Raytracing (LoS) on 3D hex-like tile maps - algorithm

Greetings,
I'm working on a game project that uses a 3D variant of hexagonal tile maps. Tiles are actually cubes, not hexes, but are laid out just like hexes (because a square can be turned to a cube to extrapolate from 2D to 3D, but there is no 3D version of a hex). Rather than a verbose description, here goes an example of a 4x4x4 map:
(I have highlighted an arbitrary tile (green) and its adjacent tiles (yellow) to help describe how the whole thing is supposed to work; but the adjacency functions are not the issue, that's already solved.)
I have a struct type to represent tiles, and maps are represented as a 3D array of tiles (wrapped in a Map class to add some utility methods, but that's not very relevant).
Each tile is supposed to represent a perfectly cubic space, and they are all exactly the same size. Also, the offset between adjacent "rows" is exactly half the size of a tile.
That's enough context; my question is:
Given the coordinates of two points A and B, how can I generate a list of the tiles (or, rather, their coordinates) that a straight line between A and B would cross?
That would later be used for a variety of purposes, such as determining Line-of-sight, charge path legality, and so on.
BTW, this may be useful: my maps use the (0,0,0) as a reference position. The 'jagging' of the map can be defined as offsetting each tile ((y+z) mod 2) * tileSize/2.0 to the right from the position it'd have on a "sane" cartesian system. For the non-jagged rows, that yields 0; for rows where (y+z) mod 2 is 1, it yields 0.5 tiles.
I'm working on C#4 targeting the .Net Framework 4.0; but I don't really need specific code, just the algorithm to solve the weird geometric/mathematical problem. I have been trying for several days to solve this at no avail; and trying to draw the whole thing on paper to "visualize" it didn't help either :( .
Thanks in advance for any answer

Until one of the clever SOers turns up, here's my dumb solution. I'll explain it in 2D 'cos that makes it easier to explain, but it will generalise to 3D easily enough. I think any attempt to try to work this entirely in cell index space is doomed to failure (though I'll admit it's just what I think and I look forward to being proved wrong).
So you need to define a function to map from cartesian coordinates to cell indices. This is straightforward, if a little tricky. First, decide whether point(0,0) is the bottom left corner of cell(0,0) or the centre, or some other point. Since it makes the explanations easier, I'll go with bottom-left corner. Observe that any point(x,floor(y)==0) maps to cell(floor(x),0). Indeed, any point(x,even(floor(y))) maps to cell(floor(x),floor(y)).
Here, I invent the boolean function even which returns True if its argument is an even integer. I'll use odd next: any point point(x,odd(floor(y)) maps to cell(floor(x-0.5),floor(y)).
Now you have the basics of the recipe for determining lines-of-sight.
You will also need a function to map from cell(m,n) back to a point in cartesian space. That should be straightforward once you have decided where the origin lies.
Now, unless I've misplaced some brackets, I think you are on your way. You'll need to:
decide where in cell(0,0) you position point(0,0); and adjust the function accordingly;
decide where points along the cell boundaries fall; and
generalise this into 3 dimensions.
Depending on the size of the playing field you could store the cartesian coordinates of the cell boundaries in a lookup table (or other data structure), which would probably speed things up.

Perhaps you can avoid all the complex math if you look at your problem in another way:
I see that you only shift your blocks (alternating) along the first axis by half the blocksize. If you split up your blocks along this axis the above example will become (with shifts) an (9x4x4) simple cartesian coordinate system with regular stacked blocks. Now doing the raytracing becomes much more simple and less error prone.

Related

Very fast boolean difference between two meshes

Let's say I have a static object and a movable object which can be moved and rotated, what is the best way to very quickly calculate the difference of those two meshes?
Precision here is not so important, speed is though, since I have to use it in the update phase of the main loop.
Maybe, given the strict time limit, modifying the static object's vertices and triangles directly is to be preferred. Should voxels be preferred here instead?
EDIT: The use case is an interactive viewer of a wood panel (parallelepiped) and a milling tool (a revolved contour, some like these).
The milling tool can be rotated and can work oriented at varying degrees (5 axes).
EDIT 2: The milling tool may not pierce the wood.
EDIT 3: The panel can be as large as 6000x2000mm and the milling tool can be as little as 3x3mm.
If you need the best possible performance then the generic CSG approach may be too slow for you (but still depending on meshes and target hardware).
You may try to find some specialized algorithm, coded for your specific meshes. Let's say you have two cubes - one is a 'wall' and second is a 'window' - then it's much easier/faster to compute resulting mesh with your custom code, than full CSG. Unfortunately you don't say anything about your meshes.
You may also try to make it a 2D problem, use some simplified meshes to compute the result that will 'look like expected'.
If the movement of your meshes is somehow limited you may be able to precompute full or partial results for different mesh combinations to use at runtime.
You may use some space partitioning like BSP or Octrees to divide your meshes during precomputing stage. This way you could split one big problem into many smaller ones that may be faster to compute or at least to make the solution multi-threaded.
You've said about voxels - if you're fine with their look and limits you may voxelize both meshes and just read and mix two voxel values, instead of one. Then you would triangulate it using algorithm like Marching Cubes.
Those are all just some general ideas but we'll need better info to help you more.
EDIT:
With your description it looks like you're modeling some bas-relief, so you may use Relief Mapping to fake this effect. It's based on a height map stored as a texture, so you'd need to just update few pixels of the texture and render a plane. It should be quite fast compared to other approaches, the downside is that it's based on height map, so you can't get shapes that Tee Slot or Dovetail cutter would create.
If you want the real geometry then I'd start from a simple plane as your panel (don't need full 3D yet, just a front surface) and divide it with a 2D grid. The grid element should be slightly bigger than the drill size and every element is a separate mesh. In the frame update you'd cut one, or at most 4 elements that are touched with a drill. Thanks to this grid all your cutting operations will be run with very simple mesh so they may work with your intended speed. You can also cut all current elements in separate threads. After the cutting is done you'll upload to the GPU only currently modified elements so you may end up with quite complex mesh but small modifications per frame.

How to smooth area shape="poly" curves?

I am using image maps to provide the input for mouse over shading, nothing fancy here, but I've created polygons that have some sharp edges I'd prefer to see smoothed away.
At the same time I'd like to reduce the overall number of points by removing anything that would lie on a straight line, eg if points a, b and c fall on a straight line, remove point b.
Does anyone know of such an algorithm, preferably implemented in javascript?
We went down this path on a project once -- there is no other option than a whole mess of points. But from testing there doesn't seem to be any real issue with lots of points in the poly method and the size of the text (with all the numeric points) is nominal in the overall scope of HTML and supporting files.
So, as ugly as it looks in raw code, I recommend you just go ahead with the large number of points.

distinguishing objects with opencv

I want to identify lego bricks for building a lego sorting machine (I use c++ with opencv).
That means I have to distinguish between objects which look very similar.
The bricks are coming to my camera individually on a flat conveyer. But they might lay in any possible way: upside down, on the side or "normal".
My approach is to teach the sorting machine the bricks by taping them with the camera in lots of different positions and rotations. Features of each and every view are calculated by surf-algorythm.
void calculateFeatures(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints,
cv::Mat& descriptors)
{
// detector == cv::SurfFeatureDetector(10)
detector->detect(image,keypoints);
// extractor == cv::SurfDescriptorExtractor()
extractor->compute(image,keypoints,descriptors);
}
If there is an unknown brick (the brick that i want to sort) its features also get calculated and matched with known ones.
To find wrongly matched features I proceed as described in the book OpenCV 2 Cookbook:
with the matcher (=cv::BFMatcher(cv::NORM_L2)) the two nearest neighbours in both directions are searched
matcher.knnMatch(descriptorsImage1, descriptorsImage2,
matches1,
2);
matcher.knnMatch(descriptorsImage2, descriptorsImage1,
matches2,
2);
I check the ratio between the distances of the found nearest neighbours. If the two distances are very similar it's likely that a false value is used.
// loop for matches1 and matches2
for(iterator matchIterator over all matches)
if( ((*matchIterator)[0].distance / (*matchIterator)[1].distance) > 0.65 )
throw away
Finally only symmatrical match-pairs are accepted. These are matches in which not only n1 is the nearest neighbour to feature f1, but also f1 is the nearest neighbour to n1.
for(iterator matchIterator1 over all matches)
for(iterator matchIterator2 over all matches)
if ((*matchIterator1)[0].queryIdx == (*matchIterator2)[0].trainIdx &&
(*matchIterator2)[0].queryIdx == (*matchIterator1)[0].trainIdx)
// good Match
Now only pretty good matches remain. To filter out some more bad matches I check which matches fit the projection of img1 on img2 using the fundamental matrix.
std::vector<uchar> inliers(points1.size(),0);
cv::findFundamentalMat(
cv::Mat(points1),cv::Mat(points2), // matching points
inliers,
CV_FM_RANSAC,
3,
0.99);
std::vector<cv::DMatch> goodMatches
// extract the surviving (inliers) matches
std::vector<uchar>::const_iterator itIn= inliers.begin();
std::vector<cv::DMatch>::const_iterator itM= allMatches.begin();
// for all matches
for ( ;itIn!= inliers.end(); ++itIn, ++itM)
if (*itIn)
// it is a valid match
The result is pretty good. But in cases of extreme alikeness faults still occur.
In the picture above you can see that a similar brick is recognized well.
However in the second picture a wrong brick is recognized just as well.
Now the question is how I could improve the matching.
I had two different ideas:
The matches in the second picture trace back to the features really fitting, but only if the visual field is intensely changed. To recognize a brick I have to compare it in many different positions anyway (at least as shown in figure three). This means I know that I am only allowed to minimally change the visual field. The information how intensely the visual field is changed should be hidden in the fundamental matrix. How can I read out of this matrix how far the position in the room has changed? Especially the rotation and strong scaling should be of interest; if the brick once is taped farer on the left side this shouldn't matter.
Second idea:
I calculated the fundamental matrix out of 2 pictures and filtered out features that don't fit the projections - shouldn't there be a way to do the same using three or more pictures? (keyword Trifocal tensor). This way the matching should become more stable. But I neither know how to do this using OpenCV nor could I find any information on this on google.
I don't have a complete answer, but I have a few suggestions.
On the image analysis side:
It looks like your camera setup is pretty constant. Easy to just separate the brick from the background. I also see your system finding features in the background. This is unnecessary. Set all non-brick pixels to black to remove them from the analysis.
When you have located just the brick, your first step should be to just filter likely candidates based on the size (i.e. number of pixels) in the brick. That way the example faulty match you show is already less likely.
You can take other features into account such as the aspect ratio of the bounding box of the brick, the major and minor axes (eigevectors of the covariance matrix of the central moments) of the brick etc.
These simpler features will give you a reasonable first filter to limit your search space.
On the mechanical side:
If bricks are actually coming down a conveyor you should be able to "straighten" the bricks along a straight edge using something like a rod that lies at an angle to the direction of the conveyor across the belt so that the bricks arrive more uniformly at your camera like so.
Similar to the previous point, you could use something like a very loose brush suspended across the belt to topple bricks standing up as they pass.
Again both these points will limit your search space.

Is it possible to import a Collada model that aligns to pixels?

Assume I have a model that is simply a cube. (It is more complicated than a cube, but for the purposes of this discussion, we will simplify.)
So when I am in Sketchup, the cube is Xmm by Xmm by Xmm, where X is an integer. I then export the a Collada file and subsequently load that into threejs.
Now if I look at the geometry bounding box, the values are floats, not integers.
So now assume I am putting cubes next to each other with a small space in between say 1 pixel. Because screens can't draw half pixels, sometimes I see one pixel and sometimes I see two, which causes a lack of uniformity.
I think I can resolve this satisfactorily if I can somehow get the imported model to have integer dimensions. I have full access to all parts of the model starting with Sketchup, so any point in the process is fair game.
Is it possible?
Thanks.
Clarification: My app will have two views. The view that this is concerned with is using an OrthographicCamera that is looking straight down on the pieces, so this is really a 2D view. For purposes of this question, after importing the model, it should look like a grid of squares with uniform spacing in between.
UPDATE: I would ask that you please not respond unless you can provide an actual answer. If I need help finding a way to accomplish something, I will post a new question. For this question, I am only interested in knowing if it is possible to align an imported Collada model to full pixels and if so how. At this point, this is mostly to serve my curiosity and increase my knowledge of what is and isn't possible. Thank you community for your kind help.
Now you have to learn this thing about 3D programming: numbers don't mean anything :)
In the real world 1mm, 2.13cm and 100Kg specify something that can be measured and reproduced. But for a drawing library, those numbers don't mean anything.
In a drawing library, 3D points are always represented with 3 float values.You submit your points to the library, it transforms them in 2D points (they must be viewed on a 2D surface), and finally these 2D points are passed to a rasterizer which translates floating point values into integer values (the screen has a resolution of NxM pixels, both N and M being integers) and colors the actual pixels.
Your problem simply is not a problem. A cube of 1mm really means nothing, because if you are designing an astronomic application, that object will never be seen, but if it's a microscopic one, it will even be way larger than the screen. What matters are the coordinates of the point, and the scale of the overall application.
Now back to your cubes, don't try to insert 1px in between two adjacent ones. Your cubes are defined in terms of mm, so try to choose the distance in mm appropriate to your world, and let the rasterizer do its job and translate them to pixels.
I have been informed by two co-workers that I tracked down that this is indeed impossible using normal means.

Best approach for specific Object/Image Recognition task?

I'm searching for an certain object in my photograph:
Object: Outline of a rectangle with an X in the middle. It looks like a rectangular checkbox. That's all. So, no fill, just lines. The rectangle will have the same ratios of length to width but it could be any size or any rotation in the photograph.
I've looked a whole bunch of image recognition approaches. But I'm trying to determine the best for this specific task. Most importantly, the object is made of lines and is not a filled shape. Also, there is no perspective distortion, so the rectangular object will always have right angles in the photograph.
Any ideas? I'm hoping for something that I can implement fairly easily.
Thanks all.
You could try using a corner detector (e.g. Harris) to find the corners of the box, the ends and the intersection of the X. That simplifies the problem to finding points in the right configuration.
Edit (response to comment):
I'm assuming you can find the corner points in your image, the 4 corners of the rectangle, the 4 line endings of the X and the center of the X, plus a few other corners in the image due to noise or objects in the background. That simplifies the problem to finding a set of 9 points in the right configuration, out of a given set of points.
My first try would be to look at each corner point A. Then I'd iterate over the points B close to A. Now if I assume that (e.g.) A is the upper left corner of the rectangle and B is the lower right corner, I can easily calculate, where I would expect the other corner points to be in the image. I'd use some nearest-neighbor search (or a library like FLANN) to see if there are corners where I'd expect them. If I can find a set of points that matches these expected positions, I know where the symbol would be, if it is present in the image.
You have to try if that is good enough for your application. If you have too many false positives (sets of corners of other objects that accidentially form a rectangle + X), you could check if there are lines (i.e. high contrast in the right direction) where you would expect them. And you could check if there is low contrast where there are no lines in the pattern. This should be relatively straightforward once you know the points in the image that correspond to the corners/line endings in the object you're looking for.
I'd suggest the Generalized Hough Transform. It seems you have a fairly simple, fixed shape. The generalized Hough transform should be able to detect that shape at any rotation or scale in the image. You many need to threshold the original image, or pre-process it in some way for this method to be useful though.
You can use local features to identify the object in image. Feature detection wiki
For example, you can calculate features on some referent image which contains only the object you're looking for and save the results, let's say, to a plain text file. After that you can search for the object just by comparing newly calculated features (on images with some complex scenes containing the object) with the referent ones.
Here's some good resource on local features:
Local Invariant Feature Detectors: A Survey

Resources