I'm using Cocoa bindings to manage a table of objects. I understand how bindings work but I've run into a slight problem. Managing the table of objects would be fine and dandy, except that those objects have to manage actual bluetooth hardware. I'm working off of a framework that provides a class representing a connection to this hardware, and have made another "manager" class the makes it key-value compliant. In other words, this manager class has to be able to connect and modify its "connect" status in its properties dictionary, be the delegate of this hardware and modify properties, and update the hardware with changes made.
However, whenever I set new values within the object itself, like in a "connect" method that would change the "connect" key's value to 2 (looking), (i.e. propertiesDict = newDict), the change is not seeming to be picked up by observers that it is bound to. I've looked at the observeValueForKeyPath:ofObject:change:context: in the NSKeyValueObservingProtocol. However, I don't know what to do with the context argument.
I hope that makes sense... but if anyone has any ideas I'd love to hear them.
Your question isn't totally clear, but if I'm understanding it correctly the issue might be because you need to send manual KVO notifications before and after you change a value in the embedded object. For instance, [self willChangeValueForKey:#"connected"]; and [self didChangeValueForKey:#"connected"];.
There are three ways to update a property/attribute in a KVO compatible way:
Using the property setter (specified in #property declaration or generated by #synthesize)
Calling -willChangeValueForKey: and -didChangeValueForKey: before and after you change the property value in any way.
Calling -setValueForKey:
Related
I have a custom class that exposes an NSString property. In Interface Builder I've bound the title of an NSButton to the property of my custom class.
Is it possible to get a reference to the NSButton instance from within my custom class?
Essentially I'm trying to locate all the user interface elements that are bound to the property in my custom class.
In general, this sounds like an anti-pattern and/or a bad idea. That said, there are a couple of things to bear in mind. Multiple observers could be bound to your property. You can override addObserver:forKeyPath:options:context: and removeObserver:forKeyPath: (and removeObserver:forKeyPath:context:) and then maintain your own array of observers. With that approach I would caution you that you may need to go to extra effort for the array to not retain observers, as traditionally KV observations don't retain the observing object, and you will likely run into leaks/heap growth if you start retaining them by putting them in an NSArray.
The other gotcha with overriding addObserver:... and removeObserver:... is that, without considerable extra work, you wont know if the observation is for a binding or for something else (like, say, a dependent keyPath notification). One possible workaround for that would be to interrogate the observer via infoForBinding: on all exposedBindings on a later runloop pass using performSelector:afterDelay:. (I think I just threw up in my mouth a little bit for suggesting this.)
Relying on private implementation details of the KVO system is not likely to be a good approach, unless your goal is simply to better understand how KVO works, but it sounds like you're actually trying to accomplish something.
Really, this whole approach just feels like a recipe for disaster. It sounds like an MVC violation from the get-go. Why would the model object need to know about the view objects? Whatever you're trying to accomplish here would almost certainly be better accomplished by having the nib be owned by an NSViewController subclass which has IBOutlets for all the UI elements, and properties for the model. That object would then be in a position to more cleanly manage the apparently complex relationship between your view and model objects without runtime trickery. Since you've not elaborated on the ultimate goal of this trickery, it's hard to say what the best approach would be.
What's the point of binding the value of a NSProgressIndicator to your controller? It never seems to ask the controller for the value, except on startup. The only way to move the NSProgressIndicator seems to be by sending it #increaseBy:, which bypasses my binding. So, why would I bind?!
If your UI's bound value not updating, that means you either bungled the binding or your controller code is not modifying the bound value in a key-value-observing–compliant way. The most common problem is doing fooIvar = val rather than [self setFooIvar:val] or self.fooIvar = val.
Apple's answer to your problem:
[What to do if] Changing the value of a model property programmatically is not reflected in the user interface
If changes made to a model value programmatically are not being reflected in the user interface, this typically indicates that the model object is not key-value-observing compliant for the property, or that you are modifying the value in a manner that is bypassing key-value observing. You should ensure that:
The model class has automatic key-value observing enabled or implements manual key-value observing for the property.
That you are changing the value using an accessor method, or using a key-value-coding compliant method. Changing the value of an instance variable directly does not provide key-value observing change notifications.
If your model property is a collection, that you're modifying the content in a key-value-observing compliant manner. See “My collection controller isn’t displaying the current data” for more information.
For that answer and answers other common problems, see "Troubleshooting Cocoa Bindings."
You should also look at the examples provided by mmalc. They are a valuable resource.
My document-based Cocoa application uses a NSOutlineView/NSTreeController combo, bound to the document's Core Data store. My NSTreeController has the fetch predicate isRoot == YES. isRoot is a transient boolean attribute with a default value of NO. My root model's awakeFromInsert calls:
[self setIsRoot:[NSNumber numberWithBool:YES]];
I'm able to add objects to the hierarchy just fine, but when I try to load a document I just saved, I get an exception:
[<NSDictionaryMapNode 0x1001a8190> valueForUndefinedKey:]: this class is not key value coding-compliant for the key isRoot.
I can work around this exception and successfully load a newly-saved document if I change the isRoot attribute to non-transient in the xcdatamodel, but based on my understanding of the transient flag it should not cause a problem, and this really isn't the kind of data that should be persisted.
I have also tried implementing -isRoot in the NSManagedObject subclasses to return the appropriate fixed value, as well as making the same setIsRoot: call within awakeFromFetch, both to no avail.
Is there some other subtlety I'm missing? I can't imagine that fetch predicates don't support transient attributes. I don't know much about the inner workings of Core Data but it seems interesting that it's trying to look up isRoot on the store-specific class and not my NSManagedObject subclass.
I can't imagine that fetch predicates
don't support transient attributes.
After a bit of research, I can tell you that they don't. See this document. Quote:
You cannot fetch using a predicate
based on transient properties
(although you can use transient
properties to filter in memory
yourself).
I've put together a test project and can verify I get exactly the same error as you do.
When I need to filter out the root nodes in a tree, I use a fetch predicate of parent == nil instead of a transient attribute.
I understand your reaction - I too wanted way of having an attribute specifically called isRoot too. My guess is it's possible, but it'd take so much code it's just not worth the hassle.
Oh, and if you're dealing with core data any more than a little, mogenerator will make your life much easier.
Another option is to have a separate class for the top-level nodes, use that class name as "Entity Name" and leave "Fetch Predicate" blank. As long as the child nodes have the same values as the top-level node (I use a common superclass/entity inheritance), everything still works.
Have you made sure that the NSTreeController is set to control an entity rather than a class?
From your error, it looks like it might be set to a class with the default - NSMutableDictionary.
I'd also argue that maybe isRoot could be persisted. It depends on what you're trying to do with your app, of course, but if it's a tree view that gets loaded on app run I'd either make isRoot persist.
What do I need to do to update a tableView bound to an NSArrayController when a method is called that updates the underlying array? An example might clarify this.
When my application launches, it creates a SubwayTrain. When SubwayTrain is initialised, it creates a single SubwayCar. SubwayCar has a mutable array 'passengers'. When a Subway car is initialised, the passengers array is created, and a couple of People objects are put in (let's say a person with name "ticket collector" and another, named "homeless guy"). These guys are always on the SubwayCar so I create them at initialisation and add them to the passengers array.
During the life of the application people board the car. 'addPassenger' is called on the SubwayCar, with the person passed in as an argument.
I have an NSArrayController bound to subwayTrain.subwayCar.passengers, and at launch my ticket collector and homeless guy show up fine. But when I use [subwayCar addPassenger:], the tableView doesn't update. I have confirmed that the passenger is definitely added to the array, but nothing gets updated in the gui.
What am I likely to be doing wrong? My instinct is that it's KVO related - the array controller doesn't know to update when addPassenger is called (even though addPassenger calls [passengers addObject:]. What could I be getting wrong here - I can post code if it helps.
Thanks to anyone willing to help out.
UPDATE
So, it turns out I can get this to work by changing by addPassenger method from
[seatedPlayers addObject:person];
to
NSMutableSet *newSeatedPlayers = [NSMutableSet setWithSet:seatedPlayers];
[newSeatedPlayers addObject:sp];
[seatedPlayers release];
[self setSeatedPlayers:newSeatedPlayers];
I guess this is because I am using [self setSeatedPlayers]. Is this the right way to do it? It seems awfully cumbersome to copy the array, release the old one, and update the copy (as opposed to just adding to the existing array).
I don't know if its considered a bug, but addObject: (and removeObject:atIndex:) don't generate KVO notifications, which is why the array controller/table view isn't getting updated. To be KVO-compliant, use mutableArrayValueForKey:
Example:
[[self mutableArrayValueForKey:#"seatedPlayers"] addObject:person];
You'll also want to implement insertObject:inSeatedPlayersAtIndex: since the default KVO methods are really slow (they create a whole new array, add the object to that array, and set the original array to the new array -- very inefficient)
- (void)insertObject:(id)object inSeatedPlayerAtIndex:(int)index
{
[seatedPlayers insertObject:object atIndex:index];
}
Note that this method will also be called when the array controller adds objects, so its also a nice hook for thinks like registering an undo operation, etc.
I haven't tried this, so I cannot say it works, but wouldn't you get KVO notifications by calling
insertObject:atArrangedObjectIndex:
on the ArrayController?
So, it turns out I can get this to work by changing by addPassenger method from
[seatedPlayers addObject:person];
to
NSMutableSet *newSeatedPlayers = [NSMutableSet setWithSet:seatedPlayers];
[newSeatedPlayers addObject:sp];
[seatedPlayers release];
[self setSeatedPlayers:newSeatedPlayers];
I guess this is because I am using [self setSeatedPlayers]. Is this the right way to do it?
First off, it's setSeatedPlayers:, with the colon. That's vitally important in Objective-C.
Using your own setters is the correct way to do it, but you're using the incorrect correct way. It works, but you're still writing more code than you need to.
What you should do is implement set accessors, such as addSeatedPlayersObject:. Then, send yourself that message. This makes adding people a short one-liner:
[self addSeatedPlayersObject:person];
And as long as you follow the KVC-compliant accessor formats, you will get KVO notifications for free, just as you do with setSeatedPlayers:.
The advantages of this over setSeatedPlayers: are:
Your code to mutate the set will be shorter.
Because it's shorter, it will be cleaner.
Using specific set-mutation accessors provides the possibility of specific set-mutation KVO notifications, instead of general the-whole-dang-set-changed notifications.
I also prefer this solution over mutableSetValueForKey:, both for brevity and because it's so easy to misspell the key in that string literal. (Uli Kusterer has a macro to cause a warning when that happens, which is useful when you really do need to talk to KVC or KVO itself.)
The key to the magic of Key Value Observing is in Key Value Compliance. You initially were using a method name addObject: which is only associated with the "unordered accessor pattern" and your property was an indexed property (NSMutableArray). When you changed your property to an unordered property (NSMutableSet) it worked. Consider NSArray or NSMutableArray to be indexed properties and NSSet or NSMutableSet to be unordered properties. You really have to read this section carefully to know what is required to make the magic happen... Key-Value-Compliance. There are some 'Required' methods for the different categories even if you don't plan to use them.
Use willChangeValueForKey: and didChangeValueForKey: wrapped around a change of a member when the change does not appear to cause a KVO notification. This comes in handy when you are directly changing an instance variable.
Use willChangeValueForKey:withSetMutation:usingObjects: and didChangeValueForKey:withSetMutation:usingObjects: wrapped around a change of contents of a collection when the change does not appear to cause a KVO notification.
Use [seatedPlayers setByAddingObject:sp] to make things shorter and to avoid needlessly allocating mutable set.
Overall, I'd do either this:
[self willChangeValueForKey:#"seatedPlayers"
withSetMutation:NSKeyValueUnionSetMutation
usingObjects:sp];
[seatedPlayers addObject:sp];
[self didChangeValueForKey:#"seatedPlayers"
withSetMutation:NSKeyValueUnionSetMutation
usingObjects:sp];
or this:
[self setSeatedPlayers:[seatedPlayers setByAddingObject:sp]];
with the latter alternative causing an automatic invocation of the functions listed under 1. First alternative should be better performing.
As I learn more about KVO and KVC, I have become curious -
How does NSObject provide automatic KVO when accessing setter methods?
If I create a new object with an accessor named setName,
how does an observer get notified when someon calls
[obj setName:#"Mystery"];
Thanks for any feedback
I always explain to people that "nothing is magic in Cocoa; it's just code." But KVO borders on magic. It's called isa-swizzling. Your class is transformed at runtime (the first time anyone observes you) into a dynamically generated sub-class that overloads all getters and setters. Calls to -class are wired to lie to you and return the old class, so you won't see the magic subclasses except in the debugger if you look directly at the isa pointer.
Noticing that KVO must be bizarre is a major step in Cocoa enlightenment. Congratulations.
Key-Value Observing Implementation Details