I am trying to embed a large resource file (almost 4gb), its a .dat file. However i am running into issues where it throws an error
"Error reading resource 'Sx64.x-none.dat' -- 'Specified argument was out of the range of valid values.
It appears there is a limitation to the size of an embedded resource for Visual studio. Would there be a way to increase the max size? or some other work around for this? I am trying not to use a linked resource or have another file being copied around with the exe.
While in the PE format specification the SizeOfImage value is a 32 bit unsigned integer and can theoretically handle up to 4 GiB, in practice the limit for an executable file is lower. Some user here on stackoverflow has tested this behavior. However it's still possible to make an executable bigger and working (on 64 bit Windows only) but the data must be kept outside of the image sections at End Of File, so the loader won't attempt to allocate it. This is a bad practice and I suggest, as suggested by others in comments, to ship it in a separate file along with your executable.
I have a dataset that's 7GB worth of data. I am reading it as follows:
path = direc + '2018-01-*.*'
ddf = dd.read_json(path,blocksize=None)
I used this method because reading it through pandas seemed to keep crashing my kernel and using up my local memory - I am running this on my machine.
I need to do a bunch of analysis, but any command seems to crash the kernel, if im saving to parquet, or even doing a count or dropping duplicates.
Any suggestions on how I can run commands/manipulate this dataset?
From what I can see everything that you're doing is fine. Dask shouldn't ever crash the kernel, the worst that might happen in a situation like this is that you run out of memory.
So you may have to figure out how to provide more information concisely to create an MCVE
I have a program that creates a file of about 50MB size. During the process the program frequently rewrites sections of the file and forces the changes to disk (in the order of 100 times). It uses a FileChannel and direct ByteBuffers via fc.read(...), fc.write(...) and fc.force(...).
New text:
I have a better view on the problem now.
The problem appears to be that I use three different JVMs to modify a file (one creates it, two others (launched from the first) write to it). Every JVM closes the file properly before the next JVM is started.
The problem is that the cost of fc.write() to that file occasionally goes through the roof for the third JVM (in the order of 100 times the normal cost). That is, all write operations are equally slow, it is not just one that hang very long.
Interestingly, one way to help this is to insert delays (2 seconds) between the launching of JVMs. Without delay, writing is always slow, with delay, the writing is slow aboutr every second time or so.
I also found this Stackoverflow: How to unmap a file from memory mapped using FileChannel in java? which describes a problem for mapped files, which I'm not using.
What I suspect might be going on:
Java does not completely release the file handle when I call close(). When the next JVM is started, Java (or Windows) recognizes concurrent access to that file and installes some expensive concurrency handler for that file, which makes writing expensive.
Would that make sense?
The problem occurs on Windows 7 (Java 6 and 7, tested on two machines), but not under Linux (SuSE 11.3 64).
Old text:
The problem:
Starting the program from as a JUnit test harness from eclipse or from console works fine, it takes around 3 seconds.
Starting the program through an ant task (or through JUnit by kicking of a separate JVM using a ProcessBuilder) slows the program down to 70-80 seconds for the same task (factor 20-30).
Using -Xprof reveals that the usage of 'force0' and 'pwrite' goes through the roof from 34.1% (76+20 tics) to 97.3% (3587+2913+751 tics):
Fast run:
27.0% 0 + 76 sun.nio.ch.FileChannelImpl.force0
7.1% 0 + 20 sun.nio.ch.FileDispatcher.pwrite0
[..]
Slow run:
Interpreted + native Method
48.1% 0 + 3587 sun.nio.ch.FileDispatcher.pwrite0
39.1% 0 + 2913 sun.nio.ch.FileChannelImpl.force0
[..]
Stub + native Method
10.1% 0 + 751 sun.nio.ch.FileDispatcher.pwrite0
[..]
GC and compilation are negligible.
More facts:
No other methods show a significant change in the -Xprof output.
It's either fast or very slow, never something in-between.
Memory is not a problem, all test machines have at least 8GB, the process uses <200MB
rebooting the machine does not help
switching of virus-scanners and similar stuff has no affect
When the process is slow, there is virtually no CPU usage
It is never slow when running it from a normal JVM
It is pretty consistently slow when running it in a JVM that was started from the first JVM (via ProcessBuilder or as ant-task)
All JVMs are exactly the same. I output System.getProperty("java.home") and the JVM options via RuntimeMXBean RuntimemxBean = ManagementFactory.getRuntimeMXBean(); List arguments = RuntimemxBean.getInputArguments();
I tested it on two machines with Windows7 64bit, Java 7u2, Java 6u26 and JRockit, the hardware of the machines differs, though, but the results are very similar.
I tested it also from outside Eclipse (command-line ant) but no difference there.
The whole program is written by myself, all it does is reading and writing to/from this file, no other libraries are used, especially no native libraries. -
And some scary facts that I just refuse to believe to make any sense:
Removing all class files and rebuilding the project sometimes (rarely) helps. The program (nested version) runs fast one or two times before becoming extremely slow again.
Installing a new JVM always helps (every single time!) such that the (nested) program runs fast at least once! Installing a JDK counts as two because both the JDK-jre and the JRE-jre work fine at least once. Overinstalling a JVM does not help. Neither does rebooting. I haven't tried deleting/rebooting/reinstalling yet ...
These are the only two ways I ever managed to get fast program runtimes for the nested program.
Questions:
What may cause this performance drop for nested JVMs?
What exactly do these methods do (pwrite0/force0)? -
Are you using local disks for all testing (as opposed to any network share) ?
Can you setup Windows with a ram drive to store the data ? When a JVM terminates, by default its file handles will have been closed but what you might be seeing is the flushing of the data to the disk. When you overwrite lots of data the previous version of data is discarded and may not cause disk IO. The act of closing the file might make windows kernel implicitly flush data to disk. So using a ram drive would allow you to confirm that their since disk IO time is removed from your stats.
Find a tool for windows that allows you to force the kernel to flush all buffers to disk, use this in between JVM runs, see how long that takes at the time.
But I would guess you are hitten some iteraction with the demands of the process and the demands of the kernel in attempting to manage disk block buffer cache. In linux there is a tool like "/sbin/blockdev --flushbufs" that can do this.
FWIW
"pwrite" is a Linux/Unix API for allowing concurrent writing to a file descriptor (which would be the best kernel syscall API to use for the JVM, I think Win32 API already has provision for the same kinds of usage to share a file handle between threads in a process, but since Sun have Unix heritige things get named after the Unix way). Google "pwrite(2)" for more info on this API.
"force" I would guess that is a file system sync, meaning the process is requesting the kernel to flush unwritten data (that is currently in disk block buffer cache) into the file on the disk (such as would be needed before you turned your computer off). This action will happen automatically over time, but transactional systems require to know when the data previously written (with pwrite) has actually hit the physical disk and is stored. Because some other disk IO is dependant on knowing that, such as with transactional checkpointing.
One thing that could help is making sure you explicitly set the FileChannel to null. Then call System.runFinalization() and maybe System.gc() at the end of the program. You may need more than 1 call.
System.runFinalizersOnExit(true) may also help, but it's deprecated so you will have to deal with the compiler warnings.
I have a custom file type that is implemented in sections with a header at the shows the offset and length of each section within the file.
Currently, whenever I want to interact with the file, I must either load and parse the entire thing up front, or else pick only the sections that I need and load just them.
What I would like to do is to achieve a hybrid approach where each of the sections is loaded on-demand.
It seems however that doing this has a lot of potential downsides in terms of leaving filesystem handles open for longer than I would like and the additional code complexity that I would incur.
Are there any standard patterns for this sort of thing? It seems that my options are to:
Just load the entire file and stop grousing about the cycles/memory wasted
Load the entire file into memory as raw bytes and then satisfy any requests for unloaded sections from the memory buffer rather than disk. This saves me the cost of parsing the unneeded sections and requires less memory (since the disk representation is much more compact than the object model around it), but still means that I waste memory for sections that I never end up loading.
Load whatever sections I need right away and close the file but hold onto the source location of the file. Then if another section is requested, re-open the file and load the data. In this case I could get strange results if the underlying file is changed.
Same as the above but leave a file handle open (perhaps allowing read sharing).
Load the file using Memory-Mapped IO and leave a view on the file open.
Any thoughts
If possible, MMAP-ing the whole file is usually the easiest thing to do if you have a random-access pattern. This way you just delegate the loading/unloading issue to the OS and you have 1 & 2 for free.
If you have very special access patterns, you can even use something like fadvise() (I don't the exact Win32 equivalent) to tell the OS your access intend.
If your file is more than 2GB and you can either go the 64bits way or to mmap() the file on demand.
If the file is relatively small, mmap-ing the entire file is good enough. If the file is large, you could leave a mmap view open, and just move it around the file and resize it to view each section when needed.
Previously, I asked the question.
The problem is the demands of our file structure are very high.
For instance, we're trying to create a container with up to 4500 files and 500mb data.
The file structure of this container consists of
SQLite DB (under 1mb)
Text based xml-like file
Images inside a dynamic folder structure that make up the rest of the 4,500ish files
After the initial creation the images files are read only with the exception of deletion.
The small db is used regularly when the container is accessed.
Tar, Zip and the likes are all too slow (even with 0 compression). Slow is subjective I know, but to untar a container of this size is over 20 seconds.
Any thoughts?
As you seem to be doing arbitrary file system operations on your container (say, creation, deletion of new files in the container, overwriting existing files, appending), I think you should go for some kind of file system. Allocate a large file, then create a file system structure in it.
There are several options for the file system available: for both Berkeley UFS and Linux ext2/ext3, there are user-mode libraries available. It might also be possible that you find a FAT implementation somewhere. Make sure you understand the structure of the file system, and pick one that allows for extending - I know that ext2 is fairly easy to extend (by another block group), and FAT is difficult to extend (need to append to the FAT).
Alternatively, you can put a virtual disk format yet below the file system, allowing arbitrary remapping of blocks. Then "free" blocks of the file system don't need to appear on disk, and you can allocate the virtual disk much larger than the real container file will be.
Three things.
1) What Timothy Walters said is right on, I'll go in to more detail.
2) 4500 files and 500Mb of data is simply a lot of data and disk writes. If you're operating on the entire dataset, it's going to be slow. Just I/O truth.
3) As others have mentioned, there's no detail on the use case.
If we assume a read only, random access scenario, then what Timothy says is pretty much dead on, and implementation is straightforward.
In a nutshell, here is what you do.
You concatenate all of the files in to a single blob. While you are concatenating them, you track their filename, the file length, and the offset that the file starts within the blob. You write that information out in to a block of data, sorted by name. We'll call this the Table of Contents, or TOC block.
Next, then, you concatenate the two files together. In the simple case, you have the TOC block first, then the data block.
When you wish to get data from this format, search the TOC for the file name, grab the offset from the begining of the data block, add in the TOC block size, and read FILE_LENGTH bytes of data. Simple.
If you want to be clever, you can put the TOC at the END of the blob file. Then, append at the very end, the offset to the start of the TOC. Then you lseek to the end of the file, back up 4 or 8 bytes (depending on your number size), take THAT value and lseek even farther back to the start of your TOC. Then you're back to square one. You do this so you don't have to rebuild the archive twice at the beginning.
If you lay out your TOC in blocks (say 1K byte in size), then you can easily perform a binary search on the TOC. Simply fill each block with the File information entries, and when you run out of room, write a marker, pad with zeroes and advance to the next block. To do the binary search, you already know the size of the TOC, start in the middle, read the first file name, and go from there. Soon, you'll find the block, and then you read in the block and scan it for the file. This makes it efficient for reading without having the entire TOC in RAM. The other benefit is that the blocking requires less disk activity than a chained scheme like TAR (where you have to crawl the archive to find something).
I suggest you pad the files to block sizes as well, disks like work with regular sized blocks of data, this isn't difficult either.
Updating this without rebuilding the entire thing is difficult. If you want an updatable container system, then you may as well look in to some of the simpler file system designs, because that's what you're really looking for in that case.
As for portability, I suggest you store your binary numbers in network order, as most standard libraries have routines to handle those details for you.
Working on the assumption that you're only going to need read-only access to the files why not just merge them all together and have a second "index" file (or an index in the header) that tells you the file name, start position and length. All you need to do is seek to the start point and read the correct number of bytes. The method will vary depending on your language but it's pretty straight forward in most of them.
The hardest part then becomes creating your data file + index, and even that is pretty basic!
An ISO disk image might do the trick. It should be able to hold that many files easily, and is supported by many pieces of software on all the major operating systems.
First, thank-you for expanding your question, it helps a lot in providing better answers.
Given that you're going to need a SQLite database anyway, have you looked at the performance of putting it all into the database? My experience is based around SQL Server 2000/2005/2008 so I'm not positive of the capabilities of SQLite but I'm sure it's going to be a pretty fast option for looking up records and getting the data, while still allowing for delete and/or update options.
Usually I would not recommend to put files inside the database, but given that the total size of all images is around 500MB for 4500 images you're looking at a little over 100K per image right? If you're using a dynamic path to store the images then in a slightly more normalized database you could have a "ImagePaths" table that maps each path to an ID, then you can look for images with that PathID and load the data from the BLOB column as needed.
The XML file(s) could also be in the SQLite database, which gives you a single 'data file' for your app that can move between Windows and OSX without issue. You can simply rely on your SQLite engine to provide the performance and compatability you need.
How you optimize it depends on your usage, for example if you're frequently needing to get all images at a certain path then having a PathID (as an integer for performance) would be fast, but if you're showing all images that start with "A" and simply show the path as a property then an index on the ImageName column would be of more use.
I am a little concerned though that this sounds like premature optimization, as you really need to find a solution that works 'fast enough', abstract the mechanics of it so your application (or both apps if you have both Mac and PC versions) use a simple repository or similar and then you can change the storage/retrieval method at will without any implication to your application.
Check Solid File System - it seems to be what you need.