Some pointers on implementing algorithms in code - algorithm

The other day I thought I'd attempt creating the Fibonacci algorithm in my code, but I've never been good at maths.
I ended up writing my own method with a loop but it seemed inefficient or not 'the proper way'.
Does anyone have any recommendations/reading material on implementing algorithms in code?

I find Project Euler useful for this kind of thing. It forces you to think about an algorithm and then implement it. Many of the questions then have extensive discussions on how to solve the problem (from the naive solutions to some pretty ingenious ones) that you can use to see what you did right and wrong.
In the discussion threads you'll find various implementations from other people in many different languages too. Coming up with a solution yourself and then comparing it to that from other people is (imho) a good way to learn.

Both of these introductory books have good information about this sort of thing:
How To Design Programs and moreso Structure and Interpretation of Computer Programs
Both are somewhat funcitonal (and scheme) oriented, but that's a natural fit for these sorts of problems.
On top of that, you might get quite a bit out of Project Euler

Derive your algorithm test-driven. I've been able to write much more complex algorithms correctly by using TDD than I was before.

Go on youtube and look at some of the lectures on Introduction to Algorithms. There are some really, really good lectures that break down some of the most common algorithms such as the Fibonacci series and how to optimize them.
Start reading about O notation so you can understand how your algorithm grows with variable size input and how to classifiy the run-time of the algorithm you have.
Start with this video series which I found excellent material on the subject:
Algorithms Lecture

If you can't translate pseudo code for a fibonacci function to your language, then you should go and find a basic tutorial for your language, since it seems that you have not yet grasped its basic idioms.
If you have a working solution, but feel insecure about it, show it to others for review.

Related

Understanding algorithm design techniques in depth

"Designing the right algorithm for a given application is a difficult job. It requires a major creative act, taking a problem and pulling a solution out of the ether. This is much more difficult than taking someone else's idea and modifying it or tweaking it to make it a little better. The space of choices you can make in algorithm design is enormous, enough to leave you plenty of freedom to hang yourself".
I have studied several basic design techniques of algorithms like Divide and Conquer, Dynamic Programming, greedy, backtracking etc.
But i always fail to recognize what principles to apply when i come across certain programming problems. I want to master the designing of algorithms.
So can any one suggest a best place to understand the principles of algorithm design in depth.....
I suggest Programming Pearls, 2nd edition, by Jon Bentley. He talks a lot about algorithm design techniques and provides examples of real world problems, how they were solved, and how different algorithms affected the runtime.
Throughout the book, you learn algorithm design techniques, program verification methods to ensure your algorithms are correct, and you also learn a little bit about data structures. It's a very good book and I recommend it to anyone who wants to master algorithms. Go read the reviews in amazon: http://www.amazon.com/Programming-Pearls-2nd-Edition-Bentley/dp/0201657880
You can have a look at some of the book's contents here: http://netlib.bell-labs.com/cm/cs/pearls/
Enjoy!
You can't learn algorithm design just from reading books. Certainly, books can help. Books like Programming Pearls as suggested in another answer are great because they give you problems to work. Each problem forces you to think about how to solve a particular type of problem.
The idea is that you expose yourself to many different types of problems and their solutions. In doing so, you learn how to examine a problem and see if it shares anything in common with problems you've already seen. In that regard, it's not a whole lot different than the way you learned how to solve "word problems" in math class. Granted, most algorithm problems are more complex than having to figure out where on the tracks the two trains will collide, but the way you learn how to solve the problems is the same. You learn common techniques used to solve simple problems, then combine those techniques to solve more complex problems, etc.
Read, practice, lather, rinse, repeat.
In addition to books like Programming Pearls, there are sites online that post different programming challenges that you can test yourself on. It helps if you have friends or co-workers who also are interested in algorithms, because you can bounce ideas off each other and pose interesting challenges, or work together to come up with solutions to problems.
Did I mention that it takes practice?
"Mastering" anything takes time. A long time. A popular theory is that it takes 10,000 hours of practice to become an expert at anything. There's some dispute about that for particular endeavors, but in general it's true. You don't master anything overnight. You have to study. And practice. And read what others have done. Study some more and practice some more.
A good book about algorithm design is Kleinbeg Tardos. Every design technique depends on the problem that you are going to tackle. It is very important to do the exercises in the algorithm books and have feedback from teachers about that.
If there exist a locally optimal choice taht brings the globally optimal solution you can use a greedy algorithm.
If the problem has optimal substructure, you can use dynamic programming.

Learning efficient algorithms

Up until now I've mostly concentrated on how to properly design code, make it as readable as possible and as maintainable as possible. So I alway chose to learn about the higher level details of programming, such as class interactions, API design, etc.
Algorithms I never really found particularly interesting. As a result, even though I can come up with a good design for my programs, and even if I can come up with a solution to a given problem it rarely is the most efficient.
Is there a particular way of thinking about problems that helps you come up with an as efficient solution as possible, or is it simple a matter of practice and/or memorizing?
Also, what online resources can you recommend that teach you various efficient algorithms for different problems?
Data dominates. If you design your program around the right abstract data structures (ADTs), you often get a clean design, the algorithms follow quite naturally and when performance is lacking, you should be able to "plug in" more efficient ones.
A strong background in maths and logic helps here, as it allows you to visualize your program at a high level as the interaction between functions, sets, graphs, sequences, etc. You then decide whether the sets need to be ordered (balanced BST, O(lg n) operations) or not (hash tables, O(1) operations), what operations need to supported on sequences (vector-like or list-like), etc.
If you want to learn some algorithms, get a good book such as Cormen et al. and try to implement the main data structures:
binary search trees
generic binary search trees (that work on more than just int or strings)
hash tables
priority queues/heaps
dynamic arrays
Introduction To Algorithms is a great book to get you thinking about efficiency of different algorithms/data structures.
The authors of the book also teach an algorithms course on MIT . You can find most lectures here
I would say that in coming up with good algorithms (which is actually part of good design IMHO), you have to develop a way of thinking. This is best done by studying algorithm design. By study I don't mean just knowing all the common algorithms covered in a textbook, but actually understanding how and why they work, and being able to apply the basic idea contained in them to actual problems you are trying to solve.
I would suggest reading a good book on algorithms (my favourite is CLRS). For an online resource I would recommend the series of articles in the TopCoder Algorithm Tutorials.
I do not understand why you would mention practice and memorization in the same breath. Memorization won't help you at all (you probably already know this), but practice is essential. If you cannot apply what you learned, its not really learning. You can practice at various online programming contest/puzzle sites like SPOJ, Project Euler and PythonChallenge.
Recommendations:
First of all i recommend the book "Intro to Algorithms, Second Edition By corman", great book has most(if not all) of the algorithms you will need. (Some of the more important topics are sorting-algorithms, shortest paths, dynamic programing, many data structures like bst, hash maps, heaps).
another great way to learn algorithms is http://ace.delos.com/usacogate, great practice after the begining.
To your questions you will just get used to write good fast running code, after a little practice you just wouldnt want to write un-efficient code.
While I think #larsmans is correct inasmuch that understanding logic and maths is a fast way to understanding how to choose useful ADTs for solving a given problem, studying existing solutions may be more instructive for those of us who struggle with those topics. In particular, reviewing code of established software (OSS) that solves some similar problem as the one you're interested in.
I find a particularly good method for this method of study is reviewing unit tests of such a project. Apache Lucene, for example, has a source control repository containing numerous examples. While it doesn't reveal the underlying algorithms, it helps trace to particular functionality that solves a certain problem. This leads to an opportunity for studying its innards - i.e. an interesting algorithm. In Lucene's case inverted indices come to mind.
While this does not guarantee the algorithm you discover is the best, it's likely one that's received a lot scrutiny and probably comes from project with an active mailing that may answer your questions. So it's a good resource for finding a solution that is probably better than what most of us would come up with on our own.

Improve algorithmic thinking [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 7 years ago.
Improve this question
I was thinking about ways to improve my ability to find algorithmic solutions to a problem.I have thought of solving math problems from various math sectors such as discrete mathematics or linear algebra.After "googling" a bit I have read an article that claimed the need of learning game programming in order to achieve this and it seems logical to me.
Do you have/had the same concerns as me or do you have any ideas on this?I am looking forward to hear them.
Thank you all, in advance.
P.S.1:I want to say that I already know about programming and how to program(although I am at amateur level:-) ) and I just want to improve at the specific issue, NOT to start learning it
P.S.2:I think that its a useful topic for future reference so I checked the community wiki box.
Solve problems on a daily basis. Watch traffic lights and ask yourself, "How can these be synced to optimize the flow of traffic? Or to optimize the flow of pedestrians? What is the best solution for both?". Look at elevators and ask yourself "Why should these elevators use different rules than the elevators in that other building I visited yesterday? How is it actually implemented? How can it be improved?".
Try to see a problem everywhere, even if it is solved already. Reflect on the solution. Ask yourself why your own superior solution probably isn't as good as the one you can see - what are you missing?
And so on. Every day. All of the time.
The idea is that almost everything can be viewed as an algorithm (a goal that has some kind of meaning to somebody, and a method with which to achieve it). Try to have that in mind next time you watch a gameshow on TV, or when you read the news coverage of the latest bank robbery. Ask yourself "What is the goal?", "Whose goal is it?" and "What is the method?".
It can easily be mistaken for critical thinking but is more about questioning your own solutions, rather than the solutions you try to understand and improve.
First of all, and most important: practice. Think of solutions to everything everytime. It doesn't have to be on your computer, programming. All algorithms will do great. Like this: when you used to trade cards, how did you compare your deck and your friend's to determine the best way for both of you to trade? How can you define how many trades can you do to do the maximum and yet don't get any repeated card?
Use problem databases and online judges like this site, http://uva.onlinejudge.org/index.php, that has hundreds of problems concerning general algorithms. And you don't need to be an expert programmer at all to solve any of them. What you need is a good ability with logic and math. There, you can find problems from the simplest ones to the most challenging. Most of them come from Programming Marathons.
You can, then, implement them in C, C++, Java or Pascal and submit them to the online judge. If you have a good algorithm, it will be accepted. Else, the judge will say your algorithm gave the wrong answer to the problem, or it took too long to solve.
Reading about algorithms helps, but don't waste too much time on it... Reading won't help as much as trying to solve the problems by yourself. Maybe you can read the problem, try to figure out a solution for yourself, compare with the solution proposed by the source and see what you missed. Don't try to memorize them. If you have the concept well learned, you can implement it anywhere. Understanding is the hardest part for most of them.
Polya's "How To Solve It" is a great book for thinking about how to solve mathematical problems and do proofs, and I'd recommend it for anyone who does problem solving.
But! It doesn't really address the excitement that happens when the real world provides input to your system, via channel noise, user wackiness, other programs grabbing resources, etc. For that it is worth looking at algorithms that get applied to real-world input (obligatory and deserved nod to Knuth's collection), and systems which are fairly robust in the face of same (TCP, kernel internals). Part of coming up with good algorithmic solutions is to know what already exists.
And alongside reading all that, of course practice practice practice.
You should check out Mathematics and Plausible Reasoning by G. Polya. It is a rare math book, which actually deals with the thought process involved in making mathematical discoveries. I think it is the same thought process that is involved in coming up with algorithms.
The saying "practice makes perfect" definitely applies. I'm tutoring a friend of mine in programming, and I remind him that "if you don't know how to ride a bike, you could read every book about it but it doesn't mean you'll be better than Lance Armstrong tomorrow - you have to practice".
In your case, how about trying the problems in Project Euler? http://projecteuler.net
There are a ton of problems there, and for each one you could practice at developing an algorithm. Once you get a good-enough implementation, you can access other people's solutions (for a particular problem) and see how others have done it. Don't think of it as math problems, but rather as problems in creating algorithms for solving math problems.
In university, I actually took a class in algorithm design and analysis, and there is definitely a lot of theory behind it. You may hear people talking about "big-O" complexity and stuff like that - there are quite a lot of different properties about algorithms themselves which can lead to greater understanding of what constitutes a "good" algorithm. You can study quite a bit in this regard as well for the long-term.
Check some online judges, TopCoder (algorithm tutorials). Take some algorithms book (CLRS, Skiena) and do harder exercises. Practice much.
I would suggest this path for you :
1.First learn elementary parts of a language.
2.Then learn about some basic maths.
3.Move to topcoder div2 easy problems.Usually if you cannot score 250 pts. in any given day,then it means you need a lot of practise,keep practising.
4.Now's the time to learn some tools of a programmer,take a good book like Algorithm Design Manual by Steven Skienna and learn about dynamic programming and greedy approach.
5.Now move to marathons,don't be discouraged if you cannot solve it quickly.Improvement will not happen overnight,you will have to patiently keep on working hard.
6.Continue step 5 from now on and you will be a better programmer.
Learning about game programming will probably lead you to good algorithms for game programming, but not necessarily to better algorithms in general.
It's a good start, but I think that the best way to learn and apply algorithmic knowledge is
Learn about good algorithms that currently exist for your area of interest
Expand your knowledge by viewing other areas; for example, what kinds of algorithms are
required when working on genetic analysis? What's the best approach for determining
run-off potential as it relates to flooding?
Read about problems in other domains and attempt to use the algorithms that you're
familiar with to see if they fit. If they don't try to break the problem down and see if
you can come up with your own algorithm.
A few more books worth reading (in no particular order):
Aha! Insight (Martin Gardner)
Any of the Programming Pearls books (Jon Bentley)
Concrete Mathematics (Graham, Knuth, and Patashnik)
A Mathematical Theory of Communication (Claude Shannon)
Of course, most of those are just samples -- other books and papers by the same authors are usually quite good as well (e.g. Shannon wrote a lot that's well worth reading, and far too few people give it the attention it deserves).
Read SICP / Structure and Interpretation of Computer Programs and work all the problems; then read The Art of Computer Programming (all volumes), working all the exercises as you go; then work through all the problems at Project Euler.
If you aren't damned good at algorithms after that, there is probably no hope for you. LOL!
P.S. SICP is available freely online, but you have to buy AoCP (get the international, not-for-release-in-north-america edition used for 30 USD). And I haven't done this yet myself (I'm trying when I have free time).
I can recommend the book "Introductory Logic and Sets for Computer Scientists" by Nimal Nissanke (Addison Wesley). The focus is on set theory, predicate logic etc. Basically the maths of solving problems in code if you will. Good stuff and not too difficult to work through.
Good luck...Kevin
Great
how about trying the problems in Project Euler? http://projecteuler.net
There are a ton of problems there, and for each one you could practice at developing an algorithm. Once you get a good-enough implementation, you can access other people's solutions (for a particular problem) and see how others have done it. Don't think of it as math problems, but rather as problems in creating algorithms for solving math problems
Ok, so to sum up the suggestions:
The most effective way to improve this ability is to solve problem as frequently as possible.Either real world problems(such as the elevators "algorithm" which is already suggested) or exercises from books like CLRS(great, I already own it :-)).But I didn't see comments about maths and I don't know what to suppose(if you agree or not).:-s
The links were great.I will definitely use them.I also think that it will be a good exercise to solve problems from national/international informatics contests or to read the way a mathematician proves a theorem.
Thank you all again.Feel free to suggest more, although I am already satisfied with the solutions mentioned.

How to cultivate algorithm intuition?

When faced with a problem in software I usually see a solution right away. Of course, what I see is usually somewhat off, and I always need to sit down and design (admittedly, I usually don't design enough), but I get a certain intuition right away.
My problem is I don't get that same intuition when it comes to advanced algorithms. I feel much more up to the task of building another Facebook then building another Google search, or a Music Genom project. It's probably because I've been building software for quite some time, but I have little experience with composing algorithms.
I would like the community's advice on what to read and what projects to undertake to be better at composing algorithms.
(This question has nothing to do with Algorithmic composition. Well, almost nothing)
+1 To whoever said experience is the best teacher.
There are several online portals which have a lot of programming problems, that you can submit your own solutions to, and get an automated pass/fail indication.
http://www.spoj.pl/
http://uva.onlinejudge.org/
http://www.topcoder.com/tc
http://code.google.com/codejam/contests.html
http://projecteuler.net/
https://codeforces.com
https://leetcode.com
The USACO training site is the training program that all USA computing olympiad participants go through. It goes step by step, introducing more and more complex algorithms as you go.
You might find it helpful to perform algorithms physically. For example, when you're studying sorting algorithms, practice doing each one with a deck of cards. That will activate different parts of your brain than reading or programming alone will.
Steve Yegge referred to "The Algorithm Design Manual" in one of his rants. I haven't seen it myself, but it sounds like it's just the ticket from his description.
My absolute favorite for this kind of interview preparation is Steven Skiena's The Algorithm Design Manual. More than any other book it helped me understand just how astonishingly commonplace (and important) graph problems are – they should be part of every working programmer's toolkit. The book also covers basic data structures and sorting algorithms, which is a nice bonus. But the gold mine is the second half of the book, which is a sort of encyclopedia of 1-pagers on zillions of useful problems and various ways to solve them, without too much detail. Almost every 1-pager has a simple picture, making it easy to remember. This is a great way to learn how to identify hundreds of problem types.
problem domain
First you must understand the problem domain. An elegant solution to the wrong problem is no good, nor is an inefficient solution to the right problem in most cases. Solution quality, in other words, is often relative. A simple scheduling problem that has a deterministic solution that takes ten minutes to run may be fine if schedules are realculated once per week, but if schedules change several times a day then a genetic algorithm solution that converges in a few seconds may be required.
decomposition and mapping
Second, decompose the problem into sub-problems and known/unknown elements that correspond to elements of the solution. Sometimes this is obvious, e.g. to count widgets you need a way of identifying widgets, an incrementable counter, and a way of storing the count. Sometimes it is not so obvious. Sometimes you have to decompose the problem, the domain, and possible solutions at the same time and try several different mappings between them to find one that leads to the correct results [this is the general method].
model
Model the solution, in your head at least, and walk through it to see if it works correctly. Adjust as necessary (See decomposition and mapping, above).
composition/interfaces
Many times you can find elements of the problem and elements of the solution that map to each other and produce partial results that are useful. This composition and interface construction provides the kernal of the solution, and also serves to reduce the scope of the problem remaining. So then you just loop back to the top with a smaller initial problem, and go through it again.
experience
Experience is the best teacher, of course, but reading about different kinds of problems and solutions will also be helpful. Studying some of the well-known algorithms and their applications is likewise very helpful, e.g. Dijkstra, Bresenham, Unification, and of course, graph theory.
I am not sure intuition can be cultivated, but I think I know what you are asking. The more problems you solve, the more information and experience you have at your disposal for future problems. So, I say just practice. Practice programming real world applications and you run into plenty of problems. Sometimes, solving puzzles can be very educational as well.
I try to find physical analogues when I'm looking at a complex problem.

Simple algorithm tutorials? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 6 years ago.
Improve this question
I want to learn algorithms using some very basic simple tutorials. Are there any out there? I have heard of recursion and stuff and I would like to get good at it. Any help would be appreciated.
I would start out by taking a look at EternallyConfuzzled which contains great tutorials for basic Data Structures an Algorithms including linked lists and binary search trees, sorting and searching algorithms. If you want to learn more after this I would recommend the following books in order of increasing complexity, completeness, and required math knowledge:
Algorithms in C (also available in C++ and Java)
Introduction to Algorithms
The Art of Computer Programming
If you want to learn algorithms this book is the best choice.
(source: mcgraw-hill.com)
MIT's OCW has video lectures of their Algorithm course. The professor is one of the authors of the book Introduction to Algorithms, which another poster suggested.
It assumes a basic knowledge of Discrete Maths.
TopCoder has some good algorithm tutorials.
If you're interested in a tutorial, avoid the CLRS book recommend above. It takes a rigorous theoretical approach to the study of Algorithms, which is very different from a tutorial approach.
You learn Algorithms by doing them. So find a resource that provides Algorithms problems and guidance in solving them. If you want a textbook, check out the Algorithm Design Manual, which also has an online Algorithm Repository.
If you prefer an online course, Udacity offers a python-based Algorithms course, while Coursera offers general and Java-based ones.
Since the important part is practicing Algorithms, you can skip the video courses and just solve challenges. Other answers suggested sites with challenges you can practice once you're good at Algorithms. In the beginning you'll want more guidance, so find a resource that provides Algorithms challenges and help with solving them. I created Learneroo for this purpose. You can start by learning the fundamentals of Recursion with the Recursion Tutorial.
Recursion really isn't an algorithm. Since you don't have anything specific you're interested in I'd suggest you read wikipedia's List of alorithms or as others have suggested grab a book.
I would start at the Stony Brook Algorithm Repository. The site has some really good explanations of different types of algorithms, and it references what books and other resources it uses so you can get a taste of what's available.
I suggest that you start from sorting algorithms. Read the related wikipedia page, skip the O(n log n) stuff, and focus on the implementations of, say, insertion sort, merge sort, and quick sort. Familiarize with binary searching. Also, learn about some basic data structures, such as vectors, linked lists, stacks, their implementation, and what they are useful for. (More often than not, an algorithm to solve a problem goes together with a suitable data structure.) Once you are confident with different algorithms and data structures, you can dive in a more complete treatise such as the book by Cormen et al.
As for recursion, it is not an algorithm in itself. It is instead a technique that some algorithms employ to solve a problem, when the latter can be naturally split into subproblems. The technique of splitting a problem, solving the subproblems separately and then merging their solutions to obtain a solution for the original problem, is called "divide et impera", or "divide and conquer". (Recursion is also the related feature of most programming languages, where it basically means "functions that call themselves".)
The most cited, the most trivial, and the most useless example of a "recursive algorithm", is the one to compute factorials. Don't mind it. Instead, read about the Tower of Hanoi problem, which admits a simple and elegant recursive solution, and again, study some sorting algorithms, for many of them are indeed recursive.
To the various people who have commented that book xyz is not simple, I'd point out that algorithmics is not a simple topic. You need at least university entry level mathematics to understand the concepts plus the ability to reason about computation at a suitably abstract level. If you ever find an "Algorithmics for Dummies" book, don't waste your money!
my choice http://aduni.org/courses/algorithms/
Going through solutions in topcoder problems is a very good way to pick up algorithms. Reading theory alone won't help
Khan academy started an excellent interactive self paced course on algorithms - https://www.khanacademy.org/computing/computer-science/algorithms.
Recursion is a language feature, and less an "algorithm" per se. All recursion can be replaced with proper data structures (like a stack).
I'd recommend grabbing a book. The problem with algorithms is that it's a relatively progressive topic. You first need to learn simple searches before you can learn sorting, and you need sorting before you can do minimum spanning trees etc. A book will properly order these, and if the text doesn't give you enough information the internet is a great next step. Try Amazon and look at the comments for someone who is new.
Make sure you learn an implementation language before you try to go at this though, until you understand how the language works it's going to be very hard to pick out bugs in your logic vs a misunderstanding of what's happening for a given sequence of commands.
USA Computing Olympiad has a nice algorithms training site that so far anyone can sign up for and it's almost in a class like format. read a little, do an exercise, read more, do an exercise etc.
One of my favorite list of algorithm problems is Project Euler, they are pretty diverse and you can solve the same problem many times for optimizations, and you will find lots of communities (C++, C#, Python, ... etc) posting their benchmarks for every problem
It is so much fun, geek fun
Solve questions on various sites as SPOJ etc . and read books on Introduction to Algorithms, there are some online courses as well on coursera .

Resources