Both Wolfram Alpha and Bing are now providing the ability to solve complex, algebraic logic problems (ie "solve for x, given this equation"), and not just evaluate simple arithmetic expressions (eg "what's 5+5?"). How is this done?
I can read most types of code that might get thrown at me, so it doesn't really make a difference what you use to explain and represent the algorithm. I find that bash makes a really good pseudo-code, not to mention its actually functional, so that'd be ideal. Also, I'm fairly familiar with its in's and out's. Sorry to go ranting on a tangent, but it really irritates me to see people spend effort on crunching out "pseudocode" when they could be getting something 100% functional for just slightly more effort. Anyways, thanks so much for advance.
There are 2 main methods to solve:
Numeric methods. Numerical methods mean, basically, that the solver tries to change the value of x until the equation is satisfied. More info on numerical methods.
Symbolic math. The solver manipulates the equation as a string of symbols, by a number of formal rules. It's not that different from algebra we learn in school, the solver just knows a lot of different rules. More info on computer algebra.
Wolfram|Alpha (W|A) is based on the Mathematica kernel, combined with a natural language parser (which is also built primarily with Mathematica). They have a whole heap of curated data and associated formula that can be used once the question has been interpreted.
There's a blog post describing some of this which came out at the same time as W|A.
Finally, Bing simply uses the (non-free) API to answer questions via W|A.
Related
I'm building a web-based programming language partially inspired by Prolog and Haskell (don't laugh).
It already has quite a bit of functionality, you can check out the prototype at http://www.lastcalc.com/. You can see the source here and read about the architecture here. Remember it's a prototype.
Currently LastCalc cannot simplify expressions or solve equations. Rather than hard-coding this in Java, I would like to enhance the fundamental language such that it can be extended to do these things using nothing but the language itself (as with Prolog). Unlike Prolog, LastCalc has a more powerful search algorithm, Prolog is "depth-first search with backtracking", LastCalc currently uses a heuristic best-first search.
Before delving into this I want to understand more about how other systems solve this problem, particularly Mathematica / Wolfram Alpha.
I assume the idea, at least in the general case, is that you give the system a bunch of rules for manipulation of equations (like a*(b+c) = a*b + a+c) specify the goal (eg. isolate variable x) and then let it loose.
So, my questions are:
Is my assumption correct?
What is the search strategy for applying rules? eg. depth first, breadth first, depth first with iterative deepening, some kind of best first?
If it is "best first", what heuristics are used to determine whether it is likely that a particular rule application has got us closer to our goal?
I'd also appreciate any other advice (except for "give up" - I regularly ignore that piece of advice and doing so has served me well ;).
I dealt with such questions myself some time ago. I then found this document about simplification of expressions. It is titled Rule-based Simplification of Expressions and shows some details about simplification in Mupad, which later became a part of Matlab.
According to this document, your assumption is correct. There is a set of rules for manipulation of expressions. A heuristic quality metric is is used as a target function for simplification.
Wolfram alpha is developed by Mathematica
mathematica is stephen wolphram's brainchild. Mathematica 1.0 was released in 1988. mathematica is much like maple and they both rely heavily on older software libraries like LaPack.
The libraries that these programs are, based on, and often simply, legacy software. They've been around, and modified, for a very long time.
If you would like to know about the background programs running, sagemath is a free open source alternative; you could possible reverse engineer the solutions to your questions:
SageMath.org
I have a constraint problem I've been working on, which has a couple "fun" properties:
The domain is massive; basic constraints bring it down to around 2^40 to 2^30, but it's hard to bring it down further without...
Optimization for the solution. There is no single constrained solution; I'm looking for the best fit in the domain based on some complex predicates.
In searching for a way to handle this problem, I've brushed up on my Erlang, Haskell, and Prolog, but these languages don't already have the advanced predicates I'm looking for. I know that some of my optimizations could bring down the search space, and humans can peruse the domain fairly quickly and make really good guesses about optimal answers. (The domain is parameterized on a dozen variables; it's really easy to pick outliers as probable candidates for being close to the best in the domain.)
What I'm looking for in this question isn't a magical algorithm to handle this search, but an answer to the question: Since Prolog and Haskell aren't the right tools for this, which language or library might be a better answer? I have written this up in Haskell, but on a trivial restricted search of 6 million items, it couldn't even reach ten thousand comparisons per second, and perhaps that is because Haskell is not a good fit for expressing these kinds of problems.
If I remember correctly, Coq has a nice support for computations wit constraints. At least, if your domain may be described as formal system, Coq will help to write it down as a code and perform basic computations.
Has anyone set out a proposal for a formal pseudo code standard?
Is it better to be a 'rough' standard to infer an understanding?
It is better to be a rough standard; the intent of pseudocode is to be human-readable, not machine-readable, and the goal of actually writing pseudocode is to convey a higher-level description of an algorithm while being unconcerned (typically) with the minutiae of the implementation. My opinion is that for it to qualify as pseudocode there has to be some ambiguity, and your goal should be a clear conveyance of your algorithmic intentions. Stick to common control structures, declarations and concepts that are paradigmatic to your target audience or language and you'll get the point across. If you start getting too formal, you're getting too close to writing actual code.
NOT AN ANSWER.
IMHO forcing a standard (pseudo code syntax, if you will) will cause people to be less clear on what they want to say.
Browse around, try to gather some knowledge about used conventions, and do your best to be clear.
Although this is by no means a formal proposal, Python is considered by some to be Executable Pseudocode.
in my opinion it depends on the people who are using your programs. In books for algorithms the pseudo code is very formal an near to maths, but is also described in a few paragraphs, so this is for scientific situations.
If I develop in others environments I would prefer a not that formal way because that is easier to understand for most people. I prefer spoken words over formalism. If you want formalism you could read the code instead.
I remember solving a lot of indefinite integration problems. There are certain standard methods of solving them, but nevertheless there are problems which take a combination of approaches to arrive at a solution.
But how can we achieve the solution programatically.
For instance look at the online integrator app of Mathematica. So how do we approach to write such a program which accepts a function as an argument and returns the indefinite integral of the function.
PS. The input function can be assumed to be continuous(i.e. is not for instance sin(x)/x).
You have Risch's algorithm which is subtly undecidable (since you must decide whether two expressions are equal, akin to the ubiquitous halting problem), and really long to implement.
If you're into complicated stuff, solving an ordinary differential equation is actually not harder (and computing an indefinite integral is equivalent to solving y' = f(x)). There exists a Galois differential theory which mimics Galois theory for polynomial equations (but with Lie groups of symmetries of solutions instead of finite groups of permutations of roots). Risch's algorithm is based on it.
The algorithm you are looking for is Risch' Algorithm:
http://en.wikipedia.org/wiki/Risch_algorithm
I believe it is a bit tricky to use. This book:
http://www.amazon.com/Algorithms-Computer-Algebra-Keith-Geddes/dp/0792392590
has description of it. A 100 page description.
You keep a set of basic forms you know the integrals of (polynomials, elementary trigonometric functions, etc.) and you use them on the form of the input. This is doable if you don't need much generality: it's very easy to write a program that integrates polynomials, for example.
If you want to do it in the most general case possible, you'll have to do much of the work that computer algebra systems do. It is a lifetime's work for some people, e.g. if you look at Risch's "algorithm" posted in other answers, or symbolic integration, you can see that there are entire multi-volume books ("Manuel Bronstein, Symbolic Integration Volume I: Springer") that have been written on the topic, and very few existing computer algebra systems implement it in maximum generality.
If you really want to code it yourself, you can look at the source code of Sage or the several projects listed among its components. Of course, it's easier to use one of these programs, or, if you're writing something bigger, use one of these as libraries.
These expert systems usually have a huge collection of techniques and simply try one after another.
I'm not sure about WolframMath, but in Maple there's a command that enables displaying all intermediate steps. If you do so, you get as output all the tried techniques.
Edit:
Transforming the input should not be the really tricky part - you need to write a parser and a lexer, that transforms the textual input into an internal representation.
Good luck. Mathematica is very complex piece of software, and symbolic manipulation is something that it does the best. If you are interested in the topic take a look at these books:
http://www.amazon.com/Computer-Algebra-Symbolic-Computation-Elementary/dp/1568811586/ref=sr_1_3?ie=UTF8&s=books&qid=1279039619&sr=8-3-spell
Also, going to the source wouldn't hurt either. These book actually explains the inner workings of mathematica
http://www.amazon.com/Mathematica-Book-Fourth-Stephen-Wolfram/dp/0521643147/ref=sr_1_7?ie=UTF8&s=books&qid=1279039687&sr=1-7
First of all, is this only possible on algorithms which have no side effects?
Secondly, where could I learn about this process, any good books, articles, etc?
COQ is a proof assistant that produces correct ocaml output. It's pretty complicated though. I never got around to looking at it, but my coworker started and then stopped using it after two months. It was mostly because he wanted to get things done quicker, but if you need to verify an algorithm this might be a good idea.
Here is a course that uses COQ and talks about proving algorithms.
And here is a tutorial about writing academic papers in COQ.
It's generally a lot easier to verify/prove correctness when no side effects are involved, but it's not an absolute requirement.
You might want to look at some of the documentation for a formal specification language like Z. A formal specification isn't a proof itself, but is often the basis for one.
I think that verifying the correctness of an algorithm would be validating its conformance with a specification. There is a branch of theoretical Computer Science called Formal Methods which may be what you are looking for if you need to get as close to proof as you can. From wikipedia,
Formal Methods are a particular kind
of mathematically-based techniques for
the specification, development and
verification of software and hardware
systems
You will be able to find many learning resources and tools from the multitude of links on the linked Wikipedia page and from the Formal Methods wiki.
Usually proofs of correctness are very specific to the algorithm at hand.
However, there are several well known tricks that are used and re-used again. For example, with recursive algorithms you can use loop invariants.
Another common trick is reducing the original problem to a problem for which your algorithm's proof of correctness is easier to show, then either generalizing the easier problem or showing that the easier problem can be translated to a solution to the original problem. Here is a description.
If you have a particular algorithm in mind, you may do better in asking how to construct a proof for that algorithm rather than a general answer.
Buy these books: http://www.amazon.com/Science-Programming-Monographs-Computer/dp/0387964800
The Gries book, Scientific Programming is great stuff. Patient, thorough, complete.
Logic in Computer Science, by Huth and Ryan, gives a reasonably readable overview of modern systems for verifying systems. Once upon a time people talked about proving programs correct - with programming languages which may or may not have side effects. The impression I get from this book and elsewhere is that real applications are different - for instance proving that a protocol is correct, or that a chip's floating point unit can divide correctly, or that a lock-free routine for manipulating linked lists is correct.
ACM Computing Surveys Vol 41 Issue 4 (October 2009) is a special issue on software verification. It looks like you can get to at least one of the papers without an ACM account by searching for "Formal Methods: Practice and Experience".
The tool Frama-C, for which Elazar suggests a demo video in the comments, gives you a specification language, ACSL, for writing function contracts and various analyzers for verifying that a C function satisfies its contract and safety properties such as the absence of run-time errors.
An extended tutorial, ACSL by example, shows examples of actual C algorithms being specified and verified, and separates the side-effect-free functions from the effectful ones (the side-effect-free ones are considered easier and come first in the tutorial). This document is also interesting in that it was not written by the designers of the tools it describe, so it gives a fresher and more didactic look at these techniques.
If you are familiar with LISP then you should definitely check out ACL2: http://www.cs.utexas.edu/~moore/acl2/acl2-doc.html
Dijkstra's Discipline of Programming and his EWDs lay the foundation for formal verification as a science in programming. A simpler work is Wirth's Systematic Programming, which begins with the simple approach to using verification. Wirth uses pre-ISO Pascal for the language; Dijkstra uses an Algol-68-like formalism called Guarded (GCL). Formal verification has matured since Dijkstra and Hoare, but these older texts may still be a good starting point.
PVS tool developed by Stanford guys is a specification and verification system. I worked on it and found it very useful for Theoram Proving.
WRT (1), you will probably have to create a model of the algorithm in a way that "captures" the side-effects of the algorithm in a program variable intended to model such state-based side-effects.