Software performance (MCPS and Power consumed) in a Embedded system - performance

Assume an embedded environment which has either a DSP core(any other processor core).
If i have a code for some application/functionality which is optimized to be one of the best from point of view of Cycles consumed(MCPS) , will it also be a code, best from the point of view of Power consumed by that code in a real hardware system?
Can a code optimized for least MCPS be guaranteed to have least power consumption as well?
I know there are many aspects to be considered here like the architecture of the underlying processor and the hardware system(memory, bus, etc..).

Very difficult to tell without putting a sensitive ammeter between your board and power supply and logging the current drawn. My approach is to test assumptions for various real world scenarios rather than go with the supporting documentation.

No, lowest cycle count will not guarantee lowest power consumption.
It's a good indication, but you didn't take into account that memory bus activity consumes quite a lot of power as well.
Your code may for example have a higher cycle count but lower power consumption if you move often needed data into internal memory (on chip ram). That won't increase the cycle-count of your algorithms but moving the data in- and out the internal memory increases cycle-count.
If your system has a cache as well as internal memory, optimize for best cache utilization as well.

This isn't a direct answer, but I thought this paper (from this answer) was interesting: Real-Time Task Scheduling for Energy-Aware Embedded Systems.
As I understand it, it trying to run each task under the processor's low power state, unless it can't meet the deadline without high power. So in a scheme like that, more time efficient code (less cycles) should allow the processor to spend more time throttled back.

Related

Is there a technique to predict performance impact of application

A customer is running a clustered web application server under considerable load. He wants to know if the upcoming application, which is not implemented yet, will still be manageable by his current setup.
Is there a established method to predict the performance impact of application in concept state, based on an existing requirement specification (or maybe a functional design specification).
First priority would be to predict the impact on CPU resource.
Is it possible to get fairly exact results at all?
I'd say the canonical answer is no. You always have to benchmark the actual application being deployed on its target architecture.
Why? Software and software development are not predictable. And systems are even more unpredictable.
Even if you know the requirements now and have done deep analysis what happens if:
The program has a performance bug (or two...) - which might even be a bug in a third-party library
New requirements are added or requirements change
The analysis and design don't spot all the hidden inter-relationships between components
There are non-linear effects of adding load and the new load might take the hardware over a critical threshold (a threshold that is not obvious now).
These concerns are not theoretical. If they were, SW development would be trivial and projects would always be delivered on time and to budget.
However there are some heuristics I personally used that you can apply. First you need a really good understanding of the current system:
Break the existing system's functions down into small, medium and large and benchmark those on your hardware
Perform a load test of these individual functions and capture thoughput in transactions/sec, CPU cost, network traffic and disk I/O figures for as many of these transactions as possible, making sure you have representation of small, medium and large. This load test should take the system up to the point where additional load will decrease transactions/sec
Get the figures for the max transactions/sec of the current system
Understand the rate of growth of this application and plan accordingly
Perform the analysis to get an 'average' small, medium and large 'cost' in terms of CPU, RAM, disk and network. This would be of the form:
Small transaction
CPU utilization: 10ms
RAM overhead 5MB (cache)
RAM working: 100kb (eg 10 concurrent threads = 1MB, 100 threads = 10MB)
Disk I/O: 5kb (database)
Network app<->DB: 10kb
Network app<->browser: 40kb
From this analysis you should understand how much headroom you have - CPU certainly, but check that there is sufficient RAM, network and disk capacity. Eg, the CPU required for small transactions is number of small transactions per second multiplied by the CPU cost of a small transaction. Add in the CPU cost of medium transactions and large ones, and you have your CPU budget.
Make sure the DBAs are involved. They need to do the same on the DB.
Now you need to analyse your upcoming application:
Assign each features into the same small, medium and large buckets, ensuring a like-for-like matching as far as possible
Ask deep, probing questions about how many transactions/sec each feature will experience at peak
Talk about the expected rate of growth of the application
Don't forget that the system may slow as the size of the database increases
On a personal note, you are being asked to predict the unpredictable - putting your name and reputation on the line. If you say it can fit, you are owning the risk for a large software development project. If you are being pressured to say yes, you need to ensure that there are many other people's names involved along with yours - and those names should all be visible on the go/no-go decision. Not only is this more likely to ensure that all factors are considered, and that the analysis is sound, but it will also ensure that the project has many involved individuals personally aligned to its success.

many-core CPU's: Programming techniques to avoid disappointing scalability

We've just bought a 32-core Opteron machine, and the speedups we get are a little disappointing: beyond about 24 threads we see no speedup at all (actually gets slower overall) and after about 6 threads it becomes significantly sub-linear.
Our application is very thread-friendly: our job breaks down into about 170,000 little tasks which can each be executed separately, each taking 5-10 seconds. They all read from the same memory-mapped file of size about 4Gb. They make occasional writes to it, but it might be 10,000 reads to each write - we just write a little bit of data at the end of each of the 170,000 tasks. The writes are lock-protected. Profiling shows that the locks are not a problem. The threads use a lot of JVM memory each in non-shared objects and they make very little access to shared JVM objects and of that, only a small percentage of accesses involve writes.
We're programming in Java, on Linux, with NUMA enabled. We have 128Gb RAM. We have 2 Opteron CPU's (model 6274) of 16 cores each. Each CPU has 2 NUMA nodes. The same job running on an Intel quad-core (i.e. 8 cores) scaled nearly linearly up to 8 threads.
We've tried replicating the read-only data to have one-per-thread, in the hope that most lookups can be local to a NUMA node, but we observed no speedup from this.
With 32 threads, 'top' shows the CPU's 74% "us" (user) and about 23% "id" (idle). But there are no sleeps and almost no disk i/o. With 24 threads we get 83% CPU usage. I'm not sure how to interpret 'idle' state - does this mean 'waiting for memory controller'?
We tried turning NUMA on and off (I'm referring to the Linux-level setting that requires a reboot) and saw no difference. When NUMA was enabled, 'numastat' showed only about 5% of 'allocation and access misses' (95% of cache misses were local to the NUMA node). [Edit:] But adding "-XX:+useNUMA" as a java commandline flag gave us a 10% boost.
One theory we have is that we're maxing out the memory controllers, because our application uses a lot of RAM and we think there are a lot of cache misses.
What can we do to either (a) speed up our program to approach linear scalability, or (b) diagnose what's happening?
Also: (c) how do I interpret the 'top' result - does 'idle' mean 'blocked on memory controllers'? and (d) is there any difference in the characteristics of Opteron vs Xeon's?
I also have a 32 core Opteron machine, with 8 NUMA nodes (4x6128 processors, Mangy Cours, not Bulldozer), and I have faced similar issues.
I think the answer to your problem is hinted at by the 2.3% "sys" time shown in top. In my experience, this sys time is the time the system spends in the kernel waiting for a lock. When a thread can't get a lock it then sits idle until it makes its next attempt. Both the sys and idle time are a direct result of lock contention. You say that your profiler is not showing locks to be the problem. My guess is that for some reason the code causing the lock in question is not included in the profile results.
In my case a significant cause of lock contention was not the processing I was actually doing but the work scheduler that was handing out the individual pieces of work to each thread. This code used locks to keep track of which thread was doing which piece of work. My solution to this problem was to rewrite my work scheduler avoiding mutexes, which I have read do not scale well beyond 8-12 cores, and instead use gcc builtin atomics (I program in C on Linux). Atomic operations are effectively a very fine grained lock that scales much better with high core counts. In your case if your work parcels really do take 5-10s each it seems unlikely this will be significant for you.
I also had problems with malloc, which suffers horrible lock issues in high core count situations, but I can't, off the top of my head, remember whether this also led to sys & idle figures in top, or whether it just showed up using Mike Dunlavey's debugger profiling method (How can I profile C++ code running in Linux?). I suspect it did cause sys & idle problems, but I draw the line at digging through all my old notes to find out :) I do know that I now avoid runtime mallocs as much as possible.
My best guess is that some piece of library code you are using implements locks without your knowledge, is not included in your profiling results, and is not scaling well to high core-count situations. Beware memory allocators!
I'm sure the answer will lie in a consideration of the hardware architecture. You have to think of multi core computers as if they were individual machines connected by a network. In fact that's all that Hypertransport and QPI are.
I find that to solve these scalability problems you have to stop thinking in terms of shared memory and start adopting the philosophy of Communicating Sequential Processes. It means thinking very differently, ie imagine how you would write the software if your hardware was 32 single core machines connected by a network. Modern (and ancient) CPU architectures are not designed to give unfettered scaling of the sort you're after. They are designed to allow many different processes to get on with processing their own data.
Like everything else in computing these things go in fashions. CSP dates back to the 1970s, but the very modern and Java derived Scala is a popular embodiment of the concept. See this section on Scala concurrency on Wikipedia.
What the philosophy of CSP does is force you to design a data distribution scheme that fits your data and the problem you're solving. That's not necessarily easy, but if you manage it then you have a solution that will scale very well indeed. Scala may make it easier to develop.
Personally I do everything in CSP and in C. It's allowed me to develop a signal processing application that scales perfectly linearly from 8 cores to several thousand cores (the limit being how big my room is).
The first thing you're going to have to do is actually use NUMA. It isn't a magic setting that you turn on, you have to exploit it in your software's architecture. I don't know about Java, but in C one would bind a memory allocation to a specific core's memory controller (aka memory affinity), and similarly for threads (core affinity) in cases where the OS doesn't get the hint.
I presume that your data doesn't break down into 32 neat, discrete chunks? It's difficult to give advice without knowing exactly the data flows implicit in your program. But think about it in terms of data flow. Draw it out even; Data Flow Diagrams are useful for this (another ancient graphical formal notation). If your picture shows all your data going through a single object (eg through a single memory buffer) then it's going to be slow...
I assume you have optimized your locks, and synchronization made a minimum. In such a case, it still depends a lot on what libraries you are using to program in parallel.
One issue that can happen even if you have no synchronization issue, is memory bus congestion. This is very nasty and difficult to get rid of.
All I can suggest is somehow make your tasks bigger and create fewer tasks. This depends highly on the nature of your problem. Ideally you want as many tasks as the number of cores/threads, but this is not easy (if possible) to achieve.
Something else that can help is to give more heap to your JVM. This will reduce the need to run Garbage Collector frequently, and speeds up a little.
does 'idle' mean 'blocked on memory controllers'
No. You don't see that in top. I mean if the CPU is waiting for memory access, it will be shown as busy. If you have idle periods, it is either waiting for a lock, or for IO.
I'm the Original Poster. We think we've diagnosed the issue, and it's not locks, not system calls, not memory bus congestion; we think it's level 2/3 CPU cache contention.
To reiterate, our task is embarrassingly parallel so it should scale well. However, one thread has a large amount of CPU cache it can access, but as we add more threads, the amount of CPU cache each process can access gets lower and lower (the same amount of cache divided by more processes). Some levels on some architectures are shared between cores on a die, some are even shared between dies (I think), and it may help to get "down in the weeds" with the specific machine you're using, and optimise your algorithms, but our conclusion is that there's not a lot we can do to achieve the scalability we thought we'd get.
We identified this as the cause by using 2 different algorithms. The one which accesses more level 2/3 cache scales much worse than the one which does more processing with less data. They both make frequent accesses to the main data in main memory.
If you haven't tried that yet: Look at hardware-level profilers like Oracle Studio has (for CentOS, Redhat, and Oracle Linux) or if you are stuck with Windows: Intel VTune. Then start looking at operations with suspiciously high clocks per instruction metrics. Suspiciously high mean a lot higher than the same code on a single-numa, single-L3-cache machine (like current Intel desktop CPUs).

Cycle accurate emulation

I'm currently learning C for my next emulation project, a cycle accurate 68000 core (my last project being a non-cycle accurate Sega Master System emulator written in Java which is now on its third release). My query regards cycle level accuracy as taking things to this level is a new thing for me.
To break things down to a granularity of 1 CPU cycle, presumably I need to know how long memory accesses take and so on, but my question is that for instructions that take multiple cycles in their memory fetch/write stages, what is the CPU doing each cycle - e.g. are x amount of bits copied per cycle.
With my SMS emulator I didn't have to worry too much about M1 stages etc, as it just used a cycle count for each instruction - in other words it is only accurate to an instruction level, not a cycle level. I'm not looking for architecture specific details, merely an idea of what sort of things I should look out for when going to this level of granularity.
68k details are welcome however. Basically I'm wondering what is supposed to happen if a video chip reads from an area of memory whilst a CPU is still writing the data to it mid way through that phase of an instruction, and other similar situations. I hope I've made it clear enough, thank you.
For a really cycle accurate emulation you have first to decide on a master clock you want to use as reference. That should be the fastest clock at which's granularity the software running can detect differences in order of occurance. This could by the CPU clock, but in most cases the bus cycle time decides at which granularity events can be discerned (and that is often only a fraction of the CPU clock).
Then you need to find out the precendence order the different devices (IC's) connected to that bus have (if there is more than one bus master). An example would be if (and how) video DMA can delay the CPU.
There exist generally no at the same time events. Either the CPU writes before the DMA reads, or the other way around (that is still true in case of dual ported devices, you just need to consider the device's inherent predence mechanism).
Once you have a solid understanding which clock is the effectively controlling the granularity of discernible events you can think about how to structure the emulator to reproduce that behaviour exactly.
This way you can create a 100% cycle exact emulation, given you have enough information about all the devices behavior.
Sorry I can't give you more detailed info, I know nothing about the specifics of the Sega's hardware.
My guess is that you don't have to get in to excruciating detail to get good enough results for the timing for this sort of thing. Which you can't do anyway f you don't want to get into the specifics of the architecture.
Your main question seemed to be "what is supposed to happen if a video chip reads from an area of memory whilst a CPU is still writing the data to it". Generally on these older chips, the bus protocols are pretty simple (they're not packetized) and there is usually a pin that indicates that the bus is busy. So if the CPU is writing to memory, the video chip will simply have to wait until the CPU is done. Because of these sorts of limitations, dual ported ram was popular for a while so that the frame buffer could be simultaneously written by the CPU and read by the RAMDAC.

Estimating how processor frequency affects I/O performance

I am doing research about dedicated I/O software that would run on consumer hardware. Essentially it boils down to saving huge data streams for later processing. Right now I am looking for a model to estimate performance factors on x86.
Take for example the new Macbook Pro:
high-speed Thunderbolt I/O (input/output) technology delivers
an amazing 10 gigabits per second of transfer speeds in both
directions
1.25 GB/s sounds nice but most processors of the day are clocked around 2 Ghz. Multiple cores make little difference as long as only one can be assigned per network channel.
So even if the software acts as a miniature operating system and limits itself to network/disk operations, the amount of data flowing to storage can't be greater than P / (2 * N)[1] chunks per second. Although this hints the rough performance limit, I feel it's far from adequate.
What other considerations should one take estimating I/O performance in regards to processor frequency and other hardware specifics? For simplicity's sake, assume here that storage performs instantly under all circumstances.
[1] P - processor frequency; N - algorithm overhead
The hardware limiting factors are probably the I/O bus performance, say PCIe, and more recently, the FSB clock-rates, since memory controllers are moving from northbridge to the CPUs themselves.
Then, of course, you have to figure out what sort of processing you need to do on the input, and how much work it is to produce the output. These, at least for conventional software running on a CPU, are dependent on the processor clock, but not only. Writing your code to take advantage of the hardware facilities like caches, instruction-level parallelism, etc. is still a black art but can give you an order of magnitude performance boost.
Basically what I'm ranting about is that not all software is created equal, and you probably want to take that into account.
Likely, harddisk controllers will decide the harddisk I/O performance, graphics cards will decide maximum resolution and refresh I/O performance, and so on. Don't really understand the question, the CPU is becoming less and less involved in these kinds of things (well, has been for the last 10 years).
I doubt the question will even have bearing on CPUs with integrated GPUs, since the buffer to be output to screen is in external memory sharing a bus with (again) a controller on the motherboard.
It's all buffered, so I can only see CPUs affecting file performance if you somehow force the hardware buffer size to something insanely puny. Edit: and I'm pretty sure Apple will prevent you from doing such things. ;)
For Thunderbolt specifically, it's more about what the minimum CPU model is, that supports the kinds of bus speeds required by the Thunderbolt chip set version that is in the machine in question.
Thunderbolt is a raw data traffic system and performance specs are potential maximums, hence all the asterisks in the Apple specs. I believe it will indeed alleviate bottlenecks and in general give lag-free intelligent data shuffling doing many things simultaneously.
The CPU will idle-wait a shorter time for needed data, but the processing speed of the data is the same. When playing or creating a movie, codec processing time will be the same, but you will still feel a boost/lack of lag because the data is there when it needs it. For the I/O, the bottleneck will become the read/write speed of your harddisk instead, and the CPU bottleneck (for file copy operations, likely at least some code in Finder) will stay the same.
In other words, only CPU-intensive tasks such as for example movie encoding will benefit significantly from a faster CPU, while the benefits of Thunderbolt vs. a mix of interfaces will boost machines with both slow and fast CPUs.

Power Efficient Software Coding

In a typical handheld/portable embedded system device Battery life is a major concern in design of H/W, S/W and the features the device can support. From the Software programming perspective, one is aware of MIPS, Memory(Data and Program) optimized code.
I am aware of the H/W Deep sleep mode, Standby mode that are used to clock the hardware at lower Cycles or turn of the clock entirel to some unused circutis to save power, but i am looking for some ideas from that point of view:
Wherein my code is running and it needs to keep executing, given this how can I write the code "power" efficiently so as to consume minimum watts?
Are there any special programming constructs, data structures, control structures which i should look at to achieve minimum power consumption for a given functionality.
Are there any s/w high level design considerations which one should keep in mind at time of code structure design, or during low level design to make the code as power efficient(Least power consuming) as possible?
Like 1800 INFORMATION said, avoid polling; subscribe to events and wait for them to happen
Update window content only when necessary - let the system decide when to redraw it
When updating window content, ensure your code recreates as little of the invalid region as possible
With quick code the CPU goes back to deep sleep mode faster and there's a better chance that such code stays in L1 cache
Operate on small data at one time so data stays in caches as well
Ensure that your application doesn't do any unnecessary action when in background
Make your software not only power efficient, but also power aware - update graphics less often when on battery, disable animations, less hard drive thrashing
And read some other guidelines. ;)
Recently a series of posts called "Optimizing Software Applications for Power", started appearing on Intel Software Blogs. May be of some use for x86 developers.
Zeroith, use a fully static machine that can stop when idle. You can't beat zero Hz.
First up, switch to a tickless operating system scheduler. Waking up every millisecend or so wastes power. If you can't, consider slowing the scheduler interrupt instead.
Secondly, ensure your idle thread is a power save, wait for next interrupt instruction.
You can do this in the sort of under-regulated "userland" most small devices have.
Thirdly, if you have to poll or perform user confidence activities like updating the UI,
sleep, do it, and get back to sleep.
Don't trust GUI frameworks that you haven't checked for "sleep and spin" kind of code.
Especially the event timer you may be tempted to use for #2.
Block a thread on read instead of polling with select()/epoll()/ WaitForMultipleObjects().
Puts stress on the thread scheuler ( and your brain) but the devices generally do okay.
This ends up changing your high-level design a bit; it gets tidier!.
A main loop that polls all the things you Might do ends up slow and wasteful on CPU, but does guarantee performance. ( Guaranteed to be slow)
Cache results, lazily create things. Users expect the device to be slow so don't disappoint them. Less running is better. Run as little as you can get away with.
Separate threads can be killed off when you stop needing them.
Try to get more memory than you need, then you can insert into more than one hashtable and save ever searching. This is a direct tradeoff if the memory is DRAM.
Look at a realtime-ier system than you think you might need. It saves time (sic) later.
They cope better with threading too.
Do not poll. Use events and other OS primitives to wait for notifiable occurrences. Polling ensures that the CPU will stay active and use more battery life.
From my work using smart phones, the best way I have found of preserving battery life is to ensure that everything you do not need for your program to function at that specific point is disabled.
For example, only switch Bluetooth on when you need it, similarly the phone capabilities, turn the screen brightness down when it isn't needed, turn the volume down, etc.
The power used by these functions will generally far outweigh the power used by your code.
To avoid polling is a good suggestion.
A microprocessor's power consumption is roughly proportional to its clock frequency, and to the square of its supply voltage. If you have the possibility to adjust these from software, that could save some power. Also, turning off the parts of the processor that you don't need (e.g. floating-point unit) may help, but this very much depends on your platform. In any case, you need a way to measure the actual power consumption of your processor, so that you can find out what works and what not. Just like speed optimizations, power optimizations need to be carefully profiled.
Consider using the network interfaces the least you can. You might want to gather information and send it out in bursts instead of constantly send it.
Look at what your compiler generates, particularly for hot areas of code.
If you have low priority intermittent operations, don't use specific timers to wake up to deal with them, but deal with when processing other events.
Use logic to avoid stupid scenarios where your app might go to sleep for 10 ms and then have to wake up again for the next event. For the kind of platform mentioned it shouldn't matter if both events are processed at the same time.
Having your own timer & callback mechanism might be appropriate for this kind of decision making. The trade off is in code complexity and maintenance vs. likely power savings.
Simply put, do as little as possible.
Well, to the extent that your code can execute entirely in the processor cache, you'll have less bus activity and save power. To the extent that your program is small enough to fit code+data entirely in the cache, you get that benefit "for free". OTOH, if your program is too big, and you can divide your programs into modules that are more or less independent of the other, you might get some power saving by dividing it into separate programs. (I suppose it's also possible to make a toolchain that spreas out related bundles of code and data into cache-sized chunks...)
I suppose that, theoretically, you can save some amount of unnecessary work by reducing the number of pointer dereferencing, and by refactoring your jumps so that the most likely jumps are taken first -- but that's not realistic to do as a programmer.
Transmeta had the idea of letting the machine do some instruction optimization on-the-fly to save power... But that didn't seem to help enough... And look where that got them.
Set unused memory or flash to 0xFF not 0x00. This is certainly true for flash and eeprom, not sure about s or d ram. For the proms there is an inversion so a 0 is stored as a 1 and takes more energy, a 1 is stored as a zero and takes less. This is why you read 0xFFs after erasing a block.
Rather timely this, article on Hackaday today about measuring power consumption of various commands:
Hackaday: the-effect-of-code-on-power-consumption
Aside from that:
- Interrupts are your friends
- Polling / wait() aren't your friends
- Do as little as possible
- make your code as small/efficient as possible
- Turn off as many modules, pins, peripherals as possible in the micro
- Run as slowly as possible
- If the micro has settings for pin drive strengh, slew rate, etc. check them & configure them, the defaults are often full power / max speed.
- returning to the article above, go back and measure the power & see if you can drop it by altering things.
also something that is not trivial to do is reduce precision of the mathematical operations, go for the smallest dataset available and if available by your development environment pack data and aggregate operations.
knuth books could give you all the variant of specific algorithms you need to save memory or cpu, or going with reduced precision minimizing the rounding errors
also, spent some time checking for all the embedded device api - for example most symbian phones could do audio encoding via a specialized hardware
Do your work as quickly as possible, and then go to some idle state waiting for interrupts (or events) to happen. Try to make the code run out of cache with as little external memory traffic as possible.
On Linux, install powertop to see how often which piece of software wakes up the CPU. And follow the various tips that the powertop site links to, some of which are probably applicable to non-Linux, too.
http://www.lesswatts.org/projects/powertop/
Choose efficient algorithms that are quick and have small basic blocks and minimal memory accesses.
Understand the cache size and functional units of your processor.
Don't access memory. Don't use objects or garbage collection or any other high level constructs if they expands your working code or data set outside the available cache. If you know the cache size and associativity, lay out the entire working data set you will need in low power mode and fit it all into the dcache (forget some of the "proper" coding practices that scatter the data around in separate objects or data structures if that causes cache trashing). Same with all the subroutines. Put your working code set all in one module if necessary to stripe it all in the icache. If the processor has multiple levels of cache, try to fit in the lowest level of instruction or data cache possible. Don't use floating point unit or any other instructions that may power up any other optional functional units unless you can make a good case that use of these instructions significantly shortens the time that the CPU is out of sleep mode.
etc.
Don't poll, sleep
Avoid using power hungry areas of the chip when possible. For example multipliers are power hungry, if you can shift and add you can save some Joules (as long as you don't do so much shifting and adding that actually the multiplier is a win!)
If you are really serious,l get a power-aware debugger, which can correlate power usage with your source code. Like this

Resources