Algorithm for finding failure cases in a communication "web" - algorithm

I am trying to enumerate a number of failure cases for a system I am working on to make writing test cases easier. Basically, I have a group of "points" which communicate with an arbitrary number of other points through data "paths". I want to come up with failure cases in the following three sets...
Set 1 - Break each path individually (trivial)
Set 2 - For each point P in the system, break paths so that P is completely cut off from the rest of the system (also trivial)
Set 3 - For each point P in the system, break paths so that the system is divided into two groups of points (A and B, excluding point P) so that the only way to get from group A to group B is through point P (i.e., I want to force all data traffic in the system through point P to ensure that it can keep up). If this is not possible for a particular point, then it should be skipped.
Set 3 is what I am having trouble with. In practice, the systems I am dealing with are small and simple enough that I could probably "brute force" a solution (generally I have about 12 points, with each point connected to 1-4 other points). However, I would be interested in finding a more general algorithm for this type of problem, if anyone has any suggestions or ideas about where to start.

Here's some psuedocode, substituting the common graph theory terms of "nodes" for "points" and "edges" for "paths" assuming a path connects two points.
for each P in nodes:
for each subset A in nodes - {P}:
B = nodes - A - {P}
for each node in A:
for each edge out of A:
if the other end is in B:
break edge
run test
replace edges if necessary
Unless I'm misunderstanding something, the problem seems relatively simple as long as you have a method of generating the subsets of nodes-{P}. This will test each partition [A,B] twice unless you put some other check in there.

There are general algorithms for 'coloring' (with or without a u depending on whether you want UK or US articles) networks. However this is overkill for the relatively simple problem you describe.
Simply divide the nodes between two sets, then in pseudo-code:
foreach Node n in a.Nodes
foreach Edge e in n.Edges
if e.otherEnd in b then
e.break()
broken.add(e)
broken.get(rand(broken.size()).reinstate()
Either use rand to chosse a broken link to reinstate, or systematically reinstate one at a time
Repeat for b (or structure your edges such that a break in one direction affects the other)

Related

How to find the highest number of changes/permutations inside a group (maybe a graph)

Lets say in my company there are a number N of workers and M sectors. Each worker is currently assigned to a sector, also each worker is all willing to change to another sector.
For example:
Worker A is in sector 1 but want to go to sector 2
B is in 2 but want 3
C is in 3 but want 2
D is in 1 but want 3
and so on...
But they all must change with eachother.
A go to B position and B go to A position
or
A go to B position / B go to C position / C go to A position
I know that not everyone will change sectors, but I'm wondering if there is any specific algorithm that could find what movements will yield the maximum amount of changes.
I tought about naively swap two workers but some of them may be missing, they could all form a "loop" and no one would be left out (if possible)
I could use Monte Carlo to chain the workers and find the longest chain/loop but that would be too expensive as N and M grows
Also tought about finding the longest path in a graph using djikstra but as it looks like a NP-hard problem
Does anyone know an algorithm or how could I solve this efficiently? Or I'm trying to fly too close to the sun here?
This can be solved as a min-cost circulation problem. Construct a flow network where each sector corresponds to a node, and each worker corresponds to an arc. The capacity of each arc is 1, and the cost is −1 (i.e., we should move workers if we can). The conservation of flow constraint ensures that we can decompose the worker movements into a sum of simple cycles.
Klein's cycle canceling algorithm is not the most efficient, but it's very simple. Use (e.g.) Bellman−Ford to find a negative-cost cycle in the network, if one exists. If so, reverse the direction of each arc in the cycle, multiply the cost of each arc in the cycle by −1, and loop back to the beginning.
You could use the following observations to generate the most attractive sector changes (measured as how many workers get the change they want). In order of falling attractiveness,
Identify all circular chains of sector changes. Everybody gets the change they want.
Identify all non-circular chains of sector changes. They can be made circular at the expense of one worker not getting what s/he wants.
Revisit 1. Combine any two circular chains at the expense of two workers not getting what they want.
Instead of one optimal solution, you get a list of many more or less attractive options. You will have to put some bounds on steps 1 - 3 to keep options down to a tractable number.

Match every point in two different sized sets with minimum total line length

I have two sets of points plotted in a coordinate system. Each point in a set must be matched to at least one point at the other set, in a way that the sum of the length of the lines drawn by joining those points should be as low as possible. To make it clear, line drawing is just an abstraction, the actual output is just the pairs of points that must be matched.
I've seen this question about a similar problem, except that in my case there's no single-link restriction since the sets may have different sizes. Is there any kind of problem that describes this situation? More specifically, what algorithm could I use to solve this, assuming each set may have a maximum of 10 points?
Algorithm
You can model this as a network flow problem.
By having a source of 1 at each point in the first set, and a sink of 1 at each point in the second set, plus an extra node 'dest' for any left over capacity, any valid flow will always connect every point.
Make edges between the points with cost according to the distance between the points.
So far we have a network whose solution will be the lowest cost matching of set 1 to set 2 (i.e. each point will have a single link).
To allow multiple links you can simply make the following additions:
add 0 weight edges between each point in set2 and 'dest' (this allows points in set 2 to be multiply connected)
add 0 weight edges between 'dest' and each point in set2 (this allows points in set 1 to be multiply connected)
Example Python code using Networkx
import networkx as nx
import random
G=nx.DiGraph()
set1=['A','B','C','D','E','F','G','H','I']
set2=['a','b','c']
# Assume set1 > set2 (or swap sets)
assert len(set1)>=len(set2)
G.add_node('dest',demand=len(set1)-len(set2))
A=[]
for person in set1:
G.add_node(person,demand=-1)
G.add_edge('dest',person,weight=0)
for project in set2:
cost = random.randint(1,10) # Assign appropriate costs here
G.add_edge(person,project,weight=cost) # Edge taken if person does this project
for project in set2:
G.add_node(project,demand=1)
G.add_edge(project,'dest',weight=0)
flowdict = nx.min_cost_flow(G)
for person in set1:
for project,flow in flowdict[person].items():
if flow:
print person,'->',project
You can use a discrete optimization approach (Integer Programming).
We have two sets A, of size X, and B, of size Y. This means a maximum of X*Y links, each described by a boolean variable: L(i,j) = L(Y*i+j) is 1 if nodes A(i) and B(j) are linked, 0 if not. If X = Y = 10, we can write link L(7,3) as L73.
We can rewrite the problem like this:
Node A(i) has at least one link: X (say, ten) criteria with i from 0 to X-1, each of them comprised of Y components:
L(i,0)+L(i,1)+L(i,2)+...+L(i,Y-1) >= 1
Node B(j) has at least one link, and there are Y criteria made up of X components:
L(0,j)+L(1,j)+L(2,j)+...+L(X-1,j) >= 1
The minimal cost requirement becomes:
cost = SUM(C(0,0)*L(0,0)+C(0,1)*L(0,1)+...+C(9,9)*L(9,9)
With these conventions, we can easily build the matrices for an ILP problem, that can be passed to our favorite ILP solving package or library (C, Java, Python, even PHP).
====
A self-contained "greedy" algorithm which is not guaranteed to find a minimum, but is reasonably quick and should give reasonable results unless you feed it a pathological data set, is:
- connect all points in the smaller set, each to its nearest point in the other set.
- connect all unconnected points remaining in the larger set, each to its
nearest point in the first set, whether it's already connected or not.
As an optimization, you can then enumerate the points in the larger data set; if one of them (say A) is singly connected to a point in the first data set (say B) which is multiply connected, and is not its nearest neighbour C, you can switch the link from A-B to A-C. This takes care of one of the simplest problems that may arise from the "greediness" of the algorithm.

Efficient algorithm for eliminating nodes in "graph"?

Suppose I have a a graph with 2^N - 1 nodes, numbered 1 to 2^N - 1. Node i "depends on" node j if all the bits in the binary representation of j that are 1, are also 1 in the binary representation of i. So, for instance, if N=3, then node 7 depends on all other nodes. Node 6 depends on nodes 4 and 2.
The problem is eliminating nodes. I can eliminate a node if no other nodes depend on it. No nodes depend on 7; so I can eliminate 7. After eliminating 7, I can eliminate 6, 5, and 3, etc. What I'd like is to find an efficient algorithm for listing all the possible unique elimination paths. (that is, 7-6-5 is the same as 7-5-6, so we only need to list one of the two). I have a dumb algorithm already, but I think there must be a better way.
I have three related questions:
Does this problem have a general name?
What's the best way to solve it?
Is there a general formula for the number of unique elimination paths?
Edit: I should note that a node cannot depend on itself, by definition.
Edit2: Let S = {s_1, s_2, s_3,...,s_m} be the set of all m valid elimination paths. s_i and s_j are "equivalent" (for my purposes) iff the two eliminations s_i and s_j would lead to the same graph after elimination. I suppose to be clearer I could say that what I want is the set of all unique graphs resulting from valid elimination steps.
Edit3: Note that elimination paths may be different lengths. For N=2, the 5 valid elimination paths are (),(3),(3,2),(3,1),(3,2,1). For N=3, there are 19 unique paths.
Edit4: Re: my application - the application is in statistics. Given N factors, there are 2^N - 1 possible terms in statistical model (see http://en.wikipedia.org/wiki/Analysis_of_variance#ANOVA_for_multiple_factors) that can contain the main effects (the factors alone) and various (2,3,... way) interactions between the factors. But an interaction can only be present in a model if all sub-interactions (or main effects) are present. For three factors a, b, and c, for example, the 3 way interaction a:b:c can only be in present if all the constituent two-way interactions (a:b, a:c, b:c) are present (and likewise for the two-ways). Thus, the model a + b + c + a:b + a:b:c would not be allowed. I'm looking for a quick way to generate all valid models.
It seems easier to think about this in terms of sets: you are looking for families of subsets of {1, ..., N} such that for each set in the family also all its subsets are present. Each such family is determined by the inclusion-wise maximal sets, which must be overlapping. Families of pairwise overlapping sets are called Sperner families. So you are looking for Sperner families, plus the union of all the subsets in the family. Possibly known algorithms for enumerating Sperner families or antichains in general are useful; without knowing what you actually want to do with them, it's hard to tell.
Thanks to #FalkHüffner's answer, I saw that what I wanted to do was equivalent to finding monotonic Boolean functions for N arguments. If you look at the figure on the Wikipedia page for Dedekind numbers (http://en.wikipedia.org/wiki/Dedekind_number) the figure expresses the problem graphically. There is an algorithm for generating monotonic Boolean functions (http://www.mathpages.com/home/kmath094.htm) and it is quite simple to construct.
For my purposes, I use the algorithm, then eliminate the first column and last row of the resulting binary arrays. Starting from the top row down, each row has a 1 in the ith column if one can eliminate the ith node.
Thanks!
You can build a "heap", in which at depth X are all the nodes with X zeros in their binary representation.
Then, starting from the bottom layer, connect each item to a random parent at the layer above, until you get a single-component graph.
Note that this graph is a tree, i.e., each node except for the root has exactly one parent.
Then, traverse the tree (starting from the root) and count the total number of paths in it.
UPDATE:
The method above is bad, because you cannot just pick a random parent for a given item - you have a limited number of items from which you can pick a "legal" parent... But I'm leaving this method here for other people to give their opinion (perhaps it is not "that bad").
In any case, why don't you take your graph, extract a spanning-tree (you can use Prim algorithm or Kruskal algorithm for finding a minimal-spanning-tree), and then count the number of paths in it?

What to use for flow free-like game random level creation?

I need some advice. I'm developing a game similar to Flow Free wherein the gameboard is composed of a grid and colored dots, and the user has to connect the same colored dots together without overlapping other lines, and using up ALL the free spaces in the board.
My question is about level-creation. I wish to make the levels generated randomly (and should at least be able to solve itself so that it can give players hints) and I am in a stump as to what algorithm to use. Any suggestions?
Note: image shows the objective of Flow Free, and it is the same objective of what I am developing.
Thanks for your help. :)
Consider solving your problem with a pair of simpler, more manageable algorithms: one algorithm that reliably creates simple, pre-solved boards and another that rearranges flows to make simple boards more complex.
The first part, building a simple pre-solved board, is trivial (if you want it to be) if you're using n flows on an nxn grid:
For each flow...
Place the head dot at the top of the first open column.
Place the tail dot at the bottom of that column.
Alternatively, you could provide your own hand-made starter boards to pass to the second part. The only goal of this stage is to get a valid board built, even if it's just trivial or predetermined, so it's worth keeping it simple.
The second part, rearranging the flows, involves looping over each flow, seeing which one can work with its neighboring flow to grow and shrink:
For some number of iterations...
Choose a random flow f.
If f is at the minimum length (say 3 squares long), skip to the next iteration because we can't shrink f right now.
If the head dot of f is next to a dot from another flow g (if more than one g to choose from, pick one at random)...
Move f's head dot one square along its flow (i.e., walk it one square towards the tail). f is now one square shorter and there's an empty square. (The puzzle is now unsolved.)
Move the neighboring dot from g into the empty square vacated by f. Now there's an empty square where g's dot moved from.
Fill in that empty spot with flow from g. Now g is one square longer than it was at the beginning of this iteration. (The puzzle is back to being solved as well.)
Repeat the previous step for f's tail dot.
The approach as it stands is limited (dots will always be neighbors) but it's easy to expand upon:
Add a step to loop through the body of flow f, looking for trickier ways to swap space with other flows...
Add a step that prevents a dot from moving to an old location...
Add any other ideas that you come up with.
The overall solution here is probably less than the ideal one that you're aiming for, but now you have two simple algorithms that you can flesh out further to serve the role of one large, all-encompassing algorithm. In the end, I think this approach is manageable, not cryptic, and easy to tweek, and, if nothing else, a good place to start.
Update: I coded a proof-of-concept based on the steps above. Starting with the first 5x5 grid below, the process produced the subsequent 5 different boards. Some are interesting, some are not, but they're always valid with one known solution.
Starting Point
5 Random Results (sorry for the misaligned screenshots)
And a random 8x8 for good measure. The starting point was the same simple columns approach as above.
Updated answer: I implemented a new generator using the idea of "dual puzzles". This allows much sparser and higher quality puzzles than any previous method I know of. The code is on github. I'll try to write more details about how it works, but here is an example puzzle:
Old answer:
I have implemented the following algorithm in my numberlink solver and generator. In enforces the rule, that a path can never touch itself, which is normal in most 'hardcore' numberlink apps and puzzles
First the board is tiled with 2x1 dominos in a simple, deterministic way.
If this is not possible (on an odd area paper), the bottom right corner is
left as a singleton.
Then the dominos are randomly shuffled by rotating random pairs of neighbours.
This is is not done in the case of width or height equal to 1.
Now, in the case of an odd area paper, the bottom right corner is attached to
one of its neighbour dominos. This will always be possible.
Finally, we can start finding random paths through the dominos, combining them
as we pass through. Special care is taken not to connect 'neighbour flows'
which would create puzzles that 'double back on themselves'.
Before the puzzle is printed we 'compact' the range of colours used, as much as possible.
The puzzle is printed by replacing all positions that aren't flow-heads with a .
My numberlink format uses ascii characters instead of numbers. Here is an example:
$ bin/numberlink --generate=35x20
Warning: Including non-standard characters in puzzle
35 20
....bcd.......efg...i......i......j
.kka........l....hm.n....n.o.......
.b...q..q...l..r.....h.....t..uvvu.
....w.....d.e..xx....m.yy..t.......
..z.w.A....A....r.s....BB.....p....
.D.........E.F..F.G...H.........IC.
.z.D...JKL.......g....G..N.j.......
P...a....L.QQ.RR...N....s.....S.T..
U........K......V...............T..
WW...X.......Z0..M.................
1....X...23..Z0..........M....44...
5.......Y..Y....6.........C.......p
5...P...2..3..6..VH.......O.S..99.I
........E.!!......o...."....O..$$.%
.U..&&..J.\\.(.)......8...*.......+
..1.......,..-...(/:.."...;;.%+....
..c<<.==........)./..8>>.*.?......#
.[..[....]........:..........?..^..
..._.._.f...,......-.`..`.7.^......
{{......].....|....|....7.......#..
And here I run it through my solver (same seed):
$ bin/numberlink --generate=35x20 | bin/numberlink --tubes
Found a solution!
┌──┐bcd───┐┌──efg┌─┐i──────i┌─────j
│kka│└───┐││l┌─┘│hm│n────n┌o│┌────┐
│b──┘q──q│││l│┌r└┐│└─h┌──┐│t││uvvu│
└──┐w┌───┘d└e││xx│└──m│yy││t││└──┘│
┌─z│w│A────A┌┘└─r│s───┘BB││┌┘└p┌─┐│
│D┐└┐│┌────E│F──F│G──┐H┐┌┘││┌──┘IC│
└z└D│││JKL┌─┘┌──┐g┌─┐└G││N│j│┌─┐└┐│
P──┐a││││L│QQ│RR└┐│N└──┘s││┌┘│S│T││
U─┐│┌┘││└K└─┐└─┐V││└─────┘││┌┘││T││
WW│││X││┌──┐│Z0││M│┌──────┘││┌┘└┐││
1┐│││X│││23││Z0│└┐││┌────M┌┘││44│││
5│││└┐││Y││Y│┌─┘6││││┌───┐C┌┘│┌─┘│p
5││└P│││2┘└3││6─┘VH│││┌─┐│O┘S┘│99└I
┌┘│┌─┘││E┐!!│└───┐o┘│││"│└─┐O─┘$$┌%
│U┘│&&│└J│\\│(┐)┐└──┘│8││┌*└┐┌───┘+
└─1└─┐└──┘,┐│-└┐│(/:┌┘"┘││;;│%+───┘
┌─c<<│==┌─┐││└┐│)│/││8>>│*┌?│┌───┐#
│[──[└─┐│]││└┐│└─┘:┘│└──┘┌┘┌┘?┌─^││
└─┐_──_│f││└,│└────-│`──`│7┘^─┘┌─┘│
{{└────┘]┘└──┘|────|└───7└─────┘#─┘
I've tested replacing step (4) with a function that iteratively, randomly merges two neighboring paths. However it game much denser puzzles, and I already think the above is nearly too dense to be difficult.
Here is a list of problems I've generated of different size: https://github.com/thomasahle/numberlink/blob/master/puzzles/inputs3
The most straightforward way to create such a level is to find a way to solve it. This way, you can basically generate any random starting configuration and determine if it is a valid level by trying to have it solved. This will generate the most diverse levels.
And even if you find a way to generate the levels some other way, you'll still want to apply this solving algorithm to prove that the generated level is any good ;)
Brute-force enumerating
If the board has a size of NxN cells, and there are also N colours available, brute-force enumerating all possible configurations (regardless of wether they form actual paths between start and end nodes) would take:
N^2 cells total
2N cells already occupied with start and end nodes
N^2 - 2N cells for which the color has yet to be determined
N colours available.
N^(N^2 - 2N) possible combinations.
So,
For N=5, this means 5^15 = 30517578125 combinations.
For N=6, this means 6^24 = 4738381338321616896 combinations.
In other words, the number of possible combinations is pretty high to start with, but also grows ridiculously fast once you start making the board larger.
Constraining the number of cells per color
Obviously, we should try to reduce the number of configurations as much as possible. One way of doing that is to consider the minimum distance ("dMin") between each color's start and end cell - we know that there should at least be this much cells with that color. Calculating the minimum distance can be done with a simple flood fill or Dijkstra's algorithm.
(N.B. Note that this entire next section only discusses the number of cells, but does not say anything about their locations)
In your example, this means (not counting the start and end cells)
dMin(orange) = 1
dMin(red) = 1
dMin(green) = 5
dMin(yellow) = 3
dMin(blue) = 5
This means that, of the 15 cells for which the color has yet to be determined, there have to be at least 1 orange, 1 red, 5 green, 3 yellow and 5 blue cells, also making a total of 15 cells.
For this particular example this means that connecting each color's start and end cell by (one of) the shortest paths fills the entire board - i.e. after filling the board with the shortest paths no uncoloured cells remain. (This should be considered "luck", not every starting configuration of the board will cause this to happen).
Usually, after this step, we have a number of cells that can be freely coloured, let's call this number U. For N=5,
U = 15 - (dMin(orange) + dMin(red) + dMin(green) + dMin(yellow) + dMin(blue))
Because these cells can take any colour, we can also determine the maximum number of cells that can have a particular colour:
dMax(orange) = dMin(orange) + U
dMax(red) = dMin(red) + U
dMax(green) = dMin(green) + U
dMax(yellow) = dMin(yellow) + U
dMax(blue) = dMin(blue) + U
(In this particular example, U=0, so the minimum number of cells per colour is also the maximum).
Path-finding using the distance constraints
If we were to brute force enumerate all possible combinations using these color constraints, we would have a lot less combinations to worry about. More specifically, in this particular example we would have:
15! / (1! * 1! * 5! * 3! * 5!)
= 1307674368000 / 86400
= 15135120 combinations left, about a factor 2000 less.
However, this still doesn't give us the actual paths. so a better idea would be to a backtracking search, where we process each colour in turn and attempt to find all paths that:
doesn't cross an already coloured cell
Is not shorter than dMin(colour) and not longer than dMax(colour).
The second criteria will reduce the number of paths reported per colour, which causes the total number of paths to be tried to be greatly reduced (due to the combinatorial effect).
In pseudo-code:
function SolveLevel(initialBoard of size NxN)
{
foreach(colour on initialBoard)
{
Find startCell(colour) and endCell(colour)
minDistance(colour) = Length(ShortestPath(initialBoard, startCell(colour), endCell(colour)))
}
//Determine the number of uncoloured cells remaining after all shortest paths have been applied.
U = N^(N^2 - 2N) - (Sum of all minDistances)
firstColour = GetFirstColour(initialBoard)
ExplorePathsForColour(
initialBoard,
firstColour,
startCell(firstColour),
endCell(firstColour),
minDistance(firstColour),
U)
}
}
function ExplorePathsForColour(board, colour, startCell, endCell, minDistance, nrOfUncolouredCells)
{
maxDistance = minDistance + nrOfUncolouredCells
paths = FindAllPaths(board, colour, startCell, endCell, minDistance, maxDistance)
foreach(path in paths)
{
//Render all cells in 'path' on a copy of the board
boardCopy = Copy(board)
boardCopy = ApplyPath(boardCopy, path)
uRemaining = nrOfUncolouredCells - (Length(path) - minDistance)
//Recursively explore all paths for the next colour.
nextColour = NextColour(board, colour)
if(nextColour exists)
{
ExplorePathsForColour(
boardCopy,
nextColour,
startCell(nextColour),
endCell(nextColour),
minDistance(nextColour),
uRemaining)
}
else
{
//No more colours remaining to draw
if(uRemaining == 0)
{
//No more uncoloured cells remaining
Report boardCopy as a result
}
}
}
}
FindAllPaths
This only leaves FindAllPaths(board, colour, startCell, endCell, minDistance, maxDistance) to be implemented. The tricky thing here is that we're not searching for the shortest paths, but for any paths that fall in the range determined by minDistance and maxDistance. Hence, we can't just use Dijkstra's or A*, because they will only record the shortest path to each cell, not any possible detours.
One way of finding these paths would be to use a multi-dimensional array for the board, where
each cell is capable of storing multiple waypoints, and a waypoint is defined as the pair (previous waypoint, distance to origin). The previous waypoint is needed to be able to reconstruct the entire path once we've reached the destination, and the distance to origin
prevents us from exceeding the maxDistance.
Finding all paths can then be done by using a flood-fill like exploration from the startCell outwards, where for a given cell, each uncoloured or same-as-the-current-color-coloured neigbour is recursively explored (except the ones that form our current path to the origin) until we reach either the endCell or exceed the maxDistance.
An improvement on this strategy is that we don't explore from the startCell outwards to the endCell, but that we explore from both the startCell and endCell outwards in parallel, using Floor(maxDistance / 2) and Ceil(maxDistance / 2) as the respective maximum distances. For large values of maxDistance, this should reduce the number of explored cells from 2 * maxDistance^2 to maxDistance^2.
I think you'll want to do this in two steps. Step 1) find a set of non-intersecting paths that connect all your points, then 2) Grow/shift those paths to fill the entire board
My thoughts on Step 1 are to essentially perform Dijkstra like algorithm on all points simultaneously, growing together the paths. Similar to Dijkstra, I think you'll want to flood-fill out from each of your points, chosing which node to search next using some heuristic (My hunch says chosing points with the least degrees of freedom first, then by distance, might be a good one). Very differently from Dijkstra though I think we might be stuck with having to backtrack when we have multiple paths attempting to grow into the same node. (This could of course be fairly problematic on bigger maps, but might not be a big deal on small maps like the one you have above.)
You may also solve for some of the easier paths before you start the above algorithm, mainly to cut down on the number of backtracks needed. In specific, if you can make a trace between points along the edge of the board, you can guarantee that connecting those two points in that fashion would never interfere with other paths, so you can simply fill those in and take those guys out of the equation. You could then further iterate on this until all of these "quick and easy" paths are found by tracing along the borders of the board, or borders of existing paths. That algorithm would actually completely solve the above example board, but would undoubtedly fail elsewhere .. still, it would be very cheap to perform and would reduce your search time for the previous algorithm.
Alternatively
You could simply do a real Dijkstra's algorithm between each set of points, pathing out the closest points first (or trying them in some random orders a few times). This would probably work for a fair number of cases, and when it fails simply throw out the map and generate a new one.
Once you have Step 1 solved, Step 2 should be easier, though not necessarily trivial. To grow your paths, I think you'll want to grow your paths outward (so paths closest to walls first, growing towards the walls, then other inner paths outwards, etc.). To grow, I think you'll have two basic operations, flipping corners, and expanding into into adjacent pairs of empty squares.. that is to say, if you have a line like
.v<<.
v<...
v....
v....
First you'll want to flip the corners to fill in your edge spaces
v<<<.
v....
v....
v....
Then you'll want to expand into neighboring pairs of open space
v<<v.
v.^<.
v....
v....
v<<v.
>v^<.
v<...
v....
etc..
Note that what I've outlined wont guarantee a solution if one exists, but I think you should be able to find one most of the time if one exists, and then in the cases where the map has no solution, or the algorithm fails to find one, just throw out the map and try a different one :)
You have two choices:
Write a custom solver
Brute force it.
I used option (2) to generate Boggle type boards and it is VERY successful. If you go with Option (2), this is how you do it:
Tools needed:
Write a A* solver.
Write a random board creator
To solve:
Generate a random board consisting of only endpoints
while board is not solved:
get two endpoints closest to each other that are not yet solved
run A* to generate path
update board so next A* knows new board layout with new path marked as un-traversable.
At exit of loop, check success/fail (is whole board used/etc) and run again if needed
The A* on a 10x10 should run in hundredths of a second. You can probably solve 1k+ boards/second. So a 10 second run should get you several 'usable' boards.
Bonus points:
When generating levels for a IAP (in app purchase) level pack, remember to check for mirrors/rotations/reflections/etc so you don't have one board a copy of another (which is just lame).
Come up with a metric that will figure out if two boards are 'similar' and if so, ditch one of them.

Ordering a dictionary to maximize common letters between adjacent words

This is intended to be a more concrete, easily expressable form of my earlier question.
Take a list of words from a dictionary with common letter length.
How to reorder this list tto keep as many letters as possible common between adjacent words?
Example 1:
AGNI, CIVA, DEVA, DEWA, KAMA, RAMA, SIVA, VAYU
reorders to:
AGNI, CIVA, SIVA, DEVA, DEWA, KAMA, RAMA, VAYU
Example 2:
DEVI, KALI, SHRI, VACH
reorders to:
DEVI, SHRI, KALI, VACH
The simplest algorithm seems to be: Pick anything, then search for the shortest distance?
However, DEVI->KALI (1 common) is equivalent to DEVI->SHRI (1 common)
Choosing the first match would result in fewer common pairs in the entire list (4 versus 5).
This seems that it should be simpler than full TSP?
What you're trying to do, is calculate the shortest hamiltonian path in a complete weighted graph, where each word is a vertex, and the weight of each edge is the number of letters that are differenct between those two words.
For your example, the graph would have edges weighted as so:
DEVI KALI SHRI VACH
DEVI X 3 3 4
KALI 3 X 3 3
SHRI 3 3 X 4
VACH 4 3 4 X
Then it's just a simple matter of picking your favorite TSP solving algorithm, and you're good to go.
My pseudo code:
Create a graph of nodes where each node represents a word
Create connections between all the nodes (every node connects to every other node). Each connection has a "value" which is the number of common characters.
Drop connections where the "value" is 0.
Walk the graph by preferring connections with the highest values. If you have two connections with the same value, try both recursively.
Store the output of a walk in a list along with the sum of the distance between the words in this particular result. I'm not 100% sure ATM if you can simply sum the connections you used. See for yourself.
From all outputs, chose the one with the highest value.
This problem is probably NP complete which means that the runtime of the algorithm will become unbearable as the dictionaries grow. Right now, I see only one way to optimize it: Cut the graph into several smaller graphs, run the code on each and then join the lists. The result won't be as perfect as when you try every permutation but the runtime will be much better and the final result might be "good enough".
[EDIT] Since this algorithm doesn't try every possible combination, it's quite possible to miss the perfect result. It's even possible to get caught in a local maximum. Say, you have a pair with a value of 7 but if you chose this pair, all other values drop to 1; if you didn't take this pair, most other values would be 2, giving a much better overall final result.
This algorithm trades perfection for speed. When trying every possible combination would take years, even with the fastest computer in the world, you must find some way to bound the runtime.
If the dictionaries are small, you can simply create every permutation and then select the best result. If they grow beyond a certain bound, you're doomed.
Another solution is to mix the two. Use the greedy algorithm to find "islands" which are probably pretty good and then use the "complete search" to sort the small islands.
This can be done with a recursive approach. Pseudo-code:
Start with one of the words, call it w
FindNext(w, l) // l = list of words without w
Get a list l of the words near to w
If only one word in list
Return that word
Else
For every word w' in l do FindNext(w', l') //l' = l without w'
You can add some score to count common pairs and to prefer "better" lists.
You may want to take a look at BK-Trees, which make finding words with a given distance to each other efficient. Not a total solution, but possibly a component of one.
This problem has a name: n-ary Gray code. Since you're using English letters, n = 26. The Wikipedia article on Gray code describes the problem and includes some sample code.

Resources