but illustrates the point that the for in loop works with ANY object that has an each method, just like how the each iterator does:
class Apple
TYPES = %w(red green yellow)
def each
yield TYPES.pop until TYPES.empty?
end
end
a = Apple.new
for i in a do
puts i
end
yellow
green
red
=> nil
And now the each iterator:
a = Apple.new
a.each do |i|
puts i
end
yellow
green
red
=> nil
As you can see, both are responding to the each method which yields values back to the block. As everyone here stated, it is definitely preferable to use the each iterator over the for in loop. I just wanted to drive home the point that there is nothing magical about the for in loop. It is an expression that invokes the each method of a collection and then passes it to its block of code. Hence, it is a very rare case you would need to use for in. Use the each iterator almost always (with the added benefit of block scope).

In Ruby, why is a method invocation not able to be treated as a unit when "do" and "end" is used?

The following question is related to the question "Ruby Print Inject Do Syntax". My question is, can we insist on using do and end and make it work with puts or p?
This works:
a = [1,2,3,4]
b = a.inject do |sum, x|
sum + x
end
puts b # prints out 10
so, is it correct to say, inject is an instance method of the Array object, and this instance method takes a block of code, and then returns a number. If so, then it should be no different from calling a function or method and getting back a return value:
b = foo(3)
puts b
or
b = circle.getRadius()
puts b
In the above two cases, we can directly say
puts foo(3)
puts circle.getRadius()
so, there is no way to make it work directly by using the following 2 ways:
a = [1,2,3,4]
puts a.inject do |sum, x|
sum + x
end
but it gives
ch01q2.rb:7:in `inject': no block given (LocalJumpError)
from ch01q2.rb:4:in `each'
from ch01q2.rb:4:in `inject'
from ch01q2.rb:4
grouping the method call using ( ) doesn't work either:
a = [1,2,3,4]
puts (a.inject do |sum, x|
sum + x
end)
and this gives:
ch01q3.rb:4: syntax error, unexpected kDO_BLOCK, expecting ')'
puts (a.inject do |sum, x|
^
ch01q3.rb:4: syntax error, unexpected '|', expecting '='
puts (a.inject do |sum, x|
^
ch01q3.rb:6: syntax error, unexpected kEND, expecting $end
end)
^
finally, the following version works:
a = [1,2,3,4]
puts a.inject { |sum, x|
sum + x
}
but why doesn't the grouping of the method invocation using ( ) work in the earlier example? What if a programmer insist that he uses do and end, can it be made to work?
From the (unofficial) ruby grammar, we see that the contents of (...) in puts (...) must be CALL_ARGS, which don't directly reduce to STMT. However, they can reduce to '(' COMPSTMT ')'. By including an extra set of parentheses, you can use do ... end.
a = [1,2,3,4]
puts ((a.inject do |sum, x|
sum + x
end))
The issue here isn't just your parentheses: it's primarily the space after puts before the parentheses.
With the code
a = [1,2,3,4]
puts (a.inject do |sum, x|
sum + x
end)
We get the syntax errors you listed in the question.
If you drop the space after puts,
a = [1,2,3,4]
puts(a.inject do |sum, x|
sum + x
end)
prints out 10 as expected.
Finally, using puts ((a.inject... with the space and double parentheses also prints out 10, but running that through ruby -cw XXX.rb tells us:
a.rb:5: warning: (...) interpreted as grouped expression
Syntax OK
ruby -cw is used to Check the syntax with full Warnings turned on. When -cw is on, you will be warned about dubious parentheses and grouping. The error I'm more used to seeing is "don't put space before argument parentheses" -- so don't do that either!
Lastly, the reason a.inject do fails without parentheses but a.inject { works, is that braces have a higher precedence than do/end. As a very rough guideline, you could say that p a.map { foo } is equivalent to p(a.map do foo end); and p a.map do foo end is equivalent to (p a.map) do foo end, which of course does not take a block argument.
See also the Ruby quick reference on blocks (particularly the last two lines):
Blocks, Closures, and Procs
Blocks/Closures
blocks must follow a method invocation:
invocation do ... end
invocation { ... }
Blocks remember their variable context, and are full closures.
Blocks are invoked via yield and may be passed arguments.
Brace form has higher precedence and will bind to the last parameter if invocation made w/o parens.
do/end form has lower precedence and will bind to the invocation even without parens.

Hidden features of Ruby

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Continuing the "Hidden features of ..." meme, let's share the lesser-known but useful features of Ruby programming language.
Try to limit this discussion with core Ruby, without any Ruby on Rails stuff.
See also:
Hidden features of C#
Hidden features of Java
Hidden features of JavaScript
Hidden features of Ruby on Rails
Hidden features of Python
(Please, just one hidden feature per answer.)
Thank you
From Ruby 1.9 Proc#=== is an alias to Proc#call, which means Proc objects can be used in case statements like so:
def multiple_of(factor)
Proc.new{|product| product.modulo(factor).zero?}
end
case number
when multiple_of(3)
puts "Multiple of 3"
when multiple_of(7)
puts "Multiple of 7"
end
Peter Cooper has a good list of Ruby tricks. Perhaps my favorite of his is allowing both single items and collections to be enumerated. (That is, treat a non-collection object as a collection containing just that object.) It looks like this:
[*items].each do |item|
# ...
end
Don't know how hidden this is, but I've found it useful when needing to make a Hash out of a one-dimensional array:
fruit = ["apple","red","banana","yellow"]
=> ["apple", "red", "banana", "yellow"]
Hash[*fruit]
=> {"apple"=>"red", "banana"=>"yellow"}
One trick I like is to use the splat (*) expander on objects other than Arrays. Here's an example on a regular expression match:
match, text, number = *"Something 981".match(/([A-z]*) ([0-9]*)/)
Other examples include:
a, b, c = *('A'..'Z')
Job = Struct.new(:name, :occupation)
tom = Job.new("Tom", "Developer")
name, occupation = *tom
Wow, no one mentioned the flip flop operator:
1.upto(100) do |i|
puts i if (i == 3)..(i == 15)
end
One of the cool things about ruby is that you can call methods and run code in places other languages would frown upon, such as in method or class definitions.
For instance, to create a class that has an unknown superclass until run time, i.e. is random, you could do the following:
class RandomSubclass < [Array, Hash, String, Fixnum, Float, TrueClass].sample
end
RandomSubclass.superclass # could output one of 6 different classes.
This uses the 1.9 Array#sample method (in 1.8.7-only, see Array#choice), and the example is pretty contrived but you can see the power here.
Another cool example is the ability to put default parameter values that are non fixed (like other languages often demand):
def do_something_at(something, at = Time.now)
# ...
end
Of course the problem with the first example is that it is evaluated at definition time, not call time. So, once a superclass has been chosen, it stays that superclass for the remainder of the program.
However, in the second example, each time you call do_something_at, the at variable will be the time that the method was called (well, very very close to it)
Another tiny feature - convert a Fixnum into any base up to 36:
>> 1234567890.to_s(2)
=> "1001001100101100000001011010010"
>> 1234567890.to_s(8)
=> "11145401322"
>> 1234567890.to_s(16)
=> "499602d2"
>> 1234567890.to_s(24)
=> "6b1230i"
>> 1234567890.to_s(36)
=> "kf12oi"
And as Huw Walters has commented, converting the other way is just as simple:
>> "kf12oi".to_i(36)
=> 1234567890
Hashes with default values! An array in this case.
parties = Hash.new {|hash, key| hash[key] = [] }
parties["Summer party"]
# => []
parties["Summer party"] << "Joe"
parties["Other party"] << "Jane"
Very useful in metaprogramming.
Another fun addition in 1.9 Proc functionality is Proc#curry which allows you to turn a Proc accepting n arguments into one accepting n-1. Here it is combined with the Proc#=== tip I mentioned above:
it_is_day_of_week = lambda{ |day_of_week, date| date.wday == day_of_week }
it_is_saturday = it_is_day_of_week.curry[6]
it_is_sunday = it_is_day_of_week.curry[0]
case Time.now
when it_is_saturday
puts "Saturday!"
when it_is_sunday
puts "Sunday!"
else
puts "Not the weekend"
end
Download Ruby 1.9 source, and issue make golf, then you can do things like this:
make golf
./goruby -e 'h'
# => Hello, world!
./goruby -e 'p St'
# => StandardError
./goruby -e 'p 1.tf'
# => 1.0
./goruby19 -e 'p Fil.exp(".")'
"/home/manveru/pkgbuilds/ruby-svn/src/trunk"
Read the golf_prelude.c for more neat things hiding away.
Boolean operators on non boolean values.
&& and ||
Both return the value of the last expression evaluated.
Which is why the ||= will update the variable with the value returned expression on the right side if the variable is undefined. This is not explicitly documented, but common knowledge.
However the &&= isn't quite so widely known about.
string &&= string + "suffix"
is equivalent to
if string
string = string + "suffix"
end
It's very handy for destructive operations that should not proceed if the variable is undefined.
The Symbol#to_proc function that Rails provides is really cool.
Instead of
Employee.collect { |emp| emp.name }
You can write:
Employee.collect(&:name)
One final one - in ruby you can use any character you want to delimit strings. Take the following code:
message = "My message"
contrived_example = "<div id=\"contrived\">#{message}</div>"
If you don't want to escape the double-quotes within the string, you can simply use a different delimiter:
contrived_example = %{<div id="contrived-example">#{message}</div>}
contrived_example = %[<div id="contrived-example">#{message}</div>]
As well as avoiding having to escape delimiters, you can use these delimiters for nicer multiline strings:
sql = %{
SELECT strings
FROM complicated_table
WHERE complicated_condition = '1'
}
Use a Range object as an infinite lazy list:
Inf = 1.0 / 0
(1..Inf).take(5) #=> [1, 2, 3, 4, 5]
More info here: http://banisterfiend.wordpress.com/2009/10/02/wtf-infinite-ranges-in-ruby/
I find using the define_method command to dynamically generate methods to be quite interesting and not as well known. For example:
((0..9).each do |n|
define_method "press_#{n}" do
#number = #number.to_i * 10 + n
end
end
The above code uses the 'define_method' command to dynamically create the methods "press1" through "press9." Rather then typing all 10 methods which essentailly contain the same code, the define method command is used to generate these methods on the fly as needed.
module_function
Module methods that are declared as module_function will create copies of themselves as private instance methods in the class that includes the Module:
module M
def not!
'not!'
end
module_function :not!
end
class C
include M
def fun
not!
end
end
M.not! # => 'not!
C.new.fun # => 'not!'
C.new.not! # => NoMethodError: private method `not!' called for #<C:0x1261a00>
If you use module_function without any arguments, then any module methods that comes after the module_function statement will automatically become module_functions themselves.
module M
module_function
def not!
'not!'
end
def yea!
'yea!'
end
end
class C
include M
def fun
not! + ' ' + yea!
end
end
M.not! # => 'not!'
M.yea! # => 'yea!'
C.new.fun # => 'not! yea!'
Short inject, like such:
Sum of range:
(1..10).inject(:+)
=> 55
Warning: this item was voted #1 Most Horrendous Hack of 2008, so use with care. Actually, avoid it like the plague, but it is most certainly Hidden Ruby.
Superators Add New Operators to Ruby
Ever want a super-secret handshake operator for some unique operation in your code? Like playing code golf? Try operators like
-~+~-
or
<---
That last one is used in the examples for reversing the order of an item.
I have nothing to do with the Superators Project beyond admiring it.
I'm late to the party, but:
You can easily take two equal-length arrays and turn them into a hash with one array supplying the keys and the other the values:
a = [:x, :y, :z]
b = [123, 456, 789]
Hash[a.zip(b)]
# => { :x => 123, :y => 456, :z => 789 }
(This works because Array#zip "zips" up the values from the two arrays:
a.zip(b) # => [[:x, 123], [:y, 456], [:z, 789]]
And Hash[] can take just such an array. I've seen people do this as well:
Hash[*a.zip(b).flatten] # unnecessary!
Which yields the same result, but the splat and flatten are wholly unnecessary--perhaps they weren't in the past?)
Auto-vivifying hashes in Ruby
def cnh # silly name "create nested hash"
Hash.new {|h,k| h[k] = Hash.new(&h.default_proc)}
end
my_hash = cnh
my_hash[1][2][3] = 4
my_hash # => { 1 => { 2 => { 3 =>4 } } }
This can just be damn handy.
Destructuring an Array
(a, b), c, d = [ [:a, :b ], :c, [:d1, :d2] ]
Where:
a #=> :a
b #=> :b
c #=> :c
d #=> [:d1, :d2]
Using this technique we can use simple assignment to get the exact values we want out of nested array of any depth.
Class.new()
Create a new class at run time. The argument can be a class to derive from, and the block is the class body. You might also want to look at const_set/const_get/const_defined? to get your new class properly registered, so that inspect prints out a name instead of a number.
Not something you need every day, but quite handy when you do.
create an array of consecutive numbers:
x = [*0..5]
sets x to [0, 1, 2, 3, 4, 5]
A lot of the magic you see in Rubyland has to do with metaprogramming, which is simply writing code that writes code for you. Ruby's attr_accessor, attr_reader, and attr_writer are all simple metaprogramming, in that they create two methods in one line, following a standard pattern. Rails does a whole lot of metaprogramming with their relationship-management methods like has_one and belongs_to.
But it's pretty simple to create your own metaprogramming tricks using class_eval to execute dynamically-written code.
The following example allows a wrapper object to forwards certain methods along to an internal object:
class Wrapper
attr_accessor :internal
def self.forwards(*methods)
methods.each do |method|
define_method method do |*arguments, &block|
internal.send method, *arguments, &block
end
end
end
forwards :to_i, :length, :split
end
w = Wrapper.new
w.internal = "12 13 14"
w.to_i # => 12
w.length # => 8
w.split('1') # => ["", "2 ", "3 ", "4"]
The method Wrapper.forwards takes symbols for the names of methods and stores them in the methods array. Then, for each of those given, we use define_method to create a new method whose job it is to send the message along, including all arguments and blocks.
A great resource for metaprogramming issues is Why the Lucky Stiff's "Seeing Metaprogramming Clearly".
use anything that responds to ===(obj) for case comparisons:
case foo
when /baz/
do_something_with_the_string_matching_baz
when 12..15
do_something_with_the_integer_between_12_and_15
when lambda { |x| x % 5 == 0 }
# only works in Ruby 1.9 or if you alias Proc#call as Proc#===
do_something_with_the_integer_that_is_a_multiple_of_5
when Bar
do_something_with_the_instance_of_Bar
when some_object
do_something_with_the_thing_that_matches_some_object
end
Module (and thus Class), Regexp, Date, and many other classes define an instance method :===(other), and can all be used.
Thanks to Farrel for the reminder of Proc#call being aliased as Proc#=== in Ruby 1.9.
The "ruby" binary (at least MRI's) supports a lot of the switches that made perl one-liners quite popular.
Significant ones:
-n Sets up an outer loop with just "gets" - which magically works with given filename or STDIN, setting each read line in $_
-p Similar to -n but with an automatic puts at the end of each loop iteration
-a Automatic call to .split on each input line, stored in $F
-i In-place edit input files
-l Automatic call to .chomp on input
-e Execute a piece of code
-c Check source code
-w With warnings
Some examples:
# Print each line with its number:
ruby -ne 'print($., ": ", $_)' < /etc/irbrc
# Print each line reversed:
ruby -lne 'puts $_.reverse' < /etc/irbrc
# Print the second column from an input CSV (dumb - no balanced quote support etc):
ruby -F, -ane 'puts $F[1]' < /etc/irbrc
# Print lines that contain "eat"
ruby -ne 'puts $_ if /eat/i' < /etc/irbrc
# Same as above:
ruby -pe 'next unless /eat/i' < /etc/irbrc
# Pass-through (like cat, but with possible line-end munging):
ruby -p -e '' < /etc/irbrc
# Uppercase all input:
ruby -p -e '$_.upcase!' < /etc/irbrc
# Same as above, but actually write to the input file, and make a backup first with extension .bak - Notice that inplace edit REQUIRES input files, not an input STDIN:
ruby -i.bak -p -e '$_.upcase!' /etc/irbrc
Feel free to google "ruby one-liners" and "perl one-liners" for tons more usable and practical examples. It essentially allows you to use ruby as a fairly powerful replacement to awk and sed.
The send() method is a general-purpose method that can be used on any Class or Object in Ruby. If not overridden, send() accepts a string and calls the name of the method whose string it is passed. For example, if the user clicks the “Clr” button, the ‘press_clear’ string will be sent to the send() method and the ‘press_clear’ method will be called. The send() method allows for a fun and dynamic way to call functions in Ruby.
%w(7 8 9 / 4 5 6 * 1 2 3 - 0 Clr = +).each do |btn|
button btn, :width => 46, :height => 46 do
method = case btn
when /[0-9]/: 'press_'+btn
when 'Clr': 'press_clear'
when '=': 'press_equals'
when '+': 'press_add'
when '-': 'press_sub'
when '*': 'press_times'
when '/': 'press_div'
end
number.send(method)
number_field.replace strong(number)
end
end
I talk more about this feature in Blogging Shoes: The Simple-Calc Application
Fool some class or module telling it has required something that it really hasn't required:
$" << "something"
This is useful for example when requiring A that in turns requires B but we don't need B in our code (and A won't use it either through our code):
For example, Backgroundrb's bdrb_test_helper requires 'test/spec', but you don't use it at all, so in your code:
$" << "test/spec"
require File.join(File.dirname(__FILE__) + "/../bdrb_test_helper")
Defining a method that accepts any number of parameters and just discards them all
def hello(*)
super
puts "hello!"
end
The above hello method only needs to puts "hello" on the screen and call super - but since the superclass hello defines parameters it has to as well - however since it doesn't actually need to use the parameters itself - it doesn't have to give them a name.
private unless Rails.env == 'test'
# e.g. a bundle of methods you want to test directly
Looks like a cool and (in some cases) nice/useful hack/feature of Ruby.

Resources