Hidden features of Ruby - ruby

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Continuing the "Hidden features of ..." meme, let's share the lesser-known but useful features of Ruby programming language.
Try to limit this discussion with core Ruby, without any Ruby on Rails stuff.
See also:
Hidden features of C#
Hidden features of Java
Hidden features of JavaScript
Hidden features of Ruby on Rails
Hidden features of Python
(Please, just one hidden feature per answer.)
Thank you

From Ruby 1.9 Proc#=== is an alias to Proc#call, which means Proc objects can be used in case statements like so:
def multiple_of(factor)
Proc.new{|product| product.modulo(factor).zero?}
end
case number
when multiple_of(3)
puts "Multiple of 3"
when multiple_of(7)
puts "Multiple of 7"
end

Peter Cooper has a good list of Ruby tricks. Perhaps my favorite of his is allowing both single items and collections to be enumerated. (That is, treat a non-collection object as a collection containing just that object.) It looks like this:
[*items].each do |item|
# ...
end

Don't know how hidden this is, but I've found it useful when needing to make a Hash out of a one-dimensional array:
fruit = ["apple","red","banana","yellow"]
=> ["apple", "red", "banana", "yellow"]
Hash[*fruit]
=> {"apple"=>"red", "banana"=>"yellow"}

One trick I like is to use the splat (*) expander on objects other than Arrays. Here's an example on a regular expression match:
match, text, number = *"Something 981".match(/([A-z]*) ([0-9]*)/)
Other examples include:
a, b, c = *('A'..'Z')
Job = Struct.new(:name, :occupation)
tom = Job.new("Tom", "Developer")
name, occupation = *tom

Wow, no one mentioned the flip flop operator:
1.upto(100) do |i|
puts i if (i == 3)..(i == 15)
end

One of the cool things about ruby is that you can call methods and run code in places other languages would frown upon, such as in method or class definitions.
For instance, to create a class that has an unknown superclass until run time, i.e. is random, you could do the following:
class RandomSubclass < [Array, Hash, String, Fixnum, Float, TrueClass].sample
end
RandomSubclass.superclass # could output one of 6 different classes.
This uses the 1.9 Array#sample method (in 1.8.7-only, see Array#choice), and the example is pretty contrived but you can see the power here.
Another cool example is the ability to put default parameter values that are non fixed (like other languages often demand):
def do_something_at(something, at = Time.now)
# ...
end
Of course the problem with the first example is that it is evaluated at definition time, not call time. So, once a superclass has been chosen, it stays that superclass for the remainder of the program.
However, in the second example, each time you call do_something_at, the at variable will be the time that the method was called (well, very very close to it)

Another tiny feature - convert a Fixnum into any base up to 36:
>> 1234567890.to_s(2)
=> "1001001100101100000001011010010"
>> 1234567890.to_s(8)
=> "11145401322"
>> 1234567890.to_s(16)
=> "499602d2"
>> 1234567890.to_s(24)
=> "6b1230i"
>> 1234567890.to_s(36)
=> "kf12oi"
And as Huw Walters has commented, converting the other way is just as simple:
>> "kf12oi".to_i(36)
=> 1234567890

Hashes with default values! An array in this case.
parties = Hash.new {|hash, key| hash[key] = [] }
parties["Summer party"]
# => []
parties["Summer party"] << "Joe"
parties["Other party"] << "Jane"
Very useful in metaprogramming.

Another fun addition in 1.9 Proc functionality is Proc#curry which allows you to turn a Proc accepting n arguments into one accepting n-1. Here it is combined with the Proc#=== tip I mentioned above:
it_is_day_of_week = lambda{ |day_of_week, date| date.wday == day_of_week }
it_is_saturday = it_is_day_of_week.curry[6]
it_is_sunday = it_is_day_of_week.curry[0]
case Time.now
when it_is_saturday
puts "Saturday!"
when it_is_sunday
puts "Sunday!"
else
puts "Not the weekend"
end

Download Ruby 1.9 source, and issue make golf, then you can do things like this:
make golf
./goruby -e 'h'
# => Hello, world!
./goruby -e 'p St'
# => StandardError
./goruby -e 'p 1.tf'
# => 1.0
./goruby19 -e 'p Fil.exp(".")'
"/home/manveru/pkgbuilds/ruby-svn/src/trunk"
Read the golf_prelude.c for more neat things hiding away.

Boolean operators on non boolean values.
&& and ||
Both return the value of the last expression evaluated.
Which is why the ||= will update the variable with the value returned expression on the right side if the variable is undefined. This is not explicitly documented, but common knowledge.
However the &&= isn't quite so widely known about.
string &&= string + "suffix"
is equivalent to
if string
string = string + "suffix"
end
It's very handy for destructive operations that should not proceed if the variable is undefined.

The Symbol#to_proc function that Rails provides is really cool.
Instead of
Employee.collect { |emp| emp.name }
You can write:
Employee.collect(&:name)

One final one - in ruby you can use any character you want to delimit strings. Take the following code:
message = "My message"
contrived_example = "<div id=\"contrived\">#{message}</div>"
If you don't want to escape the double-quotes within the string, you can simply use a different delimiter:
contrived_example = %{<div id="contrived-example">#{message}</div>}
contrived_example = %[<div id="contrived-example">#{message}</div>]
As well as avoiding having to escape delimiters, you can use these delimiters for nicer multiline strings:
sql = %{
SELECT strings
FROM complicated_table
WHERE complicated_condition = '1'
}

Use a Range object as an infinite lazy list:
Inf = 1.0 / 0
(1..Inf).take(5) #=> [1, 2, 3, 4, 5]
More info here: http://banisterfiend.wordpress.com/2009/10/02/wtf-infinite-ranges-in-ruby/

I find using the define_method command to dynamically generate methods to be quite interesting and not as well known. For example:
((0..9).each do |n|
define_method "press_#{n}" do
#number = #number.to_i * 10 + n
end
end
The above code uses the 'define_method' command to dynamically create the methods "press1" through "press9." Rather then typing all 10 methods which essentailly contain the same code, the define method command is used to generate these methods on the fly as needed.

module_function
Module methods that are declared as module_function will create copies of themselves as private instance methods in the class that includes the Module:
module M
def not!
'not!'
end
module_function :not!
end
class C
include M
def fun
not!
end
end
M.not! # => 'not!
C.new.fun # => 'not!'
C.new.not! # => NoMethodError: private method `not!' called for #<C:0x1261a00>
If you use module_function without any arguments, then any module methods that comes after the module_function statement will automatically become module_functions themselves.
module M
module_function
def not!
'not!'
end
def yea!
'yea!'
end
end
class C
include M
def fun
not! + ' ' + yea!
end
end
M.not! # => 'not!'
M.yea! # => 'yea!'
C.new.fun # => 'not! yea!'

Short inject, like such:
Sum of range:
(1..10).inject(:+)
=> 55

Warning: this item was voted #1 Most Horrendous Hack of 2008, so use with care. Actually, avoid it like the plague, but it is most certainly Hidden Ruby.
Superators Add New Operators to Ruby
Ever want a super-secret handshake operator for some unique operation in your code? Like playing code golf? Try operators like
-~+~-
or
<---
That last one is used in the examples for reversing the order of an item.
I have nothing to do with the Superators Project beyond admiring it.

I'm late to the party, but:
You can easily take two equal-length arrays and turn them into a hash with one array supplying the keys and the other the values:
a = [:x, :y, :z]
b = [123, 456, 789]
Hash[a.zip(b)]
# => { :x => 123, :y => 456, :z => 789 }
(This works because Array#zip "zips" up the values from the two arrays:
a.zip(b) # => [[:x, 123], [:y, 456], [:z, 789]]
And Hash[] can take just such an array. I've seen people do this as well:
Hash[*a.zip(b).flatten] # unnecessary!
Which yields the same result, but the splat and flatten are wholly unnecessary--perhaps they weren't in the past?)

Auto-vivifying hashes in Ruby
def cnh # silly name "create nested hash"
Hash.new {|h,k| h[k] = Hash.new(&h.default_proc)}
end
my_hash = cnh
my_hash[1][2][3] = 4
my_hash # => { 1 => { 2 => { 3 =>4 } } }
This can just be damn handy.

Destructuring an Array
(a, b), c, d = [ [:a, :b ], :c, [:d1, :d2] ]
Where:
a #=> :a
b #=> :b
c #=> :c
d #=> [:d1, :d2]
Using this technique we can use simple assignment to get the exact values we want out of nested array of any depth.

Class.new()
Create a new class at run time. The argument can be a class to derive from, and the block is the class body. You might also want to look at const_set/const_get/const_defined? to get your new class properly registered, so that inspect prints out a name instead of a number.
Not something you need every day, but quite handy when you do.

create an array of consecutive numbers:
x = [*0..5]
sets x to [0, 1, 2, 3, 4, 5]

A lot of the magic you see in Rubyland has to do with metaprogramming, which is simply writing code that writes code for you. Ruby's attr_accessor, attr_reader, and attr_writer are all simple metaprogramming, in that they create two methods in one line, following a standard pattern. Rails does a whole lot of metaprogramming with their relationship-management methods like has_one and belongs_to.
But it's pretty simple to create your own metaprogramming tricks using class_eval to execute dynamically-written code.
The following example allows a wrapper object to forwards certain methods along to an internal object:
class Wrapper
attr_accessor :internal
def self.forwards(*methods)
methods.each do |method|
define_method method do |*arguments, &block|
internal.send method, *arguments, &block
end
end
end
forwards :to_i, :length, :split
end
w = Wrapper.new
w.internal = "12 13 14"
w.to_i # => 12
w.length # => 8
w.split('1') # => ["", "2 ", "3 ", "4"]
The method Wrapper.forwards takes symbols for the names of methods and stores them in the methods array. Then, for each of those given, we use define_method to create a new method whose job it is to send the message along, including all arguments and blocks.
A great resource for metaprogramming issues is Why the Lucky Stiff's "Seeing Metaprogramming Clearly".

use anything that responds to ===(obj) for case comparisons:
case foo
when /baz/
do_something_with_the_string_matching_baz
when 12..15
do_something_with_the_integer_between_12_and_15
when lambda { |x| x % 5 == 0 }
# only works in Ruby 1.9 or if you alias Proc#call as Proc#===
do_something_with_the_integer_that_is_a_multiple_of_5
when Bar
do_something_with_the_instance_of_Bar
when some_object
do_something_with_the_thing_that_matches_some_object
end
Module (and thus Class), Regexp, Date, and many other classes define an instance method :===(other), and can all be used.
Thanks to Farrel for the reminder of Proc#call being aliased as Proc#=== in Ruby 1.9.

The "ruby" binary (at least MRI's) supports a lot of the switches that made perl one-liners quite popular.
Significant ones:
-n Sets up an outer loop with just "gets" - which magically works with given filename or STDIN, setting each read line in $_
-p Similar to -n but with an automatic puts at the end of each loop iteration
-a Automatic call to .split on each input line, stored in $F
-i In-place edit input files
-l Automatic call to .chomp on input
-e Execute a piece of code
-c Check source code
-w With warnings
Some examples:
# Print each line with its number:
ruby -ne 'print($., ": ", $_)' < /etc/irbrc
# Print each line reversed:
ruby -lne 'puts $_.reverse' < /etc/irbrc
# Print the second column from an input CSV (dumb - no balanced quote support etc):
ruby -F, -ane 'puts $F[1]' < /etc/irbrc
# Print lines that contain "eat"
ruby -ne 'puts $_ if /eat/i' < /etc/irbrc
# Same as above:
ruby -pe 'next unless /eat/i' < /etc/irbrc
# Pass-through (like cat, but with possible line-end munging):
ruby -p -e '' < /etc/irbrc
# Uppercase all input:
ruby -p -e '$_.upcase!' < /etc/irbrc
# Same as above, but actually write to the input file, and make a backup first with extension .bak - Notice that inplace edit REQUIRES input files, not an input STDIN:
ruby -i.bak -p -e '$_.upcase!' /etc/irbrc
Feel free to google "ruby one-liners" and "perl one-liners" for tons more usable and practical examples. It essentially allows you to use ruby as a fairly powerful replacement to awk and sed.

The send() method is a general-purpose method that can be used on any Class or Object in Ruby. If not overridden, send() accepts a string and calls the name of the method whose string it is passed. For example, if the user clicks the “Clr” button, the ‘press_clear’ string will be sent to the send() method and the ‘press_clear’ method will be called. The send() method allows for a fun and dynamic way to call functions in Ruby.
%w(7 8 9 / 4 5 6 * 1 2 3 - 0 Clr = +).each do |btn|
button btn, :width => 46, :height => 46 do
method = case btn
when /[0-9]/: 'press_'+btn
when 'Clr': 'press_clear'
when '=': 'press_equals'
when '+': 'press_add'
when '-': 'press_sub'
when '*': 'press_times'
when '/': 'press_div'
end
number.send(method)
number_field.replace strong(number)
end
end
I talk more about this feature in Blogging Shoes: The Simple-Calc Application

Fool some class or module telling it has required something that it really hasn't required:
$" << "something"
This is useful for example when requiring A that in turns requires B but we don't need B in our code (and A won't use it either through our code):
For example, Backgroundrb's bdrb_test_helper requires 'test/spec', but you don't use it at all, so in your code:
$" << "test/spec"
require File.join(File.dirname(__FILE__) + "/../bdrb_test_helper")

Defining a method that accepts any number of parameters and just discards them all
def hello(*)
super
puts "hello!"
end
The above hello method only needs to puts "hello" on the screen and call super - but since the superclass hello defines parameters it has to as well - however since it doesn't actually need to use the parameters itself - it doesn't have to give them a name.

private unless Rails.env == 'test'
# e.g. a bundle of methods you want to test directly
Looks like a cool and (in some cases) nice/useful hack/feature of Ruby.

Related

What kinds of names are legal for Ruby methods?

In this article, it uses the following method.
h = {}
def h.[]=(k, v)
puts "Setting hash key #{k} with #{v.inspect}"
super
end
# 1. The standard ||= approach
h[:x] ||= 10
h[:x] ||= 20
...
I understand that this is a setter like this for =( ) part.
def noise=(noise)
#noise = noise
end
Q1. But I am not sure what .[] part is doing.
Q2. Can you use [] or other non-alphabets in a Ruby method name?
Q1. But I am not sure what .[] part is doing.
Almost everything is an object in Ruby, and we can define a method on anything that's an object. So []= is a method defined on the Hash class (an object) in Ruby, just like + and - are methods on numbers (also objects):
> 4 + 5
# => 9
> 4.+(5)
# => 9
> 10.-(3)
# => 7
Likewise, we can call the .[] or .[]= methods for objects that define it, like an Array:
> arr = ['hi', 'there', 'welcome', 'to', 'StackOverflow']
> arr.[](3)
# => "to"
or like your Hash:
> hash = {:name => 'Bob', :age => 27}
> hash[:name]
# => "Bob"
> hash[:name] = 'Steve'
# => "Steve"
Again, Ruby lets us put methods on anything that's an object, and (almost) everything is an object in Ruby. So we can define that .[] method on any class we like:
> class Foo
> def [](arg)
> arg
> end
> end
> Foo.new[456]
> # => 456
Since instances of objects are also objects, we can define that method to be only on specific instances:
> h = {} # a Hash instance
> def h.[](arg) # we're giving this instance a new method
> "received #{arg}"
> end
> h[123]
# => "received 123"
Other instances of the same class won't get that implementation:
> {:foo => :bar}[123] # other Hash instances don't have this method,
# so they're using the default Hash#[] method
# => nil
.[] is something of a special case in one respect, because we let you skip the parentheses and put the argument right inside the brackets:
> arr[3] == arr.[](3)
# => true
Q2. Can you use [] or other non-alphabets in a Ruby method name?
No, you can't use [] in the name of an arbitrary Ruby method. This is an operator (like + or - in the previous example).
You can only overload specific operators, namely (listed in order of precedence):
!, ~, + (unary)
**
- (unary)
*, /, %
+, - (binary)
<<, >>
&
|, ^
<, <=, =>, >
==, ===, !=, =~, !~, <=>
Otherwise, a Ruby method can contain any mixture of alphanumeric Unicode characters and underscores. (I'm using "alphanumeric" loosely here -- Ruby is very liberal in what it allows, and generally speaking any character that isn't otherwise reserved by the language to tokenize things will work.) It may optionally end with a single ! or ?, and it may not start with a number.
So these are valid method names:
present?
valid_user?
replace!
replace
更换 (but you probably should make your method names using the A-Z Latin alphabet so developers don't hate you)
❨╯°□°❩╯︵┻━┻
┬─┬ノ❨º_ºノ❩
replace_all
REPLACE_1
REPLACE_ALL
Note that while the last two are valid method names, by convention Rubyists usually reserve ALL-CAPS identifiers for constants, not methods.
In Ruby, [] and []= are just operators and they can be overloaded.
Here []= is being defined on the singleton class for h, in other words, it is being defined to work a certain way just for h.
So when you say h[something] = somethingelse the new method gets called.
You are right that this use is quite similar to the general use of setters.
To answer the second question, you can overload the operators shown in this table, but you can't just go ahead and create operators like <-*-> as you can in some languages.

What is the # (sharp, number, pound, hash) sign used for in Ruby?

What are the various meanings of the Ruby sharp/number sign/pound/hash(#) symbol
How many contexts does the symbol # in Ruby have ?
I know that #` represents comment
# a comment
or 'convert to the value':
i = 1
print "#{i}" # simple example
However I also see some Ruby docs describe built-in methods like these:
Array#fill
File::file?
Why do they describe the same thing using 2 different symbols ?
I am new in Ruby. Thanks
This is how instance method described:
Array#fill
So you can:
a = Array.new(2)
=> [nil, nil]
a.fill(42)
=> [42, 42]
This is how class method described:
String::new
s = String.new('abc')
=> "abc"
In Perl, # is used for commenting, and since Perl is an 'ancestor' of Ruby, the role was carried over.
The "#{}" syntax is called 'interpolation' and the pound was picked most likely because interpolation is similar in a sense to commenting, because you are changing the context of your code (in this case to another context for execution)
The # following a Class name is just meant to indicate the following identifier is a method of that Class, and is just a convention. Read more about it here: Why are methods in Ruby documentation preceded by a hash sign?
The :: is interesting, it acts similarly to the . in that you can call methods via both
Car::is_hybrid?
and
car.is_hybrid?
As you will see in most code though . is preferred for methods.
One case where :: is often preferred is where you have constant in the class and you will see this in system calls such as Math::PI or ones you create, e.g. ThePentagon::NUMBER_OF_BUILDING_SIDES
Just to show you as an example,that Ruby shows instance method preceded with the symbol # and class methods preceded with the symbol ..
class Foo
def self.foo;end
def bar;end
end
p Foo.method(:foo) # => #<Method: Foo.foo>
p Foo.new.method(:bar) # => #<Method: Foo#bar>

Is it possible to access block's scope in method?

I'd like to write the method (define_variables) which can get a block and use the variables defined in it. Is it possible? For example, I'd like to get 5 in output:
module A
def self.define_variables
yield
puts a # not 5 :(
end
end
A::define_variables do
a = 5
end
Maybe there is some tricks with eval, but haven't found anyone yet.
In short, no. After you've called yield those variables defined in the block are gone (sort of, as we shall see), except for what is returned—that's just how scope works. In your example, the 5 is still there in that it is returned by the block, and thus puts yield would print 5. Using this you could return a hash from the block {:a => 5}, and then access multiple "variables" that way. In Ruby 1.8 (in IRb only) you can do:
eval "a = 5"
a # => 5
Though I don't know of anyway to eval the contents of a block. Regardless, in Ruby 1.9 the scope of eval was isolated and this will give you a NameError. You can do an eval within the context of a Binding though:
def foo
b = yield
eval(a, b) + 2
end
foo do
a = 5
binding
end # => 7
It seems to me that what you're trying to do is emulate macros in Ruby, which is just not possible (at least not pure Ruby), and I discourage the use of any of the "workarounds" I've mentioned above.
Agreed that this is a bit backwards, and Andrew's explanation is correct. If your use case is defining variables, however, there are already class_variable_set and instance_variable_set methods that are great for this:
module A
def self.define_variables(vars = {})
vars.each { |n, v| class_variable_set n, v }
puts ##a
end
end
A::define_variables :##a => 5
The above is more of an example of how it would work within the code you've posted rather than a recommendation.

Why don't numbers support .dup?

>> a = 5
=> 5
>> b = "hello, world!"
=> "hello, world!"
>> b.dup
=> "hello, world!"
>> a.dup
TypeError: can't dup Fixnum
from (irb):4:in `dup'
from (irb):4
I understand that Ruby will make a copy every time you assign an integer to a new variable, but why does Numeric#dup raise an error?
Wouldn't this break abstraction, since all objects should be expected to respond to .dup properly?
Rewriting the dup method will fix the problem, as far as I can tell:
>> class Numeric
>> def dup()
>> self
>> end
>> end
Does this have a downside I'm not seeing? Why isn't this built into Ruby?
Most objects in Ruby are passed by reference and can be dupped. Eg:
s = "Hello"
t = s # s & t reference to the same string
t.upcase! # modifying either one will affect the other
s # ==> "HELLO"
A few objects in Ruby are immediate, though. They are passed by value, there can only be one of this value and it therefore cannot be duped. These are any (small) integers, true, false, symbols and nil. Many floats are also immediates in Ruby 2.0 on 64 bit systems.
In this (preposterous) example, any "42" will hold the same instance variable.
class Fixnum
attr_accessor :name
alias_method :original_to_s, :to_s
def to_s
name || original_to_s
end
end
42.name = "The Answer"
puts *41..43 # => 41, The Answer, 43
Since you would normally expect something.dup.name = "new name" to not affect any other object than the copy obtained with dup, Ruby chooses not to define dup on immediates.
Your question is more complex than it appears. There was some discussion on ruby-core as to how this can be made easier. Also, other types of Numeric objects (floats, bignums, rationals and complex numbers) can not be duped although they are not immediates either.
Note that ActiveSupport (part of rails) provide the method duplicable? on all objects
The problem with the dup() function that you defined is that it doesn't return a copy of the object, but rather returns the object itself. This is not what a duplicate procedure is supposed to do.
I don't know Ruby, but a possible reason I can think of for dup not being defined for numbers is that a number is a basic type and thus, doing something like:
>> a = 5
>> b = a
would automatically assign the value 5 into the variable b, as opposed to making b and a point to the same value in memory.

hash['key'] to hash.key in Ruby

I have a a hash
foo = {'bar'=>'baz'}
I would like to call foo.bar #=> 'baz'
My motivation is rewriting an activerecord query into a raw sql query (using Model#find_by_sql). This returns a hash with the SELECT clause values as keys. However, my existing code relies on object.method dot notation. I'd like to do minimal code rewrite. Thanks.
Edit: it appears Lua has this feature:
point = { x = 10, y = 20 } -- Create new table
print(point["x"]) -- Prints 10
print(point.x) -- Has exactly the same meaning as line above
>> require 'ostruct'
=> []
>> foo = {'bar'=>'baz'}
=> {"bar"=>"baz"}
>> foo_obj = OpenStruct.new foo
=> #<OpenStruct bar="baz">
>> foo_obj.bar
=> "baz"
>>
What you're looking for is called OpenStruct. It's part of the standard library.
A good solution:
class Hash
def method_missing(method, *opts)
m = method.to_s
if self.has_key?(m)
return self[m]
elsif self.has_key?(m.to_sym)
return self[m.to_sym]
end
super
end
end
Note: this implementation has only one known bug:
x = { 'test' => 'aValue', :test => 'bar'}
x.test # => 'aValue'
If you prefer symbol lookups rather than string lookups, then swap the two 'if' condition
Rather than copy all the stuff out of the hash, you can just add some behaviour to Hash to do lookups.
If you add this defintion, you extend Hash to handle all unknown methods as hash lookups:
class Hash
def method_missing(n)
self[n.to_s]
end
end
Bear in mind that this means that you won't ever see errors if you call the wrong method on hash - you'll just get whatever the corresponding hash lookup would return.
You can vastly reduce the debugging problems this can cause by only putting the method onto a specific hash - or as many hashes as you need:
a={'foo'=>5, 'goo'=>6}
def a.method_missing(n)
self[n.to_s]
end
The other observation is that when method_missing gets called by the system, it gives you a Symbol argument. My code converted it into a String. If your hash keys aren't strings this code will never return those values - if you key by symbols instead of strings, simply substitute n for n.to_s above.
There are a few gems for this. There's my recent gem, hash_dot, and a few other gems with similar names I discovered as I released mine on RubyGems, including dot_hash.
HashDot allows dot notation syntax, while still addressing concerns about NoMethodErrors addressed by #avdi. It is faster, and more traversable than an object created with OpenStruct.
require 'hash_dot'
a = {b: {c: {d: 1}}}.to_dot
a.b.c.d => 1
require 'open_struct'
os = OpenStruct.new(a)
os.b => {c: {d: 1}}
os.b.c.d => NoMethodError
It also maintains expected behavior when non-methods are called.
a.non_method => NoMethodError
Please feel free to submit improvements or bugs to HashDot.

Resources