Euclidean greatest common divisor for more than two numbers - algorithm

Can someone give an example for finding greatest common divisor algorithm for more than two numbers?
I believe programming language doesn't matter.

Start with the first pair and get their GCD, then take the GCD of that result and the next number. The obvious optimization is you can stop if the running GCD ever reaches 1. I'm watching this one to see if there are any other optimizations. :)
Oh, and this can be easily parallelized since the operations are commutative/associative.

The GCD of 3 numbers can be computed as gcd(a, b, c) = gcd(gcd(a, b), c). You can apply the Euclidean algorithm, the extended Euclidian or the binary GCD algorithm iteratively and get your answer. I'm not aware of any other (smarter?) ways to find a GCD, unfortunately.

A little late to the party I know, but a simple JavaScript implementation, utilising Sam Harwell's description of the algorithm:
function euclideanAlgorithm(a, b) {
if(b === 0) {
return a;
}
const remainder = a % b;
return euclideanAlgorithm(b, remainder)
}
function gcdMultipleNumbers(...args) { //ES6 used here, change as appropriate
const gcd = args.reduce((memo, next) => {
return euclideanAlgorithm(memo, next)}
);
return gcd;
}
gcdMultipleNumbers(48,16,24,96) //8

I just updated a Wiki page on this.
[https://en.wikipedia.org/wiki/Binary_GCD_algorithm#C.2B.2B_template_class]
This takes an arbitrary number of terms.
use GCD(5, 2, 30, 25, 90, 12);
template<typename AType> AType GCD(int nargs, ...)
{
va_list arglist;
va_start(arglist, nargs);
AType *terms = new AType[nargs];
// put values into an array
for (int i = 0; i < nargs; i++)
{
terms[i] = va_arg(arglist, AType);
if (terms[i] < 0)
{
va_end(arglist);
return (AType)0;
}
}
va_end(arglist);
int shift = 0;
int numEven = 0;
int numOdd = 0;
int smallindex = -1;
do
{
numEven = 0;
numOdd = 0;
smallindex = -1;
// count number of even and odd
for (int i = 0; i < nargs; i++)
{
if (terms[i] == 0)
continue;
if (terms[i] & 1)
numOdd++;
else
numEven++;
if ((smallindex < 0) || terms[i] < terms[smallindex])
{
smallindex = i;
}
}
// check for exit
if (numEven + numOdd == 1)
continue;
// If everything in S is even, divide everything in S by 2, and then multiply the final answer by 2 at the end.
if (numOdd == 0)
{
shift++;
for (int i = 0; i < nargs; i++)
{
if (terms[i] == 0)
continue;
terms[i] >>= 1;
}
}
// If some numbers in S are even and some are odd, divide all the even numbers by 2.
if (numEven > 0 && numOdd > 0)
{
for (int i = 0; i < nargs; i++)
{
if (terms[i] == 0)
continue;
if ((terms[i] & 1) == 0)
terms[i] >>= 1;
}
}
//If every number in S is odd, then choose an arbitrary element of S and call it k.
//Replace every other element, say n, with | nāˆ’k | / 2.
if (numEven == 0)
{
for (int i = 0; i < nargs; i++)
{
if (i == smallindex || terms[i] == 0)
continue;
terms[i] = abs(terms[i] - terms[smallindex]) >> 1;
}
}
} while (numEven + numOdd > 1);
// only one remaining element multiply the final answer by 2s at the end.
for (int i = 0; i < nargs; i++)
{
if (terms[i] == 0)
continue;
return terms[i] << shift;
}
return 0;
};

For golang, using remainder
func GetGCD(a, b int) int {
for b != 0 {
a, b = b, a%b
}
return a
}
func GetGCDFromList(numbers []int) int {
var gdc = numbers[0]
for i := 1; i < len(numbers); i++ {
number := numbers[i]
gdc = GetGCD(gdc, number)
}
return gdc
}

In Java (not optimal):
public static int GCD(int[] a){
int j = 0;
boolean b=true;
for (int i = 1; i < a.length; i++) {
if(a[i]!=a[i-1]){
b=false;
break;
}
}
if(b)return a[0];
j=LeastNonZero(a);
System.out.println(j);
for (int i = 0; i < a.length; i++) {
if(a[i]!=j)a[i]=a[i]-j;
}
System.out.println(Arrays.toString(a));
return GCD(a);
}
public static int LeastNonZero(int[] a){
int b = 0;
for (int i : a) {
if(i!=0){
if(b==0||i<b)b=i;
}
}
return b;
}

Related

Simplex solver - issues with getting it working

I'm trying to write a simple simplex solver for linear optimization problems, but I'm having trouble getting it working. Every time I run it I get a vector subscript out of range (which is quite easy to find), but I think that its probably a core issue somewhere else in my impl.
Here is my simplex solver impl:
bool pivot(vector<vector<double>>& tableau, int row, int col) {
int n = tableau.size();
int m = tableau[0].size();
double pivot_element = tableau[row][col];
if (pivot_element == 0) return false;
for (int j = 0; j < m; j++) {
tableau[row][j] /= pivot_element;
}
for (int i = 0; i < n; i++) {
if (i != row) {
double ratio = tableau[i][col];
for (int j = 0; j < m; j++) {
tableau[i][j] -= ratio * tableau[row][j];
}
}
}
return true;
}
int simplex(vector<vector<double>>& tableau, vector<double>& basic, vector<double>& non_basic) {
int n = tableau.size() - 1;
int m = tableau[0].size() - 1;
while (true) {
int col = -1;
for (int j = 0; j < m; j++) {
if (tableau[n][j] > 0) {
col = j;
break;
}
}
if (col == -1) break;
int row = -1;
double min_ratio = numeric_limits<double>::infinity();
for (int i = 0; i < n; i++) {
if (tableau[i][col] > 0) {
double ratio = tableau[i][m] / tableau[i][col];
if (ratio < min_ratio) {
row = i;
min_ratio = ratio;
}
}
}
if (row == -1) return -1;
if (!pivot(tableau, row, col)) return -1;
double temp = basic[row];
basic[row] = non_basic[col];
non_basic[col] = temp;
}
return 1;
}

Finding number of pairs, product of whose indices is divisible by another number X

Given an array and some value X, find the number of pairs such that i < j , a[i] = a[j] and (i * j) % X == 0
Array size <= 10^5
I am thinking of this problem for a while but only could come up with the brute force solution(by checking all pairs) which will obviously time-out [O(N^2) time complexity]
Any better approach?
First of all, store separate search structures for each distinct A[i] as we iterate.
i * j = k * X
i = k * X / j
Let X / j be some fraction. Since i is an integer, k would be of the form m * least_common_multiple(X, j) / X, where m is natural.
Example 1: j = 20, X = 60:
lcm(60, 20) = 60
matching `i`s would be of the form:
(m * 60 / 60) * 60 / 20
=> m * q, where q = 3
Example 2: j = 6, X = 2:
lcm(2, 6) = 6
matching `i`s would be of the form:
(m * 6 / 2) * 2 / 6
=> m * q, where q = 1
Next, I would consider how to efficiently query the number of multiples of a number in a sorted list of arbitrary naturals. One way is to hash the frequency of divisors of each i we add to the search structure of A[i]. But first consider i as j and add to the result the count of divisors q that already exist in the hash map.
JavaScript code with brute force testing at the end:
function gcd(a, b){
return b ? gcd(b, a % b) : a;
}
function getQ(X, j){
return X / gcd(X, j);
}
function addDivisors(n, map){
let m = 1;
while (m*m <= n){
if (n % m == 0){
map[m] = -~map[m];
const l = n / m;
if (l != m)
map[l] = -~map[l];
}
m += 1;
}
}
function f(A, X){
const Ais = {};
let result = 0;
for (let j=1; j<A.length; j++){
if (A[j] == A[0])
result += 1;
// Search
if (Ais.hasOwnProperty(A[j])){
const q = getQ(X, j);
result += Ais[A[j]][q] || 0;
// Initialise this value's
// search structure
} else {
Ais[A[j]] = {};
}
// Add divisors for j
addDivisors(j, Ais[A[j]]);
}
return result;
}
function bruteForce(A, X){
let result = 0;
for (let j=1; j<A.length; j++){
for (let i=0; i<j; i++){
if (A[i] == A[j] && (i*j % X) == 0)
result += 1;
}
}
return result;
}
var numTests = 1000;
var n = 100;
var m = 50;
var x = 100;
for (let i=0; i<numTests; i++){
const A = [];
for (let j=0; j<n; j++)
A.push(Math.ceil(Math.random() * m));
const X = Math.ceil(Math.random() * x);
const _brute = bruteForce(A, X);
const _f = f(A, X);
if (_brute != _f){
console.log("Mismatch!");
console.log(X, JSON.stringify(A));
console.log(_brute, _f);
break;
}
}
console.log("Done testing.")
Just in case If someone needed the java version of this answer - https://stackoverflow.com/a/69690416/19325755 explanation has been provided in that answer.
I spent lot of time in understanding the javascript code so I thought the people who are comfortable with java can refer this for better understanding.
import java.util.HashMap;
public class ThisProblem {
public static void main(String[] args) {
int t = 1000;
int n = 100;
int m = 50;
int x = 100;
for(int i = 0; i<t; i++) {
int[] A = new int[n];
for(int j = 0; j<n; j++) {
A[j] = ((int)Math.random()*m)+1;
}
int X = ((int)Math.random()*x)+1;
int optR = createMaps(A, X);
int brute = bruteForce(A, X);
if(optR != brute) {
System.out.println("Wrong Answer");
break;
}
}
System.out.println("Test Completed");
}
public static int bruteForce(int[] A, int X) {
int result = 0;
int n = A.length;
for(int i = 1; i<n; i++) {
for(int j = 0; j<i; j++) {
if(A[i] == A[j] && (i*j)%X == 0)
result++;
}
}
return result;
}
public static int gcd(int a, int b) {
return b==0 ? a : gcd(b, a%b);
}
public static int getQ(int X, int j) {
return X/gcd(X, j);
}
public static void addDivisors(int n, HashMap<Integer, Integer> map) {
int m = 1;
while(m*m <= n) {
if(n%m == 0) {
map.put(m, map.getOrDefault(m, 0)+1);
int l = n/m;
if(l != m) {
map.put(l, map.getOrDefault(l, 0)+1);
}
}
m++;
}
}
public static int createMaps(int[] A, int X) {
int result = 0;
HashMap<Integer, HashMap<Integer, Integer>> contentsOfA = new HashMap<>();
int n = A.length;
for(int i = 1; i<n; i++) {
if(A[i] == A[0])
result++;
if(contentsOfA.containsKey(A[i])) {
int q = getQ(X, i);
result += contentsOfA.get(A[i]).getOrDefault(q, 0);
} else {
contentsOfA.put(A[i], new HashMap<>());
}
addDivisors(i, contentsOfA.get(A[i]));
}
return result;
}
}

What randomness algorithm does Array#sample use?

I'm trying to figure out which random algorithm Array#sample uses, but I'm getting a bit lost hunting around in the Ruby C code.
I find it helpful to dig in pry to examine actual source code although you can find it also by going to Ruby Docs and hover the method names to reveal the click to toggle source with magnifying glass which will also show you the same source code you can find here in pry, if you've done gem install pry-doc
arr = []
cd arr
show-method sample
(#<Array>):1> show-method sample
From: array.c (C Method):
Owner: Array
Visibility: public
Number of lines: 103
static VALUE
rb_ary_sample(int argc, VALUE *argv, VALUE ary)
{
VALUE nv, result;
VALUE opts, randgen = rb_cRandom;
long n, len, i, j, k, idx[10];
long rnds[numberof(idx)];
if (OPTHASH_GIVEN_P(opts)) {
VALUE rnd;
ID keyword_ids[1];
keyword_ids[0] = id_random;
rb_get_kwargs(opts, keyword_ids, 0, 1, &rnd);
if (rnd != Qundef) {
randgen = rnd;
}
}
len = RARRAY_LEN(ary);
if (argc == 0) {
if (len < 2)
i = 0;
else
i = RAND_UPTO(len);
return rb_ary_elt(ary, i);
}
rb_scan_args(argc, argv, "1", &nv);
n = NUM2LONG(nv);
if (n < 0) rb_raise(rb_eArgError, "negative sample number");
if (n > len) n = len;
if (n <= numberof(idx)) {
for (i = 0; i < n; ++i) {
rnds[i] = RAND_UPTO(len - i);
}
}
k = len;
len = RARRAY_LEN(ary);
if (len < k && n <= numberof(idx)) {
for (i = 0; i < n; ++i) {
if (rnds[i] >= len) return rb_ary_new_capa(0);
}
}
if (n > len) n = len;
switch (n) {
case 0:
return rb_ary_new_capa(0);
case 1:
i = rnds[0];
return rb_ary_new_from_values(1, &RARRAY_AREF(ary, i));
case 2:
i = rnds[0];
j = rnds[1];
if (j >= i) j++;
return rb_ary_new_from_args(2, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j));
case 3:
i = rnds[0];
j = rnds[1];
k = rnds[2];
{
long l = j, g = i;
if (j >= i) l = i, g = ++j;
if (k >= l && (++k >= g)) ++k;
}
return rb_ary_new_from_args(3, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j), RARRAY_AREF(ary, k));
}
if (n <= numberof(idx)) {
long sorted[numberof(idx)];
sorted[0] = idx[0] = rnds[0];
for (i=1; i<n; i++) {
k = rnds[i];
for (j = 0; j < i; ++j) {
if (k < sorted[j]) break;
++k;
}
memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j));
sorted[j] = idx[i] = k;
}
result = rb_ary_new_capa(n);
RARRAY_PTR_USE(result, ptr_result, {
for (i=0; i<n; i++) {
ptr_result[i] = RARRAY_AREF(ary, idx[i]);
}
});
}
else {
result = rb_ary_dup(ary);
RBASIC_CLEAR_CLASS(result);
RB_GC_GUARD(ary);
RARRAY_PTR_USE(result, ptr_result, {
for (i=0; i<n; i++) {
j = RAND_UPTO(len-i) + i;
nv = ptr_result[j];
ptr_result[j] = ptr_result[i];
ptr_result[i] = nv;
}
});
RBASIC_SET_CLASS_RAW(result, rb_cArray);
}
ARY_SET_LEN(result, n);
return result;
}
So we can see
VALUE opts, randgen = rb_cRandom;
This would indicate the ruby Random class c is used for the randomness.
The code alone wouldn't tell us much about the algo
So lookup of https://ruby-doc.org/core-2.5.0/Random.html tells us it uses
PRNGs are currently implemented as a modified Mersenne Twister with a period of 2**19937-1.
And what the heck is a Mersenne Twister? I don't know but it sounds cool šŸ˜Ž so https://en.wikipedia.org/wiki/Mersenne_Twister tells us about it and that it is exstensively used:
The Mersenne Twister is the default PRNG for the following software systems: Microsoft Excel,[3] GAUSS,[4] GLib,[5] GNU Multiple Precision Arithmetic Library,[6] GNU Octave,[7] GNU Scientific Library,[8] gretl,[9] IDL,[10] Julia,[11] CMU Common Lisp,[12] Embeddable Common Lisp,[13] Steel Bank Common Lisp,[14] Maple,[15] MATLAB,[16] Free Pascal,[17] PHP,[18] Python,[19][20] R,[21] Ruby,[22] SageMath,[23] Scilab,[24] Stata.[25]

Find minimum cost of tickets

Find minimum cost of tickets required to buy for traveling on known days of the month (1...30). Three types of tickets are available : 1-day ticket valid for 1 days and costs 2 units, 7-days ticket valid for 7 days and costs 7 units, 30-days ticket valid for 30 days and costs 25 units.
For eg: I want to travel on [1,4,6,7,28,30] days of the month i.e. 1st, 4th, 6th ... day of the month. How to buy tickets so that the cost is minimum.
I tried to use dynamic programming to solve this but the solution is not giving me the correct answer for all cases. Here is my solution in Java :
public class TicketsCost {
public static void main(String args[]){
int[] arr = {1,5,6,9,28,30};
System.out.println(findMinCost(arr));
}
public static int findMinCost(int[] arr) {
int[][] dp = new int[arr.length][3];
int[] tDays = {1,7,30};
int[] tCost = {2,7,25};
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < 3; j++) {
if (j==0){
dp[i][j]= (i+1)*tCost[j];
}
else{
int c = arr[i]-tDays[j];
int tempCost = tCost[j];
int k;
if (c>=arr[0] && i>0){
for (k = i-1; k >= 0; k--) {
if (arr[k]<=c){
c = arr[k];
}
}
tempCost += dp[c][j];
int tempCostX = dp[i-1][j] + tCost[0];
tempCost = Math.min(tempCost,tempCostX);
}
dp[i][j] = Math.min(tempCost,dp[i][j-1]);
}
}
}
return dp[arr.length-1][2];
}
}
The solution doesn't work for {1,7,8,9,10} input, it gives 10 but the correct answer should be 9. Also, for {1,7,8,9,10,15} it give 13 but the correct is 11.
I have posted my solution not for other to debug it for me but just for reference. I was taken a bottom-up dynamic programming approach for this problem. Is this approach correct?
Let MC(d) denote the minimum cost that will pay for all trips on days 1 through d. The desired answer is then MC(30).
To calculate MC(d), observe the following:
If there's no trip on day d, then MC(d) = MC(d āˆ’ 1).
As a special case, MC(d) = 0 for all d ā‰¤ 0.
Otherwise, the minimum cost involves one of the following:
A 1-day pass on day d. In this case, MC(d) = MC(d āˆ’ 1) + 2.
A 7-day pass ending on or after day d. In this case, MC(d) = min(MC(d āˆ’ 7), MC(d āˆ’ 6), ā€¦, MC(d āˆ’ 1)) + 7.
And since MC is nondecreasing (adding a day never reduces the minimum cost), this can be simplified to MC(d) = MC(d āˆ’ 7) + 7. (Hat-tip to Ravi for pointing this out.)
A 30-day pass covering the whole period. In this case, MC(d) = 25.
As you've realized, dynamic programming (bottom-up recursion) is well-suited to this.
For ease of coding, I suggest we start by converting the list of days into a lookup table for "is this a trip day?":
boolean[] isDayWithTrip = new boolean[31]; // note: initializes to false
for (final int dayWithTrip : arr) {
isDayWithTrip[dayWithTrip] = true;
}
We can then create an array to track the minimum costs, and populate it starting from index 0:
int[] minCostUpThroughDay = new int[31];
minCostUpThroughDay[0] = 0; // technically redundant
for (int d = 1; d <= 30; ++d) {
if (! isDayWithTrip[d]) {
minCostUpThroughDay[d] = minCostUpThroughDay[d-1];
continue;
}
int minCost;
// Possibility #1: one-day pass on day d:
minCost = minCostUpThroughDay[d-1] + 2;
// Possibility #2: seven-day pass ending on or after day d:
minCost =
Math.min(minCost, minCostUpThroughDay[Math.max(0, d-7)] + 7);
// Possibility #3: 30-day pass for the whole period:
minCost = Math.min(minCost, 25);
minCostUpThroughDay[d] = minCost;
}
And minCostUpThroughDay[30] is the result.
You can see the above code in action at: https://ideone.com/1Xx1fd.
One recursive solution in Python3.
from typing import List
def solution(A: List[int]) -> int:
if not any(A):
return 0
tickets = {
1: 2,
7: 7,
30: 25,
}
import sys
min_cost = sys.maxsize
size = len(A)
for length, price in tickets.items():
current_cost = price
idx = 0
last_day = A[idx] + length
while idx < size and A[idx] < last_day:
idx += 1
if current_cost > min_cost:
continue
current_cost += solution(A[idx:])
if current_cost < min_cost:
min_cost = current_cost
return min_cost
if __name__ == '__main__':
cases = {
11: [1, 4, 6, 7, 28, 30],
9: [1, 7, 8, 9, 10],
}
for expect, parameters in cases.items():
status = (expect == solution(parameters))
print("case pass status: %s, detail: %s == solution(%s)" %
(status, expect, parameters))
public class Main03v3
{
public static void main(String[] args)
{
int[] A = {1,7,8,9,10,15,16,17,18,21,25};
System.out.println("Traveling days:\r\n "+Arrays.toString(A));
int cost = solution(A);
System.out.println("\r\nMinimum cost is " + cost);
System.out.println("\r\n" + new String(new char[40]).replace("\0", "-"));
}
public static int solution(int[] A)
{
if (A == null) return -1;
int sevenDays = 7;
int dayCost = 2, weekCost = 7, monthCost = 25;
int ratio_WeekAndDays = weekCost / dayCost;
int len = A.length;
if (len == 0) return -1;
if (len <= 3) return len * dayCost;
int cost[] = new int[len];
int i = 0;
while (i < len)
{
int startIdx = i, endIdx = i + 1;
while (endIdx < len && A[endIdx]-A[startIdx] < sevenDays)
endIdx++;
if (endIdx-startIdx > ratio_WeekAndDays)
{
if (endIdx >= startIdx + sevenDays)
endIdx = startIdx + sevenDays;
int j = startIdx;
cost[j] = ((j == 0) ? 0 : cost[j-1]) + weekCost;
while (++j < endIdx) {
cost[j] = cost[j-1];
}
i = j;
}
else
{
cost[i] = ((i == 0) ? 0 : cost[i-1]) + dayCost;
i++;
}
}
int finalCost = Math.min(cost[len-1], monthCost);
return finalCost;
}
}
Find minimum cost of tickets in JavaScript
case 1 : if input is [1,7,8,9,10] then the required output is 9
case 2 : if input is [1,7,8,9,10,15] then the required output is 11
function calMinCosts(arr){
if(!arr || arr.length===0)
return 0;
var len = arr.length;
var costsOfDateArr = Array.apply(null,{length:arr[len-1]+1}).map(()=>0);
var price1=2,price2=7,price3=25;
var days=7;
var index=0,n=costsOfDateArr.length;
for(var i=1;i<n;i++){
if(i===arr[index]){
if(i>=days+1){
costsOfDateArr[i] = Math.min(costsOfDateArr[i-days-1]+price2, costsOfDateArr[i-1]+price1);
}else{
costsOfDateArr[i] = Math.min(costsOfDateArr[0]+price2, costsOfDateArr[i-1]+price1);
}
index+=1;
}else{
costsOfDateArr[i] = costsOfDateArr[i-1];
}
}
return Math.min(price3,costsOfDateArr[n-1]);
}
console.log(calMinCosts([1,7,8,9,10]))
console.log(calMinCosts([1,7,8,9,10,15]))
Here is the C++ solution including print outs
#include <vector>
#include <iostream>
#include <cmath>
#include <algorithm>
int compute(std::vector<int> &A)
{
int sum[A.size()][A.size()+1];
for (int i = 0; i < A.size(); i++)
{
for(int j =0; j < A.size(); j++)
{
sum[i][j]=2;
}
}
for (int k = 0; k < A.size();k++)
{
sum[k][A.size()]=0;
}
for (int i = 0; i < A.size(); i++)
{
for(int j = 0; j < A.size(); j++)
{
if (i!=j)
{
if (sum[i][i] != 7)
{
int temp = abs(A[j]-A[i]);
if (temp<7 && abs(j-i)>=3)
{
sum[i][i]=7;
sum[i][j]=7;
if (i>j)
{
for(int k = j;k < i;k++)
sum[i][k]=7;
}
else
{
for(int k = i;k < j;k++)
sum[i][k]=7;
}
}
}
}
}
}
for (int i = 0; i < A.size(); ++i)
{
for(int j = 0; j < A.size(); ++j)
{
if (sum[i][j]==7)
{
sum[i][A.size()]+=1;
}
}
}
for (int i = 0; i < A.size(); ++i)
{
for (int j = 0; j < A.size()+1; ++j)
std::cout<<sum[i][j]<<" ";
std::cout<<std::endl;
}
int result = 0;
int row = A.size()-1;
int column = A.size()-1;
while(1)
{
int value = sum[row][A.size()];
if (value == 0)
value=1;
int temp = sum[row][column];
result += temp;
row = row-value;
column = column-value;
while (sum[row][column+1]==7 && row>=0)
{
row-=1;
column-=1;
result+=2;
}
if (row < 0)
break;
}
return result;
}
int solution(std::vector<int> &A) {
if (A.size() > 24)
return 25;
if (A.size() <= 3)
return A.size() * 2;
return std::min(25,compute(A));
}
int main()
{
std::vector<int> AA={1,2,3,4,5,29,30};
std::vector<int> B={1,2,3,4,5};
std::vector<int> A={1,2,3,4,5,9,10,11,12,13,14,17,18,20,21};
std::vector<int> C={1,2,3,12};
std::vector<int> D={1,2,3,4,12,13,14,15,29,30};
std::vector<int> DD={1,2,3,4,5,14,17,18,19,20,23,28,29,30};
std::vector<int> CC={1,2,3,4,5,6,7,9,14,17,18,19,20,23,28,29,30};
std::cout<<solution(AA)<<std::endl;
std::cout<<solution(D)<<std::endl;
std::cout<<solution(B)<<std::endl;
std::cout<<solution(A)<<std::endl;
std::cout<<solution(C)<<std::endl;
std::cout<<solution(DD)<<std::endl;
std::cout<<solution(CC)<<std::endl;
return 0;
}
Solved using the same approach of bottom-up dynamic programming. Here is the full solution :
public class PublicTicketCost {
public static void main(String args[]){
int[] arr = {1,7,8,9,10,15,16,17,18,21,25};
int[] tDays = {1,7,30};
int[] tCost = {2,7,25};
System.out.println(minCost(arr, tDays, tCost));
}
public static int minCost(int[] arr, int[] tDays, int[] tCost) {
int[][] dp = new int[arr.length][tDays.length];
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < tDays.length; j++) {
int prevDayIndex = findPrevDayIndex(arr,i,tDays,j);
int prevCost = prevDayIndex>=0 ? dp[prevDayIndex][tDays.length-1] : 0;
int currCost = prevCost + tCost[j];
if(j-1>=0){
currCost = Math.min(currCost, dp[i][j-1]);
}
dp[i][j] = currCost;
}
}
//print(dp);
return dp[arr.length-1][tDays.length-1];
}
private static void print(int arr[][]){
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < arr[0].length; j++) {
System.out.print(arr[i][j]+" ");
}
System.out.println();
}
}
private static int findPrevDayIndex(int[] arr, int i, int[] days, int j){
int validAfterDate = arr[i] - days[j];
if (validAfterDate<1){
return -1;
}
for (int k = i-1; k >= 0; k--) {
if (arr[k]<=validAfterDate){
return k;
}
}
return -1;
}
}
http://ideone.com/sfgxGo

Missing integer variation - O(n) solution needed [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
The problem comes from Codility programming training and it sounds as follows:
we have an array (A[]) with n (ranging from 1 to 100,000) elements and these are our parameters. The elements of the array are integers from āˆ’2,147,483,648 to 2,147,483,647, and we need to find smallest positive integer that is NOT in the array. Of course this could be done easily in O(n*log n) by sorting them all and going through the sorted array, looking for the missing posiitve number (this last operation has O(n) worst time complexity in my solution). But according to Codility, this ENTIRE problem can be done in O(n), and I cannot see any way to do that. Could someone give some tips to let me get un-stuck?
PS Here is a link to detailed description of the problem which I'm not allowed to copy - https://codility.com/c/intro/demo35UEXH-EAT
By pigeonhole principle, at least one of the numbers 1, 2, ..., n+1 is not in the array.
Let us create a boolean array b of size n+1 to store whether each of these numbers is present.
Now, we process the input array. If we find a number from 1 to n+1, we mark the corresponding entry in b. If the number we see does not fit into these bounds, just discard it and proceed to the next one. Both cases are O(1) per input entry, total O(n).
After we are done processing the input, we can find the first non-marked entry in our boolean array b trivially in O(n).
Simple solution 100% in Java.
Please note it is O(nlogn) solution but gives 100% result in codility.
public static int solution(final int[] A)
{
Arrays.sort(A);
int min = 1;
// Starting from 1 (min), compare all elements, if it does not match
// that would the missing number.
for (int i : A) {
if (i == min) {
min++;
}
}
return min;
}
wrote this today and got 100/100. not the most elegant solution, but easy to understand -
public int solution(int[] A) {
int max = A.length;
int threshold = 1;
boolean[] bitmap = new boolean[max + 1];
//populate bitmap and also find highest positive int in input list.
for (int i = 0; i < A.length; i++) {
if (A[i] > 0 && A[i] <= max) {
bitmap[A[i]] = true;
}
if (A[i] > threshold) {
threshold = A[i];
}
}
//find the first positive number in bitmap that is false.
for (int i = 1; i < bitmap.length; i++) {
if (!bitmap[i]) {
return i;
}
}
//this is to handle the case when input array is not missing any element.
return (threshold+1);
}
public int solutionMissingInteger(int[] A) {
int solution = 1;
HashSet<Integer> hashSet = new HashSet<>();
for(int i=0; i<A.length; ++i){
if(A[i]<1) continue;
if(hashSet.add(A[i])){
//this int was not handled before
while(hashSet.contains(solution)){
solution++;
}
}
}
return solution;
}
Simple Java soution. Scored 100/100 in correctness and performance.
public int solution(int[] A) {
int smallestMissingInteger = 1;
if (A.length == 0) {
return smallestMissingInteger;
}
Set<Integer> set = new HashSet<Integer>();
for (int i = 0; i < A.length; i++) {
if (A[i] > 0) {
set.add(A[i]);
}
}
while (set.contains(smallestMissingInteger)) {
smallestMissingInteger++;
}
return smallestMissingInteger;
}
Build a hash table of all the values. For the numbers 1 to n + 1, check if they are in the hash table. At least one of them is not. Print out the lowest such number.
This is O(n) expected time (you can get with high probability). See #Gassa's answer for how to avoid the hash table in favor of a lookup table of size O(n).
JavaScript 100%
function solution(A) {
let sortedOb = {};
let biggest = 0;
A.forEach(el => {
if (el > 0) {
sortedOb[el] = 0;
biggest = el > biggest ? el : biggest;
}
});
let arr = Object.keys(sortedOb).map(el => +el);
if (arr.length == 0) return 1;
for(let i = 1; i <= biggest; i++) {
if (sortedOb[i] === undefined) return i;
}
return biggest + 1;
}
100% Javascript
function solution(A) {
// write your code in JavaScript (Node.js 4.0.0)
var max = 0;
var array = [];
for (var i = 0; i < A.length; i++) {
if (A[i] > 0) {
if (A[i] > max) {
max = A[i];
}
array[A[i]] = 0;
}
}
var min = max;
if (max < 1) {
return 1;
}
for (var j = 1; j < max; j++) {
if (typeof array[j] === 'undefined') {
return j
}
}
if (min === max) {
return max + 1;
}
}
C# scored 100%,
Explanation: use of lookup table where we store already seen values from input array, we only care about values that are greater than 0 and lower or equal than length on input array
public static int solution(int[] A)
{
var lookUpArray = new bool[A.Length];
for (int i = 0; i < A.Length; i++)
if (A[i] > 0 && A[i] <= A.Length)
lookUpArray[A[i] - 1] = true;
for (int i = 0; i < lookUpArray.Length; i++)
if (!lookUpArray[i])
return i + 1;
return A.Length + 1;
}
This is my solution is Swift 4
public func solution(_ A: inout [Int]) -> Int {
var minNum = 1
var hashSet = Set<Int>()
for int in A {
if int > 0 {
hashSet.insert(int)
}
}
while hashSet.contains(minNum) {
minNum += 1
}
return minNum
}
var array = [1,3,6]
solution(&array)
// Answer: 2
100%: the Python sort routine is not regarded as cheating...
def solution(A):
"""
Sort the array then loop till the value is higher than expected
"""
missing = 1
for elem in sorted(A):
if elem == missing:
missing += 1
if elem > missing:
break
return missing
It worked for me. It is not O(n), but little simpler:
import java.util.stream.*;
class Solution {
public int solution(int[] A) {
A = IntStream.of(A)
.filter(x->x>0)
.distinct()
.sorted()
.toArray();
int min = 1;
for(int val : A)
{
if(val==min)
min++;
else
return min;
}
return min;
}
}
My solution. 100%. In Java.
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class Solution {
public int solution(int[] A) {
Arrays.sort(A);
ArrayList<Integer> positive = new ArrayList<>();
for (int i = 0; i < A.length; i++) {
if(A[i] > 0)
positive.add(A[i]);
}
if(positive.isEmpty()) return 1;
if(positive.get(0) > 1) return 1;
for(int i = 0; i < positive.size() - 1; i++) {
if(positive.get(i + 1) - positive.get(i) > 1)
return positive.get(i) + 1;
}
return positive.get(positive.size() - 1) + 1;
}
public static void main(String[] args) {
Solution solution = new Solution();
int[] A = {-5,1,2,3,4,6,7,8,9,5};
System.out.println(solution.solution(A));
}
}
javascript 100% 100%
first sort the array, you just need to scan positive elements so find index of 1 (if there is no 1 in array then answer is 1). then search elements after 1 till find missing number.
function solution(A) {
// write your code in JavaScript (Node.js 6.4.0)
var missing = 1;
// sort the array.
A.sort(function(a, b) { return a-b });
// try to find the 1 in sorted array if there is no 1 so answer is 1
if ( A.indexOf(1) == -1) { return 1; }
// just search positive numbers to find missing number
for ( var i = A.indexOf(1); i < A.length; i++) {
if ( A[i] != missing) {
missing++;
if ( A[i] != missing ) { return missing; }
}
}
// if cant find any missing number return next integer number
return missing + 1;
}
I believe the solution is more involved than 'marking' corresponding values using a boolean array of n (100,000) elements. The boolean array of size n will not 'directly' map to the possible range of values (āˆ’2,147,483,648 to 2,147,483,647).
This Java example I wrote attempts to map the 100K rows by mapping the value based on their offset from the max value. It also performs a modulus to reduce the resulting array to the same size as the sample element length.
/**
*
* This algorithm calculates the values from the min value and mods this offset with the size of the 100K sample size.
* This routine performs 3 scans.
* 1. Find the min/max
* 2. Record the offsets for the positive integers
* 3. Scan the offsets to find missing value.
*
* #author Paul Goddard
*
*/
public class SmallestPositiveIntMissing {
static int ARRAY_SIZE = 100000;
public static int solve(int[] array) {
int answer = -1;
Maxmin maxmin = getMaxmin(array);
int range = maxmin.max - maxmin.min;
System.out.println("min: " + maxmin.min);
System.out.println("max: " + maxmin.max);
System.out.println("range: " + range);
Integer[] values = new Integer[ARRAY_SIZE];
if (range == ARRAY_SIZE) {
System.out.println("No gaps");
return maxmin.max + 1;
}
for (int val: array) {
if (val > 0) {
int offset = val - maxmin.min;
int index = offset % ARRAY_SIZE;
values[index] = val;
}
}
for (int i = 0; i < ARRAY_SIZE; i++) {
if (values[i] == null) {
int missing = maxmin.min + i;
System.out.println("Missing: " + missing);
answer = missing;
break;
}
}
return answer;
}
public static Maxmin getMaxmin(int[] array) {
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for (int val:array) {
if (val >=0) {
if (val > max) max = val;
if (val < min) min = val;
}
}
return new Maxmin(max,min);
}
public static void main(String[] args) {
int[] A = arrayBuilder();
System.out.println("Min not in array: " + solve(A));
}
public static int[] arrayBuilder() {
int[] array = new int[ARRAY_SIZE];
Random random = new Random();
System.out.println("array: ");
for (int i=0;i < ARRAY_SIZE; i++) {
array[i] = random.nextInt();
System.out.print(array[i] + ", ");
}
System.out.println(" array done.");
return array;
}
}
class Maxmin {
int max;
int min;
Maxmin(int max, int min) {
this.max = max;
this.min = min;
}
}
Sweet Swift version. 100% correct
public func solution(inout A : [Int]) -> Int {
//Create a Hash table
var H = [Int:Bool]()
// Create the minimum possible return value
var high = 1
//Iterate
for i in 0..<A.count {
// Get the highest element
high = A[i] > high ? A[i] : high
// Fill hash table
if (A[i] > 0){
H[A[i]] = true
}
}
// iterate through possible values on the hash table
for j in 1...high {
// If you could not find it on the hash, return it
if H[j] != true {
return j
} else {
// If you went through all values on the hash
// and can't find it, return the next higher value
// e.g.: [1,2,3,4] returns 5
if (j == high) {
return high + 1
}
}
}
return high
}
int[] copy = new int[A.length];
for (int i : A)
{
if (i > 0 && i <= A.length)
{
copy[i - 1] = 1;
}
}
for (int i = 0; i < copy.length; i++)
{
if (copy[i] == 0)
{
return i + 1;
}
}
return A.length + 1;
Swift 3 - 100%
public func solution(_ A : inout [Int]) -> Int {
// write your code in Swift 3.0 (Linux)
var solution = 1
var hashSet = Set<Int>()
for int in A
{
if int > 0
{
hashSet.insert(int)
while hashSet.contains(solution)
{
solution += 1
}
}
}
return solution
}
Thanks to Marian's answer above.
This is my solution using python:
def solution(A):
m = max(A)
if m <= 0:
return 1
if m == 1:
return 2
# Build a sorted list with all elements in A
s = sorted(list(set(A)))
b = 0
# Iterate over the unique list trying to find integers not existing in A
for i in xrange(len(s)):
x = s[i]
# If the current element is lte 0, just skip it
if x <= 0:
continue;
b = b + 1
# If the current element is not equal to the current position,
# it means that the current position is missing from A
if x != b:
return b
return m + 1
Scored 100%/100% https://codility.com/demo/results/demoDCU7CA-SBR/
Create a binary array bin of N+1 length (C uses 0 based indexing)
Traverse the binary array O(n)
If A[i] is within the bounds of bin then mark bin entry at index A[i] as present or true.
Traverse the binary array again
Index of any bin entry that is not present or false is your missing integer
~
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
int solution(int A[], int N) {
// write your code in C99 (gcc 6.2.0)
int i;
bool *bin = (bool *)calloc((N+1),sizeof(bool));
for (i = 0; i < N; i++)
{
if (A[i] > 0 && A[i] < N+1)
{
bin[A[i]] = true;
}
}
for (i = 1; i < N+1; i++)
{
if (bin[i] == false)
{
break;
}
}
return i;
}
May be helpful, I am using arithmetic progression to calculate the sum, and using binary searach the element is fetched. checked with array of couple of hundred values works good. As there is one for loop and itression in step of 2, O(n/2) or less
def Missingelement (A):
B = [x for x in range(1,max(A)+1,1)]
n1 = len(B) - 1
begin = 0
end = (n1)//2
result = 0
print(A)
print(B)
if (len(A) < len(B)):
for i in range(2,n1,2):
if BinSum(A,begin,end) > BinSum(B,begin,end) :
end = (end + begin)//2
if (end - begin) <= 1 :
result=B[begin + 1 ]
elif BinSum(A,begin,end) == BinSum(B,begin,end):
r = end - begin
begin = end
end = (end + r)
if begin == end :
result=B[begin + 1 ]
return result
def BinSum(C,begin,end):
n = (end - begin)
if end >= len(C):
end = len(C) - 1
sum = n*((C[begin]+C[end])/2)
return sum
def main():
A=[1,2,3,5,6,7,9,10,11,12,14,15]
print ("smallest number missing is ",Missingelement(A))
if __name__ == '__main__': main()
Code for C, in fact, this can be used for any programming language without any change in the logic.
Logic is sum of N number is N*(N+1)/2.
int solution(int A[], int N) {
// write your code in C99
long long sum=0;
long long i;
long long Nsum=0;
for(i=0;i<N;i++){
sum=sum + (long long)A[i];
}
if (N%2==0){
Nsum= (N+1)*((N+2)/2);
return (int)(Nsum-sum);
}
else{
Nsum= ((N+1)/2)*(N+2);
return (int)(Nsum-sum);
}
}
This gave the 100/100 score.
This solution gets 100/100 on the test:
class Solution {
public int solution(int[] A) {
int x = 0;
while (x < A.length) {
// Keep swapping the values into the matching array positions.
if (A[x] > 0 && A[x] <= A.length && A[A[x]-1] != A[x]) {
swap(A, x, A[x] - 1);
} else {
x++; // Just need to increment when current element and position match.
}
}
for (int y=0; y < A.length; y++) {
// Find first element that doesn't match position.
// Array is 0 based while numbers are 1 based.
if (A[y] != y + 1) {
return y + 1;
}
}
return A.length + 1;
}
private void swap (int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}
}
100% in PHP https://codility.com/demo/results/trainingKFXWKW-56V/
function solution($A){
$A = array_unique($A);
sort($A);
if (empty($A)) return 1;
if (max($A) <= 0) return 1;
if (max($A) == 1) return 2;
if (in_array(1, $A)) {
$A = array_slice($A, array_search(1, $A)); // from 0 to the end
array_unshift($A, 0); // Explanation 6a
if ( max($A) == array_search(max($A), $A)) return max($A) + 1; // Explanation 6b
for ($i = 1; $i <= count($A); $i++){
if ($A[$i] != $i) return $i; // Explanation 6c
}
} else {
return 1;
}
}
// Explanation
remove all duplicates
sort from min to max
if the array is empty return 1
if max of array is zero or less, return 1
if max of array is 1, return 2 // next positive integer
all other cases:
6a) split the array from value 1 to the end and add 0 before first number
6b) if the value of last element of array is the max of array, then the array is ascending so we return max + 1 // next positive integer
6c) if the array is not ascending, we find a missing number by a function for: if key of element is not as value the element but it should be (A = [0=>0, 1=>1,2=>3,...]), we return the key, because we expect the key and value to be equal.
Here is my solution, it Yields 88% in evaluation- Time is O(n), Correctness 100%, Performance 75%. REMEMBER - it is possible to have an array of all negative numbers, or numbers that exceed 100,000. Most of the above solutions (with actual code) yield much lower scores, or just do not work. Others seem to be irrelevant to the Missing Integer problem presented on Codility.
int compare( const void * arg1, const void * arg2 )
{
return *((int*)arg1) - *((int*)arg2);
}
solution( int A[], int N )
{
// Make a copy of the original array
// So as not to disrupt it's contents.
int * A2 = (int*)malloc( sizeof(int) * N );
memcpy( A2, A1, sizeof(int) * N );
// Quick sort it.
qsort( &A2[0], N, sizeof(int), compare );
// Start out with a minimum of 1 (lowest positive number)
int min = 1;
int i = 0;
// Skip past any negative or 0 numbers.
while( (A2[i] < 0) && (i < N )
{
i++;
}
// A variable to tell if we found the current minimum
int found;
while( i < N )
{
// We have not yet found the current minimum
found = 0;
while( (A2[i] == min) && (i < N) )
{
// We have found the current minimum
found = 1;
// move past all in the array that are that minimum
i++;
}
// If we are at the end of the array
if( i == N )
{
// Increment min once more and get out.
min++;
break;
}
// If we found the current minimum in the array
if( found == 1 )
{
// progress to the next minimum
min++;
}
else
{
// We did not find the current minimum - it is missing
// Get out - the current minimum is the missing one
break;
}
}
// Always free memory.
free( A2 );
return min;
}
My 100/100 solution
public int solution(int[] A) {
Arrays.sort(A);
for (int i = 1; i < 1_000_000; i++) {
if (Arrays.binarySearch(A, i) < 0){
return i;
}
}
return -1;
}
static int spn(int[] array)
{
int returnValue = 1;
int currentCandidate = 2147483647;
foreach (int item in array)
{
if (item > 0)
{
if (item < currentCandidate)
{
currentCandidate = item;
}
if (item <= returnValue)
{
returnValue++;
}
}
}
return returnValue;
}

Resources