What can I access from a BackgroundWorker without "Cross Threading"? - windows

I realise that I can't access Form controls from the DoWork event handler of a BackgroundWorker. (And if I try to, I get an Exception, as expected).
However, am I allowed to access other (custom) objects that exist on my Form?
For instance, I've created a "Settings" class and instantiated it in my Form and I seem to be able to read and write to its properties.
Is it just luck that this works?
What if I had a static class? Would I be able to access that safely?

#Engram:
You've got the gist of it - CrossThreadCalls are just a nice feature MS put into the .NET Framework to prevent the "bonehead" type of parallel programming mistakes. It can be overridden, as I'm guessing you've already found out, by setting the "AllowCrossThreadCalls" property on the class (and not on an instance of the class, e.g. set Label.AllowCrossThreadCalls and not lblMyLabel.AllowCrossThreadCalls).
But more importantly, you're right about the need to use some kind of locking mechanism. Whenever you have multiple threads of execution (be it threads, processes or whatever), you need to make sure that when you have one thread reading/writing to a variable, you probably don't want some other thread barging and changing that value under the feet of the first thread.
The .NET Framework actually provides several other mechanisms which might be more useful, depending on circumstances, than locking in code. The first is to use a Monitor class, which has the effect of locking a particular object. When you use this, other threads can continue to execute, as long as they don't try to lock that same object. Another very useful and common parallel-programming idea is the Mutex (or Semaphore). The Mutex is basically like a game of Capture the Flag between your threads. If one thread grabs the flag, no other threads can grab it until the first thread drops it. (A Semaphore is just like a Mutex, except that there can be more than one flag in a game.)
Obviously, none of these concepts will work in every particular problem - but having a few more tools to help you out might come in handy some day :)

You should communicate to the user interface through the ProgressChanged and RunWorkerCompleted events (and never the DoWork() method as you have noted).
In principle, you could call IsInvokeRequired, but the designers of the BackgroundWorker class created the ProgressChanged callback event for the purpose of updating UI elements.
[Note: BackgroundWorker events are not marshaled across AppDomain boundaries. Do not use a BackgroundWorker component to perform multithreaded operations in more than one AppDomain.]
MSDN Ref.

Ok, I've done some more research on this and I think have an answer. (Let the votes decide if I'm right!)
The answer is.. you can access any custom object that's in scope, however your access will not be thread-safe.
To ensure that it is thread-safe you should probably be using lock. The lock keyword prevents more than one thread executing a particular piece of code. (Subject to actually using it properly!)
The Cross Threading Exception that occurs when you try and access a Control is a safety mechanism designed especially for Controls. (It's easier and probably more efficient to get the user to make thread-safe calls then it is to design the controls themselves to be thread-safe).

You can't access controls that where created in one thread from another thread.
You can either use Settings class that you mentioned, or use InvokeRequired property and Invoke methods of control.
I suggest you look at the examples on those pages:
http://msdn.microsoft.com/en-us/library/ms171728.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.control.invokerequired.aspx

Related

Address Book thread safety and performance

My sense from the Address Book documentation and my understanding of the underlying CoreData implementation suggests that Address Book should be thread safe, and making queries from multiple threads should pose no problems. But I'm having trouble finding any explicit discussion of thread safety in the docs. This raises a few questions:
Is it safe to use +sharedAddressBook on multiple threads for read-only access? I believe the answer is yes.
For write-access on background threads, it appears that you should use +addressBook instead (and save your changes manually). Do I understand this correctly?
Has anyone investigated the performance impact of making multiple simultaneous queries to Address Book on multiple threads? This should be very similar to the performance of making multiple CoreData queries on multiple threads. My sense is that I would gain little by making parallel queries since I assume they will serialize when they hit SQLLite, but I'm not certain here.
I need to make dozens of queries (some complex) against AddressBook and am doing so on a background thread using NSOperation to avoid blocking the UI (which it currently does). My underlying question is whether it makes sense to set the max concurrent operations to a value larger than 1, and whether there is any danger in doing so if the application may also be writing to AddressBook at the same time on another thread.
Unless an API says it is threadsafe it is not. Even if the current implementation happens to be thread safe it might not be in the future. In other words, do not use AB from multiple threads.
As an aside, what about it being CoreData based makes you think it would be thread safe? CoreData uses a thread confinement model where it is only safe to access a context on a single thread, all the objects from the context must be accessed on the same thread.
That means that sharedAddressBook will not be thread safe if it keeps an NSManagedObjectContext around to use. It would only be safe if AB creates a new context every time it needs to do something and immediately disposes of it, or if it creates a context per thread and always uses the appropriate context (probably by storing a ref to it in the threadDictionary). In either event it would not be safe to store anything as NSManagedObjects since the contexts would be constantly destroyed, which means every ABRecord would have to store an NSManagedObjectID so it could reconstitute the object in the appropriate context whenever it needed it.
Clearly all of that is possible, it may be what is done, but it is hardly the obvious implementation.

How to deal with a second event-loop with message-dispatch?

I am working on a program which is essentially single-threaded, and its only thread is the main event-loop thread. Consequently, all its data structures are basically not protected by anything like critical region.
Things work fine until it recently integrates some new functions based on DirectShow API. Some DirectShow APIs open a second event-loop and within that second loop it dispatch messages (i.e. invoke other event-handling callbacks unpredictably). So when a second event-handling function is invoked, it might damage the data struct which is being accessed by the function that invokes the DirectShow API.
I have some experience in kernel programming. And what comes in my mind is that, for a single-threaded program, how it should deal with its data structure is very like how kernel should deal with per-CPU data structure. And in kernel, when a function accesses per-CPU data, it must disable the interrupt (very like the message-dispatching in a second event-loop). However, I find there is no easy way to either avoid invoke DirectShow API or to prevent the create of a second event-loop within them, is there any way?
mutexes. semaphores. locking. whatever name you want to call it, that's what you need.
There are several possible solutions that come to mind, depending on exactly what's going wrong and your code:
Make sure your data structures are in a consistent state before calling any APIs that run a modal loop.
If that's not possible, you can use a simple boolean variable to protect the structure. If it's set, then simply abort any attempt to update it or queue the update for later. Another option is to abort the previous operation.
If the problem is user generated events, then disable the problematic menus or buttons while the operation is in progress. Alternatively, you could display a modal dialog.

OS X inter thread communication question

I am developing a multi-threaded application in Cocoa. The main thread takes values from the user, and when a button is clicked I invoke a secondary thread in which a long calculation takes place. Now from this thread I have to return the output of every step of the calculation to the main thread. I want to periodically send data from one thread to the other. I can't find any simple example that does this. Any ideas?
There are a number of ways to do this, in rough order of complexity (easiest first):
use NSObject's performSelectorOnMainThread:withObject:waitUntilDone: which is pretty self explanatory.
use performSelector:onThread:withObject:waitUntilDone:, which will let you go the other way
use an NSNotification (and NSDistributedNotificationCenter), though you can easily run into a race condition if you're not careful
Use NSPorts to send data back and forth
Check out the doc that Abizer mentioned for details on all of these.
performSelectorOnMainThread:withObject:waitUntilDone: is often the easiest way to update the UI with a background thread's progress. You could also create your own storage area that's safe to access between threads using NSLock or a similar mechanism, or even use distributed objects (which also works between processes or over a network).
Then there's NSOperationQueue and NSOperation which does help a lot to simplify multi-threaded programming, although a lot of programmers have been avoiding it since it can cause a crash in certain circumstances under Leopard.
Have a look at the Apple docs for this.
You may need to create an ADC member account, but this is free
Multi-threaded Cocoa Programs

Can I be sure that the code I write is always executed in the same thread?

I normally work on single threaded applications and have generally never really bothered with dealing with threads. My understanding of how things work - which certainly, may be wrong - is that as long as we're always dealing with single threaded code (i.e. no forks or anything like that) it will always be executed in the same thread.
Is this assumption correct? I have a fuzzy idea that UI libraries/frameworks may spawn off threads of their own to handle GUI stuff (which accounts for the fact that the Windows task manager tells me that my 'single threaded' application is actually running on 10 threads) but I'm guessing that this shouldn't affect me?
How does this apply to COM? For instance, if I were to create an instance of a COM component in my code; and that COM component writes some information to a thread-based location (using System.Threading.Thread.GetData for instance) will my application be able to get hold of that information?
So in summary:
In single threaded code, can I be sure that whatever I store in a thread-based location can be retrievable from anywhere else in the code?
If that single threaded code were to create an instance of a COM component which stores some information in a thread-based location, can that be similarly retrievable from anywhere else?
UI usually has the opposite constraint (sadly): it's single threaded and everything must happen on that thread.
The easiest way to check if you are always in the same thread (for, say, a function) is to have an integer variable set at -1, and have a check function like (say you are in C#):
void AssertSingleThread()
{
if (m_ThreadId < 0) m_ThreadId = Thread.CurrentThread.ManagedThreadId;
Debug.Assert(m_ThreadId == Thread.CurrentThread.ManagedThreadId);
}
That said:
I don't understand the question #1, really. Why store in a thread-based location if your purpose is to have a global scope ?
About the second question, most COM code runs on a single thread and, most often, on the thread where your UI message processing lives - this is because most COM code is designed to be compatible with VB6 which is single-thread.
The reason your program has about 10 threads is because both Windows (if you use some of its features like completion ports, or some kind of timers) and the CLR (for example for the GC or, again, some types of timers) may create threads in your process space (technically any program with enough priviledges, can too).
Think about having the model of having a single dataStore class running in your mainThread that all threads can read and write their instance variables to. This will avoid a lot of problems that might arise accessing threads all over the shop.
Simple idea, until you reach the fun part of threading. Concurrency and synchronization; simply, if you have two threads that want to read and write to the same variable inside dataStore at the same time, you have a problem.
Java handles this by allowing you to declare a variable or method synchronized, allowing only one thread access at a time.
I believe some .NET objects have Lock and Synchronized methods defined on them, but I know no more than this.

Is it safe to manipulate objects that I created outside my thread if I don't explicitly access them on the thread which created them?

I am working on a cocoa software and in order to keep the GUI responsive during a massive data import (Core Data) I need to run the import outside the main thread.
Is it safe to access those objects even if I created them in the main thread without using locks if I don't explicitly access those objects while the thread is running.
With Core Data, you should have a separate managed object context to use for your import thread, connected to the same coordinator and persistent store. You cannot simply throw objects created in a context used by the main thread into another thread and expect them to work. Furthermore, you cannot do your own locking for this; you must at minimum lock the managed object context the objects are in, as appropriate. But if those objects are bound to by your views a controls, there are no "hooks" that you can add that locking of the context to.
There's no free lunch.
Ben Trumbull explains some of the reasons why you need to use a separate context, and why "just reading" isn't as simple or as safe as you might think, in this great post from late 2004 on the webobjects-dev list. (The whole thread is great.) He's discussing the Enterprise Objects Framework and WebObjects, but his advice is fully applicable to Core Data as well. Just replace "EC" with "NSManagedObjectContext" and "EOF" with "Core Data" in the meat of his message.
The solution to the problem of sharing data between threads in Core Data, like the Enterprise Objects Framework before it, is "don't." If you've thought about it further and you really, honestly do have to share data between threads, then the solution is to keep independent object graphs in thread-isolated contexts, and use the information in the save notification from one context to tell the other context what to re-fetch. -[NSManagedObjectContext refreshObject:mergeChanges:] is specifically designed to support this use.
I believe that this is not safe to do with NSManagedObjects (or subclasses) that are managed by a CoreData NSManagedObjectContext. In general, CoreData may do many tricky things with the sate of managed objects, including firing faults related to those objects in separate threads. In particular, [NSManagedObject initWithEntity:insertIntoManagedObjectContext:] (the designated initializer for NSManagedObjects as of OS X 10.5), does not guarantee that the returned object is safe to pass to an other thread.
Using CoreData with multiple threads is well documented on Apple's dev site.
The whole point of using locks is to ensure that two threads don't try to access the same resource. If you can guarantee that through some other mechanism, go for it.
Even if it's safe, but it's not the best practice to use shared data between threads without synchronizing the access to those fields. It doesn't matter which thread created the object, but if more than one line of execution (thread/process) is accessing the object at the same time, since it can lead to data inconsistency.
If you're absolutely sure that only one thread will ever access this object, than it'd be safe to not synchronize the access. Even then, I'd rather put synchronization in my code now than wait till later when a change in the application puts a second thread sharing the same data without concern about synchronizing access.
Yes, it's safe. A pretty common pattern is to create an object, then add it to a queue or some other collection. A second "consumer" thread takes items from the queue and does something with them. Here, you'd need to synchronize the queue but not the objects that are added to the queue.
It's NOT a good idea to just synchronize everything and hope for the best. You will need to think very carefully about your design and exactly which threads can act upon your objects.
Two things to consider are:
You must be able to guarantee that the object is fully created and initialised before it is made available to other threads.
There must be some mechanism by which the main (GUI) thread detects that the data has been loaded and all is well. To be thread safe this will inevitably involve locking of some kind.
Yes you can do it, it will be safe
...
until the second programmer comes around and does not understand the same assumptions you have made. That second (or 3rd, 4th, 5th, ...) programmer is likely to start using the object in a non safe way (in the creator thread). The problems caused could be very subtle and difficult to track down. For that reason alone, and because its so tempting to use this object in multiple threads, I would make the object thread safe.
To clarify, (thanks to those who left comments):
By "thread safe" I mean programatically devising a scheme to avoid threading issues. I don't necessarily mean devise a locking scheme around your object. You could find a way in your language to make it illegal (or very hard) to use the object in the creator thread. For example, limiting the scope, in the creator thread, to the block of code that creates the object. Once created, pass the object over to the user thread, making sure that the creator thread no longer has a reference to it.
For example, in C++
void CreateObject()
{
Object* sharedObj = new Object();
PassObjectToUsingThread( sharedObj); // this function would be system dependent
}
Then in your creating thread, you no longer have access to the object after its creation, responsibility is passed to the using thread.

Resources