Win32 console processes in VISTA - 10% CPU, but VERY SLOW - winapi

I have a Win32 console application which is doing some computations, compiled in Compaq Visual Fortran (which probably doesn't matter).
I need to run a lot of them simultaneously.
In XP, they take around 90-100% CPU together, work very fast.
In Vista, no matter how many of them I run, they take no more than 10% of CPU (together), and work very slow respectively.
There is quite a bit of console output going on, but now VERY much.
I can minimize all the windows, it does not help. CPU is basically doing nothing...
Any ideas?
Update:
No, these are different machines, but they run relatively the same hardware. 2. Threads are not used, this is a VERY OLD (20 yrs) plain app for DOS, compiled in win32. It is supposed to compute iterations until they meet, consume all it has. My impression - VISTA just does NOT GIVE IT MORE CPU

Have you tried redirecting the console output to a file?
If your applications are being held up writing to the console (this happens sometimes unfortunately) then redirecting the output should help, as it's much quicker to write to a simple file than write to the console.
You do this like so
c:\temp> dir > output.log
If you really don't care about the output at all, you can throw it away, by redirecting to nul. eg:
c:\temp> dir > nul

There was a known "feature" in Vista that limits certain console applications to 32MB of RAM. I don't know if those compiled by Compaq Visual Fortran are affected by this "feature."
This article appears to have been updated as recently as October 2008, so the problem still exists.

To expound on Daok's post - your XP machine might be CPU bound for this process, whereas the vista machine is bound by some other resource.
To clarify:
output to stdout (or other) can be slowing down the processing. (as can context switching or file access, etc)

As Tim hinted, console output (stdout) is EXTREMELY expensive.
I suggest rerunning your test while redirecting the console output to a separate log file for each process. If possible, tune down the verbosity of the output in another test run.
Beyond that, there are other obvious possibilities: is the hardware significantly different, are there other major processes running, is there a shared resource that is under contention?
Other than the obvious, look for a nonobvious resource contention such as a shared file.
But the main area where I would look is whether there is a significant difference in how your code is compiled for the two OS environments--I wonder if your Fortran code is incurring some kind of special penalty when running on Vista, such as a compatibility mode. Look to see how well Vista is supported and whether you can target your compile for Vista specifically. Also look for anyone reporting similar issues, such as in bug reports, feature requests, etc.

Your loops are obviously not simple computations. There is a blocking system call in there somewhere. Just because it worked on XP doesn't mean the app is bug free.
Since you can minimize the console windows and see no improvement, I would not consider that an issue. In my experience console output slows a program down only if the console window is drawing text, not when it's minimized.

Is it the same machine hardware on your Vista and XP? It might use just 10% of the Vista because it doesn't require more. Are you using Thread? I think it requires more information about your project to have a better idea. Have you try to use a profiler to see what's going on?

Related

Memory dump for period of time

When a program is misbehaving, it is pretty easy to capture a memory dump of the process, and then analyze it with a tool like WinDBG. However, this is pretty limited, you only get a snapshot of what the process is doing, and in some cases finding why a certain part of the code was reached is really difficult.
Is there any way of capturing memory dumps for a period of time, like recording a movie rather than taking a picture, which would indicate what changed in that period of time, and the parts of the code that were executed in that time interval?
Recording many memory dumps
Is there any way of capturing memory dumps for a period of time, like recording a movie rather than taking a picture
Yes, that exists. It's called Procdump and you can define the number of dumps with the -n parameter and the seconds between dumps with -s. It might not work well for small values of s, because it takes longer to take the crash dump.
Example:
procdump -ma -n 10 -s 1 <PID> ./dumps
However, this technique is usually not very helpful, because you now have 10 dumps to analyze instead of just 1 - and analyzing 1 dump is already difficult. AFAIK, there's no tool that would compare two dumps and give you the differences.
Live debugging
IMHO, what you need is live debugging. And that's possible with WinDbg, too. Development debugging (using an IDE) and production debugging are two different skills. So you don't need to install a complete IDE such as Visual Studio on your customer's production environment. Actually, if you copy an existing WinDbg installation onto a USB stick, it will run portable.
Simply start WinDbg, attach to a process (F6), start a log file (.logopen), set up Microsoft symbols, configure exceptions (sx) and let the program run (g).
Remote debugging
Perhaps you may even want to have a look into WinDbg's remote debugging capabilities, however, that's a bit harder to set up, usually due to IT restrictions (firewall etc.).
Visual Studio also offers remote debugging, so you can use VS on your machine and just install a smaller program on your customer's machine. I hardly have experience with it, so I can't tell you much.
Logging
the parts of the code that were executed in that time interval?
The most typical approch I see applied by any company is turning on the logging capabilities of your application.
You can also record useful data with WPT (Windows Performance Toolkit), namely WPR (Windows Performance Recorder) and later analyze it with WPA (Windows Performance Analyzer). It will give you call stacks over time.

How do I get Windows to go as fast as Linux for compiling C++?

I know this is not so much a programming question but it is relevant.
I work on a fairly large cross platform project. On Windows I use VC++ 2008. On Linux I use gcc. There are around 40k files in the project. Windows is 10x to 40x slower than Linux at compiling and linking the same project. How can I fix that?
A single change incremental build 20 seconds on Linux and > 3 mins on Windows. Why? I can even install the 'gold' linker in Linux and get that time down to 7 seconds.
Similarly git is 10x to 40x faster on Linux than Windows.
In the git case it's possible git is not using Windows in the optimal way but VC++? You'd think Microsoft would want to make their own developers as productive as possible and faster compilation would go a long way toward that. Maybe they are trying to encourage developers into C#?
As simple test, find a folder with lots of subfolders and do a simple
dir /s > c:\list.txt
on Windows. Do it twice and time the second run so it runs from the cache. Copy the files to Linux and do the equivalent 2 runs and time the second run.
ls -R > /tmp/list.txt
I have 2 workstations with the exact same specs. HP Z600s with 12gig of ram, 8 cores at 3.0ghz. On a folder with ~400k files Windows takes 40seconds, Linux takes < 1 second.
Is there a registry setting I can set to speed up Windows? What gives?
A few slightly relevant links, relevant to compile times, not necessarily i/o.
Apparently there's an issue in Windows 10 (not in Windows 7) that closing a process holds a global lock. When compiling with multiple cores and therefore multiple processes this issue hits.
The /analyse option can adversely affect perf because it loads a web browser. (Not relevant here but good to know)
Unless a hardcore Windows systems hacker comes along, you're not going to get more than partisan comments (which I won't do) and speculation (which is what I'm going to try).
File system - You should try the same operations (including the dir) on the same filesystem. I came across this which benchmarks a few filesystems for various parameters.
Caching. I once tried to run a compilation on Linux on a RAM disk and found that it was slower than running it on disk thanks to the way the kernel takes care of caching. This is a solid selling point for Linux and might be the reason why the performance is so different.
Bad dependency specifications on Windows. Maybe the chromium dependency specifications for Windows are not as correct as for Linux. This might result in unnecessary compilations when you make a small change. You might be able to validate this using the same compiler toolchain on Windows.
A few ideas:
Disable 8.3 names. This can be a big factor on drives with a large number of files and a relatively small number of folders: fsutil behavior set disable8dot3 1
Use more folders. In my experience, NTFS starts to slow down with more than about 1000 files per folder.
Enable parallel builds with MSBuild; just add the "/m" switch, and it will automatically start one copy of MSBuild per CPU core.
Put your files on an SSD -- helps hugely for random I/O.
If your average file size is much greater than 4KB, consider rebuilding the filesystem with a larger cluster size that corresponds roughly to your average file size.
Make sure the files have been defragmented. Fragmented files cause lots of disk seeks, which can cost you a factor of 40+ in throughput. Use the "contig" utility from sysinternals, or the built-in Windows defragmenter.
If your average file size is small, and the partition you're on is relatively full, it's possible that you are running with a fragmented MFT, which is bad for performance. Also, files smaller than 1K are stored directly in the MFT. The "contig" utility mentioned above can help, or you may need to increase the MFT size. The following command will double it, to 25% of the volume: fsutil behavior set mftzone 2 Change the last number to 3 or 4 to increase the size by additional 12.5% increments. After running the command, reboot and then create the filesystem.
Disable last access time: fsutil behavior set disablelastaccess 1
Disable the indexing service
Disable your anti-virus and anti-spyware software, or at least set the relevant folders to be ignored.
Put your files on a different physical drive from the OS and the paging file. Using a separate physical drive allows Windows to use parallel I/Os to both drives.
Have a look at your compiler flags. The Windows C++ compiler has a ton of options; make sure you're only using the ones you really need.
Try increasing the amount of memory the OS uses for paged-pool buffers (make sure you have enough RAM first): fsutil behavior set memoryusage 2
Check the Windows error log to make sure you aren't experiencing occasional disk errors.
Have a look at Physical Disk related performance counters to see how busy your disks are. High queue lengths or long times per transfer are bad signs.
The first 30% of disk partitions is much faster than the rest of the disk in terms of raw transfer time. Narrower partitions also help minimize seek times.
Are you using RAID? If so, you may need to optimize your choice of RAID type (RAID-5 is bad for write-heavy operations like compiling)
Disable any services that you don't need
Defragment folders: copy all files to another drive (just the files), delete the original files, copy all folders to another drive (just the empty folders), then delete the original folders, defragment the original drive, copy the folder structure back first, then copy the files. When Windows builds large folders one file at a time, the folders end up being fragmented and slow. ("contig" should help here, too)
If you are I/O bound and have CPU cycles to spare, try turning disk compression ON. It can provide some significant speedups for highly compressible files (like source code), with some cost in CPU.
NTFS saves file access time everytime. You can try disabling it:
"fsutil behavior set disablelastaccess 1"
(restart)
The issue with visual c++ is, as far I can tell, that it is not a priority for the compiler team to optimize this scenario.
Their solution is that you use their precompiled header feature. This is what windows specific projects have done. It is not portable, but it works.
Furthermore, on windows you typically have virus scanners, as well as system restore and search tools that can ruin your build times completely if they monitor your buid folder for you. windows 7 resouce monitor can help you spot it.
I have a reply here with some further tips for optimizing vc++ build times if you're really interested.
The difficulty in doing that is due to the fact that C++ tends to spread itself and the compilation process over many small, individual, files. That's something Linux is good at and Windows is not. If you want to make a really fast C++ compiler for Windows, try to keep everything in RAM and touch the filesystem as little as possible.
That's also how you'll make a faster Linux C++ compile chain, but it is less important in Linux because the file system is already doing a lot of that tuning for you.
The reason for this is due to Unix culture:
Historically file system performance has been a much higher priority in the Unix world than in Windows. Not to say that it hasn't been a priority in Windows, just that in Unix it has been a higher priority.
Access to source code.
You can't change what you can't control. Lack of access to Windows NTFS source code means that most efforts to improve performance have been though hardware improvements. That is, if performance is slow, you work around the problem by improving the hardware: the bus, the storage medium, and so on. You can only do so much if you have to work around the problem, not fix it.
Access to Unix source code (even before open source) was more widespread. Therefore, if you wanted to improve performance you would address it in software first (cheaper and easier) and hardware second.
As a result, there are many people in the world that got their PhDs by studying the Unix file system and finding novel ways to improve performance.
Unix tends towards many small files; Windows tends towards a few (or a single) big file.
Unix applications tend to deal with many small files. Think of a software development environment: many small source files, each with their own purpose. The final stage (linking) does create one big file but that is an small percentage.
As a result, Unix has highly optimized system calls for opening and closing files, scanning directories, and so on. The history of Unix research papers spans decades of file system optimizations that put a lot of thought into improving directory access (lookups and full-directory scans), initial file opening, and so on.
Windows applications tend to open one big file, hold it open for a long time, close it when done. Think of MS-Word. msword.exe (or whatever) opens the file once and appends for hours, updates internal blocks, and so on. The value of optimizing the opening of the file would be wasted time.
The history of Windows benchmarking and optimization has been on how fast one can read or write long files. That's what gets optimized.
Sadly software development has trended towards the first situation. Heck, the best word processing system for Unix (TeX/LaTeX) encourages you to put each chapter in a different file and #include them all together.
Unix is focused on high performance; Windows is focused on user experience
Unix started in the server room: no user interface. The only thing users see is speed. Therefore, speed is a priority.
Windows started on the desktop: Users only care about what they see, and they see the UI. Therefore, more energy is spent on improving the UI than performance.
The Windows ecosystem depends on planned obsolescence. Why optimize software when new hardware is just a year or two away?
I don't believe in conspiracy theories but if I did, I would point out that in the Windows culture there are fewer incentives to improve performance. Windows business models depends on people buying new machines like clockwork. (That's why the stock price of thousands of companies is affected if MS ships an operating system late or if Intel misses a chip release date.). This means that there is an incentive to solve performance problems by telling people to buy new hardware; not by improving the real problem: slow operating systems. Unix comes from academia where the budget is tight and you can get your PhD by inventing a new way to make file systems faster; rarely does someone in academia get points for solving a problem by issuing a purchase order. In Windows there is no conspiracy to keep software slow but the entire ecosystem depends on planned obsolescence.
Also, as Unix is open source (even when it wasn't, everyone had access to the source) any bored PhD student can read the code and become famous by making it better. That doesn't happen in Windows (MS does have a program that gives academics access to Windows source code, it is rarely taken advantage of). Look at this selection of Unix-related performance papers: http://www.eecs.harvard.edu/margo/papers/ or look up the history of papers by Osterhaus, Henry Spencer, or others. Heck, one of the biggest (and most enjoyable to watch) debates in Unix history was the back and forth between Osterhaus and Selzer http://www.eecs.harvard.edu/margo/papers/usenix95-lfs/supplement/rebuttal.html
You don't see that kind of thing happening in the Windows world. You might see vendors one-uping each other, but that seems to be much more rare lately since the innovation seems to all be at the standards body level.
That's how I see it.
Update: If you look at the new compiler chains that are coming out of Microsoft, you'll be very optimistic because much of what they are doing makes it easier to keep the entire toolchain in RAM and repeating less work. Very impressive stuff.
I personally found running a windows virtual machine on linux managed to remove a great deal of the IO slowness in windows, likely because the linux vm was doing lots of caching that Windows itself was not.
Doing that I was able to speed up compile times of a large (250Kloc) C++ project I was working on from something like 15 minutes to about 6 minutes.
Incremental linking
If the VC 2008 solution is set up as multiple projects with .lib outputs, you need to set "Use Library Dependency Inputs"; this makes the linker link directly against the .obj files rather than the .lib. (And actually makes it incrementally link.)
Directory traversal performance
It's a bit unfair to compare directory crawling on the original machine with crawling a newly created directory with the same files on another machine. If you want an equivalent test, you should probably make another copy of the directory on the source machine. (It may still be slow, but that could be due to any number of things: disk fragmentation, short file names, background services, etc.) Although I think the perf issues for dir /s have more to do with writing the output than measuring actual file traversal performance. Even dir /s /b > nul is slow on my machine with a huge directory.
I'm pretty sure it's related to the filesystem. I work on a cross-platform project for Linux and Windows where all the code is common except for where platform-dependent code is absolutely necessary. We use Mercurial, not git, so the "Linuxness" of git doesn't apply. Pulling in changes from the central repository takes forever on Windows compared to Linux, but I do have to say that our Windows 7 machines do a lot better than the Windows XP ones. Compiling the code after that is even worse on VS 2008. It's not just hg; CMake runs a lot slower on Windows as well, and both of these tools use the file system more than anything else.
The problem is so bad that most of our developers that work in a Windows environment don't even bother doing incremental builds anymore - they find that doing a unity build instead is faster.
Incidentally, if you want to dramatically decrease compilation speed in Windows, I'd suggest the aforementioned unity build. It's a pain to implement correctly in the build system (I did it for our team in CMake), but once done automagically speeds things up for our continuous integration servers. Depending on how many binaries your build system is spitting out, you can get 1 to 2 orders of magnitude improvement. Your mileage may vary. In our case I think it sped up the Linux builds threefold and the Windows one by about a factor of 10, but we have a lot of shared libraries and executables (which decreases the advantages of a unity build).
How do you build your large cross platform project?
If you are using common makefiles for Linux and Windows you could easily degrade windows performance by a factor of 10 if the makefiles are not designed to be fast on Windows.
I just fixed some makefiles of a cross platform project using common (GNU) makefiles for Linux and Windows. Make is starting a sh.exe process for each line of a recipe causing the performance difference between Windows and Linux!
According to the GNU make documentation
.ONESHELL:
should solve the issue, but this feature is (currently) not supported for Windows make. So rewriting the recipes to be on single logical lines (e.g. by adding ;\ or \ at the end of the current editor lines) worked very well!
IMHO this is all about disk I/O performance. The order of magnitude suggests a lot of the operations go to disk under Windows whereas they're handled in memory under Linux, i.e. Linux is caching better. Your best option under windows will be to move your files onto a fast disk, server or filesystem. Consider buying an Solid State Drive or moving your files to a ramdisk or fast NFS server.
I ran the directory traversal tests and the results are very close to the compilation times reported, suggesting this has nothing to do with CPU processing times or compiler/linker algorithms at all.
Measured times as suggested above traversing the chromium directory tree:
Windows Home Premium 7 (8GB Ram) on NTFS: 32 seconds
Ubuntu 11.04 Linux (2GB Ram) on NTFS: 10 seconds
Ubuntu 11.04 Linux (2GB Ram) on ext4: 0.6 seconds
For the tests I pulled the chromium sources (both under win/linux)
git clone http://github.com/chromium/chromium.git
cd chromium
git checkout remotes/origin/trunk
To measure the time I ran
ls -lR > ../list.txt ; time ls -lR > ../list.txt # bash
dir -Recurse > ../list.txt ; (measure-command { dir -Recurse > ../list.txt }).TotalSeconds #Powershell
I did turn off access timestamps, my virus scanner and increased the cache manager settings under windows (>2Gb RAM) - all without any noticeable improvements. Fact of the matter is, out of the box Linux performed 50x better than Windows with a quarter of the RAM.
For anybody who wants to contend that the numbers wrong - for whatever reason - please give it a try and post your findings.
Try using jom instead of nmake
Get it here:
https://github.com/qt-labs/jom
The fact is that nmake is using only one of your cores, jom is a clone of nmake that make uses of multicore processors.
GNU make do that out-of-the-box thanks to the -j option, that might be a reason of its speed vs the Microsoft nmake.
jom works by executing in parallel different make commands on different processors/cores.
Try yourself an feel the difference!
I want to add just one observation using Gnu make and other tools from MinGW tools on Windows: They seem to resolve hostnames even when the tools can not even communicate via IP. I would guess this is caused by some initialisation routine of the MinGW runtime. Running a local DNS proxy helped me to improve the compilation speed with these tools.
Before I got a big headache because the build speed dropped by a factor of 10 or so when I opened a VPN connection in parallel. In this case all these DNS lookups went through the VPN.
This observation might also apply to other build tools, not only MinGW based and it could have changed on the latest MinGW version meanwhile.
I recently could archive an other way to speed up compilation by about 10% on Windows using Gnu make by replacing the mingw bash.exe with the version from win-bash
(The win-bash is not very comfortable regarding interactive editing.)

What is causing one Vista machine to be 10 times faster than another machine?

We run a Fortran console program we have run for years. Recently we purchased identical new HP server class machines (4 processors, 8 gig ram, 4 hard drives) for everyone in the office. We configured them identically as nearly as we know. We can compile the Fortran program on one machine, pass the executable to the different machines, and on two machines it executes painfully slow, while on two others it has modest performance (but not as good as before we upgraded from XP machines).
It uses almost no console output (about 40 lines) but outputs about 15 megs of files.
We open task manager to see what's going on, and we see that on the slow machines it's loading ONE CPU to about 15%. On the fast machines it's loading ALL CPUs to about 40% (but one of them seems to load more than the others). As I recall, on XP it loaded the CPU to 99%, and ran much faster.
These machines are the employees' general purpose machines, and have lots of company bloatware on them. And there is the possibility they have slightly different directory structures. But what seems totally puzzling to me is why Vista is not giving them more CPU time. If the CPUs were loading up, I might blame the performance variation on different directory structures, but not loading up the CPUs just boggles my mind.
David
if there's a bottleneck in IO, the CPU wouldn't be loaded as much because it's mostly waiting for the IO to take place. One could even imagine this to cause the one CPU vs many CPUs problem if there's just no point in kicking in another CPU because there's plenty of time between while waiting. What if you take an external HD and try out if the differences also take place if you run the same program on that HD on different machines?
Please go into Windows task manager, Performance / - Select in [View] the option: [Kernel Times] and look what's displayed on the bars during program execution.
If its only 15% load on quad+hyperthreading box, that says basically, OpenMP, MPI (or whatever it uses) - isn't properly working - works on 1/8 => 15%. Can you run the MPI-test command for your specific system in order to check for errors in multiprocessing on each box? Therefore, the question would be - why does the multiprocessing environment not work?
Regards
rbo
SWAG, but have you checked your virus scanner configuration? If the scanner isn't set to ignore the type of file you're writing on the slow machine, then each write to those files might be getting intercepted and scanned before being written to the disk. This could lead to the process sitting in I/O wait and not getting scheduled as often.
Vista had a problem with some uncontrollably memory leaks, perhaps this is your error, some conflict in the "bloatware" is causing a memory leak and so your Fortran program is running so much slower?
I assume you have tested this with all programs ended. It seems unlikely that your console program is the issue. Sounds like there's definitely a memory conflict going on though.

what to do when windows goes in dreaded 100% cpu usage zombie mode

happens to me occasionally:
I start my program in visual studio and due to some bug my program goes into 100% cpu usage and basically freezes windows completely.
Only by utter patience requesting the task manager (takes forever to come up and paint itself) I can kill my process.
Do others encounter this too sometimes? Is there a clever trick to get this process down (other than pulling the plug and possible ruining files on the HD)? It now takes 5-10 minutes to kill it properly if the task manager is not accidentally present and I have to request this first
R
p.s. weird that a 'multitasking os' can still allow processes to eat up so much time that nothing else can be done anymore. My program doesn't even bump up it's thread priorities or anything
Check out Process Lasso
"Process Lasso is a unique new technology that will, amongst other things, improve your PC's responsiveness and stability. Windows, by design, allows programs to monopolize your CPU without restraint -- leading to freezes and hangs. Process Lasso's ProBalance (Process Balance) technology intelligently adjusts the priority of running programs so that badly behaved or overly active processes won't interfere with your ability to use the computer!"
http://www.bitsum.com/prolasso.php
I am not affiliated with Bitsum, just a user of their product, and it helps me solve this type of problems.
For what it's worth, I've never see this on either XP 64 or Vista 64, developing C++ apps in Visual Studio. Perhaps an OS upgrade is in order?
Edit: I use Process Explorer as a replacement Task Manager - it wouldn't surprise me if it did a better job of appearing in good time even when there's a rogue process running. And you can use it to boost its own priority.
I usually hit ctrl-alt-delete start the task manager sort by cpu find the offending process and right click and end the process..
task manager usually has enough priority to do this although it may be slow.
I think a shotgun to the head is the only way to be sure.
I generally don't see anything like this happen strictly as a function of an app that's eating 100% CPU. As part of stability / performance testing, I've gotten apps to cause Windows to get very slow, but this is usually done by writing heavily threaded apps (thus causing the O/S scheduler to thrash), or by writing apps that consume all available system memory or resources (much more impactful to the GUI apps than simply one thread that consumes its full share of processor time during its slices).
You say you get this behavior under Visual Studio? VS has a "Pause" button...

What causes the MS Windows 'System' Process to go nuts when compiling?

A couple of times recently I have noticed that 'something' is causing the Windows System Process to sit at 50+% and it will not quit until the PC is rebooted. Happening on Win2k and Win XP so far.
This is particularly troublesome because it currently appears to be triggered by MSVC 2005/Incredibuild and rebooting the build servers is not a nice thing.
At the same time the 'System Idle Process' process is holding the rest of the CPU and the build steps themselves seem to be starved. ie. a module that normally takes <5 minutes to compile is currently taking 20+.
I'd take a few guesses at maybe being virus checker or tortoise svn but would desperatly like some other suggestions.
Edit:
I've been experiencing this as something that is triggered, and the culprit may not be ongoing. Thats not to say that some other ongoing process hasn't done something 'stupid' and is managing an active lock up of System while appearing to be idle itself.
System (100% of 1 core), and System Idle Process are sharing 98-100% of the total CPU.
Occasionaly mt.exe, link.exe, buildservice would get a look in at 1-2%.
I'm running VNC to view the machine, so it's getting a look in on occasion.
Edit 2:
When left the previous evening the build process seemed to be progressing all be it slowly, but after waiting another 13 hours the 1 hour build process hasn't completed. System is still hogging the 1 core.
My understanding is that the "System" process is the time spent in the kernel (so performing disk I/O, network I/O (you did mention Incredibuild) and the like) -- I'd check for disk fragmentation, virus checkers and possibly look at these on other machines in your Incredibuild cluster.
As the System Idle process runs at "Low" priority, it's a red herring that it'd be "taking up CPU time" -- if anything it's just showing that there is available CPU time available. The fact the processing is stuck to a single processor shows that the process is doing something that is not multi-core aware, or someone has set it's thread affinity to 1.
I've noticed the virus checking software that I use can radically slow down compilation but it does not extend beyond the end of the build. Turning off advanced and heuristic checking improves this to the extent that I do not have to disable the scanner entirely. I have changed my scanning strategy such that I use scheduled full scans now more than advanced on the fly scanning, as it hurts the perfromance of a number of apps. (n.b. I am using the latest cut of Kaspersky). I'm also using an automated backup tool (AJCBackup) that also needs to be restrained when compiling.
You may also want to consider disableing the Windows Indexing service on drives that are be used to create a lot of temporary and object files, as it doesn't provide much value in this context for the amount of performance it draws.
Edit: Have checked which processes are actually hogging the CPU core and traced them back to a given app?
We've encountered issues with Kaspersky and Incredibuild in our offices - compiles and sometimes links will just hang and never finish.
Only seems to affect some machines though which is wierd, and only Windows XP (Vista seems immune from what I've seen).
Only solution I've found so far is to turn Kaspersky off entirely - so if you find a solution then let me know!
RE: smacl, work from the Windows Search/Indexing Service (WSearch) won't be attributed to the System process's CPU time, it should come from the SearchIndexer.exe/SearchFilterHost.exe services (Vista+).
The majority of activity from System you will see will be in disk activity from the lazy writer and other disk accesses. CPU activity from System will be because of kernel activity such as drivers (ISRs/DPCs) and other kernel-level filters (which could include AV file and process filters).
Process Explorer (http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx) can aid in viewing CPU usage across processes, including System. You can use the public Microsoft Symbol Server and this resource to get you started.
If you can take a trace with Xperf (http://msdn.microsoft.com/en-us/performance/cc825801.aspx), I can help you analyze where the CPU time is being spent in the System (kernel) context. Xperf isn't officially supported on XP, but you can take a trace on XP and analyze it on other systems.
Xperf and Process Explorer should be able to shine a spotlight on exactly the module(s) that are causing the runaway CPU usage. Symbols may not even be necessary to diagnose the problem; simply the module name can often point to the component in question that is slowing down your system. For example, high CPU usage from ndis.sys can point to network interrupts, or activity from modules such as aavmker4.sys can point to AV software (Avast! in this case).
And as always, check if there are any updated drivers and AV software for your system.
In my office, a conflict between Incredibuild and Spyware Doctor's Immunize feature caused similar issues. Turning off Immunize solved it for us.
What anti-virus/malware do you use?
I'm having same hangs when compiling using IncrediBuild in VS2003, on clean Windows 7 without any anti-virus. It worked fine on same box in XP and Vista.

Resources