A draw-encoding algorithm similar to one in Google maps - algorithm

As some of you may know, there is an encoding algorithm in Google maps API which optimizes polyline drawings in different zoom levels. It removes-adds the coordinates of a path according to the current zoom level and decreases-increases the drawing computation time. Specifically, I mean the algorithm in the GPolyline.fromEncoded method.
In a different platform other than javascript I need an algorithm like that. Of course I don't think using a google style professional code. Is there another algorithm like that of which I can see the code and re-implement it according to the suitable platform? Or what are your suggestions to accomplish the optimization of path drawings in different zoom levels?

What about the following.
Pick a constant DetailRadius depending on the zoom level.
Pick a start point on the polygon.
Test if the next point of the polygon is inside or outside a circle with a radius of DetailRadius around the current point, that is if the distance between the current and the next point is smalleer or larger then DetailRadius.
If the next point is outside the radius, move from the current to this point.
If the next point is inside the radius, delete it and continue at 3. with the new next point.
One could also think about removing all points in the circle, not only neighoubrs of the current point. This will lead to further detail reduction, but it is computationaly more expensive and might lead to more geometric distortion because it will "push away points from the current point".

Related

Indefinitely move objects around randomly without collision

I have an application where I need to move a number of objects around on the screen in a random fashion and they can not bump into each other. I'm looking for an algorithm that will allow me to generate the paths that don't create collisions and can continue for an indefinite time (i.e.: the objects keep moving around until a user driven event removes them from the program).
I'm not a game programmer but I think this looks like an AI problem and you guys probably solve it with your eyes closed. From what I've read A* seems to be the recommended 'basic idea' but I don't really want to invest a lot of time into it without some confirmation.
Can anyone shed some light on an approach? Anti-gravity movement maybe?
This is to be implemented on iOS, if that is important
New paths need to be generated at the end of each path
There is no visible 'grid'. Movement is completely free in 2D space
The objects are insects that walk around the screen until they are killed
A* is an algorithm to find the shortest path between a start and a goal configuration (in terms of whatever you define as short: common are e.g. euclidean distance, cost or time, angular distance...). Your insects seem not to have a specific goal, they don't even need a shortest path. I would certainly not go for A*. (By the way, since you are having a dynamic environment, D* would have been an idea - still it's meant to find a path from A to B).
I would tackle the problem as follows:
Random Paths and following them
For the random paths I see two methods. The first would be a simple random walk (click here to see a nice 2D animation with explanations), which can suffer from jittering and doesn't look too nice. The second one needs a little bit more detailed explanations.
For each insect generate four random points around them, maybe starting on a sinusoid. With a spline interpolation generate a smooth curve between those points. Take care of having C1 (in 2D) or C2 (in 3D) continuity. (Suggestion: Hermite splines)
With Catmull-Rom splines you can find your configurations while moving along the curve.
An application of a similar approach can be found in this blog post about procedural racetracks, also a more technical (but still not too technical) explanation can be found in these old slides (pdf) from a computer animations course.
When an insect starts moving, it can constantly move between the second and third point, when you always remove the first and append a new point when the insect reaches the third, thus making that the second point.
If third point is reached
Remove first
Append new point
Recalculate spline
End if
For a smoother curve add more points in total and move somewhere in the middle, the principle stays the same. (Personally I only used this in fixed environments, it should work in dynamic ones as well though.)
This can, if your random point generation is good (maybe you can use an approach similar to the one provided in the above linked blog post, or have a look at algorithms on the PCG Wiki), lead to smooth paths all over the screen.
Avoid other insects
To avoid other insects, three different methods come to my mind.
Bug algorithms
Braitenberg vehicles
An application of potential fields
For the potential fields I recommend reading this paper about dynamic motion planning (pdf). It's from robotics, but fairly easy to apply to your problem as well. You can just use the robots next spline point as the goal and set its velocity to 0 to apply this approach. However, it might be a bit too much for your simple game.
A discussion of Braitenberg vehicles can be found here (pdf). The original idea was more of a technical method (drive towards or away from a light source depending on how your motor is coupled with the photo receptor) and is often used to show how we apply emotional concepts like fear and attraction to other objects. The "fear" behaviour is an approach used for obstacle avoidance in robotics as well.
The third and probably simplest method are bug algorithms (pdf). I always have problems with the boundary following, which is a bit tricky. But to avoid another insect, these algorithms - no matter which one you use (I suggest Bug 1 or Tangent Bug) - should do the trick. They are very simple: Move towards your goal (in this application with the catmull-rom splines) until you have an obstacle in front. If the obstacle is close, change the insect's state to "obstacle avoidance" and run your bug algorithm. If you give both "colliding" insects the same turn direction, they will automatically go around each other and follow their original path.
As a variation you could just let them turn and recalculate a new spline from that point on.
Conclusion
Path finding and random path generation are different things. You have to experiment around what looks best for your insects. A* is definitely meant for finding shortest paths, not for creating random paths and following them.
You cannot plan the trajectories ahead of time for an indefinite duration !
I suggest a simpler approach where you just predict the next collision (knowing the positions and speeds of the objects allows you to tell if they will collide and when), and resolve it by changing the speed or direction of either objects (bounce before objects touch).
Make sure to redo a check for collisions in case you created an even earlier collision !
The real challenge in your case is to efficiently predict collisions among numerous objects, a priori an O(N²) task. You will accelerate that by superimposing a coarse grid on the play field and look at objects in neighboring cells only.
It may also be possible to maintain a list of object pairs that "might interfere in some future" (i.e. considering their distance and relative speed) and keep it updated. Checking that a pair may leave the list is relatively easy; efficiently checking for new pairs needing to enter the list is not.
Look at this and this Which described an AI program to auto - play Mario game.
So in this link, what the author did was using a A* star algorithm to guide Mario Get to the right border of the screen as fast as possible. Avoid being hurt.
So the idea is for each time frame, he will have an Environment which described the current position of other objects in the scene and for each action (up, down left, right and do nothing) , he calculate its cost function and made a decision of the next movement based on this.
Source: http://www.quora.com/What-are-the-coolest-algorithms
For A* you would need a 2D-Grid even if it is not visible. If I get your idea right you could do the following.
Implement a pathfinding (e.g. A*) then just generate random destination points on the screen and calculate the path. Once your insect reaches the destination, generate another destination point/grid-cell and proceed until the insect dies.
As I see it A* would only make sence if you have obstacles on the screen the insect should navigate around, otherwise it would be enough to just calculate a straight vector path and maybe handle collision with other insects/objects.
Note: I implemented A* once, later I found out that Lee's Algorithm
pretty much does the same but was easier to implement.
Consider a Hamiltonian cycle - the idea is a route that visits all the positions on a grid once (and only once). If you construct the cycle in advance (i.e. precalculate it), and set your insects off with some offset between them, they will never collide, simply because the path never intersects itself.
Also, for bonus points, Hamiltonian paths tend to 'wiggle about', and because it's a loop you can predict (and precalculate) the path into the indefinite future.
You can always use the nodes of the grid as knot points for a spline to smooth the movement, or even randomly shift all the points away from their strict 2d grid positions, until you have the desired motion.
Example Hamiltonian cycle from Wikimedia:
On a side note, if you want to generate such a path, consider constructing a loop through many points and just moving the points around in such a manner that they never intersect an existing edge. With some encouragement to move into gaps and away from each other, they should settle into some long, never-intersecting path. Store the result and use for your loop.

Tracking user defined points with OpenCV

I'm working on a project where I need to track two points in an image. So far, the best way I have of identifying these points is to get the user to click on them when the program is first run. I'm using the Lucas-Kanade Pyramid method built into OpenCV (documented here, but as is to be expected, this doesn't work too well. Is there a better alternative algorithm for tracking points in OpenCV, or alternatively some other way of verifying the points I already have?
I'm currently considering using GoodFeaturesToTrack, and getting the distance from each point to the one that I want to track, and maybe some sort of vector pointing out the relationship between the two points, and using this information to determine my new point.
I'm looking for suggestions of ways to go about this, not necessarily code samples.
Thanks
EDIT: I'm tracking small movements, if that helps
If you look for a solution that is implemented in opencv the pyramidal Lucas Kanade (PLK) method is quit good, else I would prefer a Particle Filter based tracker.
To improve your tracking performance with the PLK be sure that you have set up the parameters correctly. E.g. for large motion you need a level at ca. 3 or 4. The window should not be to small ( I prefer 17x17 to 27x27). Also keep in mind that the methods needs textured areas to be able to track the points. That means corner like image content (aperture problem).
I would propose to seed a set of points (ps) in a grid around the points (P) you want to track. And than use a foreward - backward threshold to reject falsly tracked points. The motion of your points (P) will be computed by the mean motion of the particular residual point sets (ps).
The foreward backward confidence is computes by estimating the motion from frame 1 to frame 2. (ptList1 -> ptList2). And that from frame 2 to frame 1 with the points of ptList2 (ptList2 -> ptListRef). Motion vectors will be rejected if (|| ptRef - pt1 || > fb_threshold).

How to detect a Triangle gesture with kinect?

I am trying to implement a gesture recognition system which interprets the geometric gestures user makes and draws it on screen,
I have some idea of how circle can be recognized, however I have no clue how to get started with triangle recognition.
The data I have is X and Y coordinates of all points the gesture passed through. I get this data by tracking right hand.
I found something online called Hough Transform, which is used for detecting lines but I am not sure whether it will work for discrete collections of points.
Any ideas folks?
If you already have an x,y pair for the hand, the simplest thing that comes to mind is try the $1 Unistroke Recognizer.
A handy thing to look at is Dynamic Time Warping(DTW).
I've seen a fun Processing/SimpleOpenNI project that makes
use of that technique and the full skeleton called KineticSpace.
Since it's open-source might be worth having a peak.
I'd recommend trying the $1 Unistroke Recognizer first. You probably
need to work out a system to mimic press/release (perhaps using
the sign of the hand's velocity on z (positive to negative transitions/
negative to positive transitions) ?).
HTH
You can look for a space filling curve. It reduces the 2 dimension and reorder the points. It also add some spatial information. Maybe you can train or compare the new reordered 1d index with some simulated annealing or ant colony optimization?! A space filling curve is used in map tiling programs.

Best approach for specific Object/Image Recognition task?

I'm searching for an certain object in my photograph:
Object: Outline of a rectangle with an X in the middle. It looks like a rectangular checkbox. That's all. So, no fill, just lines. The rectangle will have the same ratios of length to width but it could be any size or any rotation in the photograph.
I've looked a whole bunch of image recognition approaches. But I'm trying to determine the best for this specific task. Most importantly, the object is made of lines and is not a filled shape. Also, there is no perspective distortion, so the rectangular object will always have right angles in the photograph.
Any ideas? I'm hoping for something that I can implement fairly easily.
Thanks all.
You could try using a corner detector (e.g. Harris) to find the corners of the box, the ends and the intersection of the X. That simplifies the problem to finding points in the right configuration.
Edit (response to comment):
I'm assuming you can find the corner points in your image, the 4 corners of the rectangle, the 4 line endings of the X and the center of the X, plus a few other corners in the image due to noise or objects in the background. That simplifies the problem to finding a set of 9 points in the right configuration, out of a given set of points.
My first try would be to look at each corner point A. Then I'd iterate over the points B close to A. Now if I assume that (e.g.) A is the upper left corner of the rectangle and B is the lower right corner, I can easily calculate, where I would expect the other corner points to be in the image. I'd use some nearest-neighbor search (or a library like FLANN) to see if there are corners where I'd expect them. If I can find a set of points that matches these expected positions, I know where the symbol would be, if it is present in the image.
You have to try if that is good enough for your application. If you have too many false positives (sets of corners of other objects that accidentially form a rectangle + X), you could check if there are lines (i.e. high contrast in the right direction) where you would expect them. And you could check if there is low contrast where there are no lines in the pattern. This should be relatively straightforward once you know the points in the image that correspond to the corners/line endings in the object you're looking for.
I'd suggest the Generalized Hough Transform. It seems you have a fairly simple, fixed shape. The generalized Hough transform should be able to detect that shape at any rotation or scale in the image. You many need to threshold the original image, or pre-process it in some way for this method to be useful though.
You can use local features to identify the object in image. Feature detection wiki
For example, you can calculate features on some referent image which contains only the object you're looking for and save the results, let's say, to a plain text file. After that you can search for the object just by comparing newly calculated features (on images with some complex scenes containing the object) with the referent ones.
Here's some good resource on local features:
Local Invariant Feature Detectors: A Survey

Raytracing (LoS) on 3D hex-like tile maps

Greetings,
I'm working on a game project that uses a 3D variant of hexagonal tile maps. Tiles are actually cubes, not hexes, but are laid out just like hexes (because a square can be turned to a cube to extrapolate from 2D to 3D, but there is no 3D version of a hex). Rather than a verbose description, here goes an example of a 4x4x4 map:
(I have highlighted an arbitrary tile (green) and its adjacent tiles (yellow) to help describe how the whole thing is supposed to work; but the adjacency functions are not the issue, that's already solved.)
I have a struct type to represent tiles, and maps are represented as a 3D array of tiles (wrapped in a Map class to add some utility methods, but that's not very relevant).
Each tile is supposed to represent a perfectly cubic space, and they are all exactly the same size. Also, the offset between adjacent "rows" is exactly half the size of a tile.
That's enough context; my question is:
Given the coordinates of two points A and B, how can I generate a list of the tiles (or, rather, their coordinates) that a straight line between A and B would cross?
That would later be used for a variety of purposes, such as determining Line-of-sight, charge path legality, and so on.
BTW, this may be useful: my maps use the (0,0,0) as a reference position. The 'jagging' of the map can be defined as offsetting each tile ((y+z) mod 2) * tileSize/2.0 to the right from the position it'd have on a "sane" cartesian system. For the non-jagged rows, that yields 0; for rows where (y+z) mod 2 is 1, it yields 0.5 tiles.
I'm working on C#4 targeting the .Net Framework 4.0; but I don't really need specific code, just the algorithm to solve the weird geometric/mathematical problem. I have been trying for several days to solve this at no avail; and trying to draw the whole thing on paper to "visualize" it didn't help either :( .
Thanks in advance for any answer
Until one of the clever SOers turns up, here's my dumb solution. I'll explain it in 2D 'cos that makes it easier to explain, but it will generalise to 3D easily enough. I think any attempt to try to work this entirely in cell index space is doomed to failure (though I'll admit it's just what I think and I look forward to being proved wrong).
So you need to define a function to map from cartesian coordinates to cell indices. This is straightforward, if a little tricky. First, decide whether point(0,0) is the bottom left corner of cell(0,0) or the centre, or some other point. Since it makes the explanations easier, I'll go with bottom-left corner. Observe that any point(x,floor(y)==0) maps to cell(floor(x),0). Indeed, any point(x,even(floor(y))) maps to cell(floor(x),floor(y)).
Here, I invent the boolean function even which returns True if its argument is an even integer. I'll use odd next: any point point(x,odd(floor(y)) maps to cell(floor(x-0.5),floor(y)).
Now you have the basics of the recipe for determining lines-of-sight.
You will also need a function to map from cell(m,n) back to a point in cartesian space. That should be straightforward once you have decided where the origin lies.
Now, unless I've misplaced some brackets, I think you are on your way. You'll need to:
decide where in cell(0,0) you position point(0,0); and adjust the function accordingly;
decide where points along the cell boundaries fall; and
generalise this into 3 dimensions.
Depending on the size of the playing field you could store the cartesian coordinates of the cell boundaries in a lookup table (or other data structure), which would probably speed things up.
Perhaps you can avoid all the complex math if you look at your problem in another way:
I see that you only shift your blocks (alternating) along the first axis by half the blocksize. If you split up your blocks along this axis the above example will become (with shifts) an (9x4x4) simple cartesian coordinate system with regular stacked blocks. Now doing the raytracing becomes much more simple and less error prone.

Resources