Ordering a dictionary to maximize common letters between adjacent words - algorithm

This is intended to be a more concrete, easily expressable form of my earlier question.
Take a list of words from a dictionary with common letter length.
How to reorder this list tto keep as many letters as possible common between adjacent words?
Example 1:
AGNI, CIVA, DEVA, DEWA, KAMA, RAMA, SIVA, VAYU
reorders to:
AGNI, CIVA, SIVA, DEVA, DEWA, KAMA, RAMA, VAYU
Example 2:
DEVI, KALI, SHRI, VACH
reorders to:
DEVI, SHRI, KALI, VACH
The simplest algorithm seems to be: Pick anything, then search for the shortest distance?
However, DEVI->KALI (1 common) is equivalent to DEVI->SHRI (1 common)
Choosing the first match would result in fewer common pairs in the entire list (4 versus 5).
This seems that it should be simpler than full TSP?

What you're trying to do, is calculate the shortest hamiltonian path in a complete weighted graph, where each word is a vertex, and the weight of each edge is the number of letters that are differenct between those two words.
For your example, the graph would have edges weighted as so:
DEVI KALI SHRI VACH
DEVI X 3 3 4
KALI 3 X 3 3
SHRI 3 3 X 4
VACH 4 3 4 X
Then it's just a simple matter of picking your favorite TSP solving algorithm, and you're good to go.

My pseudo code:
Create a graph of nodes where each node represents a word
Create connections between all the nodes (every node connects to every other node). Each connection has a "value" which is the number of common characters.
Drop connections where the "value" is 0.
Walk the graph by preferring connections with the highest values. If you have two connections with the same value, try both recursively.
Store the output of a walk in a list along with the sum of the distance between the words in this particular result. I'm not 100% sure ATM if you can simply sum the connections you used. See for yourself.
From all outputs, chose the one with the highest value.
This problem is probably NP complete which means that the runtime of the algorithm will become unbearable as the dictionaries grow. Right now, I see only one way to optimize it: Cut the graph into several smaller graphs, run the code on each and then join the lists. The result won't be as perfect as when you try every permutation but the runtime will be much better and the final result might be "good enough".
[EDIT] Since this algorithm doesn't try every possible combination, it's quite possible to miss the perfect result. It's even possible to get caught in a local maximum. Say, you have a pair with a value of 7 but if you chose this pair, all other values drop to 1; if you didn't take this pair, most other values would be 2, giving a much better overall final result.
This algorithm trades perfection for speed. When trying every possible combination would take years, even with the fastest computer in the world, you must find some way to bound the runtime.
If the dictionaries are small, you can simply create every permutation and then select the best result. If they grow beyond a certain bound, you're doomed.
Another solution is to mix the two. Use the greedy algorithm to find "islands" which are probably pretty good and then use the "complete search" to sort the small islands.

This can be done with a recursive approach. Pseudo-code:
Start with one of the words, call it w
FindNext(w, l) // l = list of words without w
Get a list l of the words near to w
If only one word in list
Return that word
Else
For every word w' in l do FindNext(w', l') //l' = l without w'
You can add some score to count common pairs and to prefer "better" lists.

You may want to take a look at BK-Trees, which make finding words with a given distance to each other efficient. Not a total solution, but possibly a component of one.

This problem has a name: n-ary Gray code. Since you're using English letters, n = 26. The Wikipedia article on Gray code describes the problem and includes some sample code.

Related

How to solve crossword (NP-Hard)?

I am currently doing an assignment and I'm stuck with the approach.
I have a crossword problem which consists of an empty grid (no solid square as a conventional crossword would), with a varied width and height between 4 and 400 (inclusive).
Rules:
Words are part of the input - a list of 10 - 1000 (inclusive) English words of varying lengths.
A horizontal word can only intersect a vertical word.
A vertical word can only intersect a horizontal word.
A word can only intersect 1 or 2 other words.
Each letter is worth one point.
Words must have a 1 grid space gap surrounding it unless it is a part of an intersecting word.
Example:
X X X X X X
X B O S S X
X X X X X X
Goal:
Get the maximum possible score within a 5 minute time limit.
So far:
After some research I am aware that this is an NP-Hard problem. Thus the most optimal solution cannot be calculated because every combination cannot be examined.
The easiest solution would appear to be to sort the words according to length and inserting the highest scoring words for maximum score (greedy algorithm).
I’ve also been told a recursive tree with the nodes consisting of alternative equally scoring word insertions and the knapsack algorithm apply to this problem (not sure what the implementation would look like).
Questions:
What allows me to check the maximum number of combinations within a 5 minute time span that scales accordingly to the maximum possible word list and grid size?
What heuristics might I apply when inserting words?
Btw the goal here is to get the best possible solution in 5 minutes.
To clarify each letter of a valid word is worth 1 point, thus a 5 letter word is worth 5 points.
Thanks in advance I have been reading a lot of mathematical notation on crossword research papers all day which has seem to have lead me in a circle.
I'd start with a word with following characteristics:
It should have max possible intersections.
Its length should be such that number of words of that length are minimum in the list.
ie, word length should be least frequent and most number of intersections.
Reason for this kind of selection is that it would minimize further possibility of words that can be selected. eg. A word of size 9 with 2 further intersections is selected. These intersecting words are of length 6 and 5 (say). Now, you have removed possibility of all those words of length 6 and 5 whose 3rd char is 'a' and 2nd char is 's' (say, 'a' and 's' are the intersecting letters).
If there are many places with same configuration, run this selection procedure one or two steps deeper to get a better selection of which part (word) of the grid to fill first.
Now, try filling in all words in this 1st selected position (since this had min frequency, it should be good to use) and then going deeper in the crossword to fill it. Whichever word results in most points till a deadend is reached, should be your solution. When you reach a dead-end, you can start over with a new word.
This seems like a really interesting problem in discrete optimization. You're certainly right; with the number of words and number of possible placements there is no way you could ever explore a fraction of the space.
Also given the 5 minute time limit (quite short), I think you're going to have a really hard time with any solid heuristic. I think your best bet might be some sort of random permutation / simulated annealing algorithm.
If I was doing this, I would first calculate clusters of words, completely ignoring the crossword structure itself. Take one word, find a second word that intersects it. Then find another word that can fit onto this structure (obeying the max of 2 intersections per word), and so on. You should end up with many of these clusters, which you can rank by density (points / area used). I think you should be able to do this relatively quickly.
Then for the random permutation / simulated annealing part, for my moves I would place either a cluster or unused word onto the crossword itself, or move an existing cluster / word. Just save the current highest-scoring configuration as you go, and return this after the 5 minutes.
If the 5 min is too short to find anything meaningful using random permutations, another approach might be to use a constraint propagation idea working with those clusters.

Choosing an alphabet that covers the most words? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
Given a list of words and an alphabet that has at most P letters, how can we choose the optimal alphabet that covers the most words?
For example: Given words "aaaaaa" "bb" "bb" with P=1, the optimal alphabet is "b" since "b" covers two words.
Another example: Given words "abmm" "abaa" "mnab" "bbcc" "mnnn" with P=4, the optimal alphabet is "abmn", since that covers 4 of the 5 words.
Are there any known algorithms, or can someone suggest an algorithm that solves this problem?
This problem is NP-hard by reduction from CLIQUE (it's sort of a densest k-sub(hyper)graph problem). Given a graph, label its vertices with distinct letters and, for each edge, make a two-letter word. There exists a k-clique if and only if we can cover k choose 2 words with k letters.
The algorithm situation even for CLIQUE is grim (running times must be n^Theta(k) under a plausible hypothesis), so I'm not sure what to recommend other than brute force with primitive bit arrays.
I'm not yet sure that this is correct, but hopefully it's at least close. We consider a dynamic programming solution. Enumerate the words 1 through N, the letters in our alphabet 1 through P. We want to be able to solve (n, p) in terms of all sub solutions. We consider several cases.
The simplest case is where the nth word is already in the dictionary given in the solution to (n-1, p). We then count ourselves lucky, up the words covered by one, and leave the dictionary unchanged (ddictionary refers to some subset of letters here).
Suppose instead that the nth word is not in the dictionary given by (n-1, p). Then either the dictionary solving (n-1, p) is the dictionary for (n, p), OR the nth word is in the solution. So we look for solutions that explicitly involve the nth word. So, we add all the letters in the nth word to the dictionary we are considering. We now search through all previous subsolutions of the form (n-1, i), where i is p-1 or less. We are looking for the largest value of i such that |d(n-1, i) U d(n)| <= p. Where d(n-1, i) means the dictionary associated with that solution, and d(n) simply means the dictionary associated with all letters of the nth word. In plain English, we use our subsolutions to find the best solution with a smaller value of p that allows us to fit the new word. Once we have found that value of i, we combine the dictionaries whose magnitude we were measuring. If the magnitude of this set is still not p, we repeat the process described before. When we have created a dictionary with magnitude p that covers the nth word with this technique (or iterated through all previous solutions), we compute its coverage and compare it to the coverage we would get by simply using the dictionary from (n-1, p), and we pick the better. If theres a tie, we pick both.
Im not completely convinced of the correctness of this solution, but I think it may be right. Thoughts?
I'd do this:
Use the input words to create a data structure that maps lists of letters (strings) to the number of words that they cover. You can do this by extracting unique letters that make up a word, sorting them and using the result as a hash map key.
Disregard any entries whose keys are longer than P (can't cover those words by our limited alphabet).
For all remaining entires, compute a list of entries that are contained by them (an alphabet 'ab' contains the alphabet 'b' and 'a'). Sum the number of words covered by those entries.
Find the entry with the highest number of keys.
As David has shown above (with an excellent proof!), this is NP-hard so you won't get a perfect answer in every situation.
One approach to add to the other answers is to express this as a max-flow problem.
Define a source node S, a sink node D, a node for each words, and a node for each letter.
Add edges from S to each word of capacity 1.
Add edges from each word to the letters it contains of infinite capacity.
Add edges from each letter to D of capacity x (where we will define x in a moment).
Then solve for the min-cut of this graph (by using a maximum flow algorithm from S to D). A cut edge to a letter represents that that letter is not being included in the solution.
This can be thought of as solving the problem where we get a reward of 1 for each word, but it costs us x for each new letter we use.
Then the idea is to vary x (e.g. by bisection) to try and find a value for x where exactly k letter edges are cut. If you manage this then you will have identified the exact solution to your problem.
This approach is reasonably efficient, but it depends on your input data whether or not it will find the answer. For certain examples (e.g. David's construction to find cliques) you will find that as you vary x you will suddenly jump from including fewer than k letters to including more than k letters. However, even in this case you may find that it helps in that it will provide some lower and upper bounds for the maximum number of words in the exact solution.

Efficient algorithm for eliminating nodes in "graph"?

Suppose I have a a graph with 2^N - 1 nodes, numbered 1 to 2^N - 1. Node i "depends on" node j if all the bits in the binary representation of j that are 1, are also 1 in the binary representation of i. So, for instance, if N=3, then node 7 depends on all other nodes. Node 6 depends on nodes 4 and 2.
The problem is eliminating nodes. I can eliminate a node if no other nodes depend on it. No nodes depend on 7; so I can eliminate 7. After eliminating 7, I can eliminate 6, 5, and 3, etc. What I'd like is to find an efficient algorithm for listing all the possible unique elimination paths. (that is, 7-6-5 is the same as 7-5-6, so we only need to list one of the two). I have a dumb algorithm already, but I think there must be a better way.
I have three related questions:
Does this problem have a general name?
What's the best way to solve it?
Is there a general formula for the number of unique elimination paths?
Edit: I should note that a node cannot depend on itself, by definition.
Edit2: Let S = {s_1, s_2, s_3,...,s_m} be the set of all m valid elimination paths. s_i and s_j are "equivalent" (for my purposes) iff the two eliminations s_i and s_j would lead to the same graph after elimination. I suppose to be clearer I could say that what I want is the set of all unique graphs resulting from valid elimination steps.
Edit3: Note that elimination paths may be different lengths. For N=2, the 5 valid elimination paths are (),(3),(3,2),(3,1),(3,2,1). For N=3, there are 19 unique paths.
Edit4: Re: my application - the application is in statistics. Given N factors, there are 2^N - 1 possible terms in statistical model (see http://en.wikipedia.org/wiki/Analysis_of_variance#ANOVA_for_multiple_factors) that can contain the main effects (the factors alone) and various (2,3,... way) interactions between the factors. But an interaction can only be present in a model if all sub-interactions (or main effects) are present. For three factors a, b, and c, for example, the 3 way interaction a:b:c can only be in present if all the constituent two-way interactions (a:b, a:c, b:c) are present (and likewise for the two-ways). Thus, the model a + b + c + a:b + a:b:c would not be allowed. I'm looking for a quick way to generate all valid models.
It seems easier to think about this in terms of sets: you are looking for families of subsets of {1, ..., N} such that for each set in the family also all its subsets are present. Each such family is determined by the inclusion-wise maximal sets, which must be overlapping. Families of pairwise overlapping sets are called Sperner families. So you are looking for Sperner families, plus the union of all the subsets in the family. Possibly known algorithms for enumerating Sperner families or antichains in general are useful; without knowing what you actually want to do with them, it's hard to tell.
Thanks to #FalkHüffner's answer, I saw that what I wanted to do was equivalent to finding monotonic Boolean functions for N arguments. If you look at the figure on the Wikipedia page for Dedekind numbers (http://en.wikipedia.org/wiki/Dedekind_number) the figure expresses the problem graphically. There is an algorithm for generating monotonic Boolean functions (http://www.mathpages.com/home/kmath094.htm) and it is quite simple to construct.
For my purposes, I use the algorithm, then eliminate the first column and last row of the resulting binary arrays. Starting from the top row down, each row has a 1 in the ith column if one can eliminate the ith node.
Thanks!
You can build a "heap", in which at depth X are all the nodes with X zeros in their binary representation.
Then, starting from the bottom layer, connect each item to a random parent at the layer above, until you get a single-component graph.
Note that this graph is a tree, i.e., each node except for the root has exactly one parent.
Then, traverse the tree (starting from the root) and count the total number of paths in it.
UPDATE:
The method above is bad, because you cannot just pick a random parent for a given item - you have a limited number of items from which you can pick a "legal" parent... But I'm leaving this method here for other people to give their opinion (perhaps it is not "that bad").
In any case, why don't you take your graph, extract a spanning-tree (you can use Prim algorithm or Kruskal algorithm for finding a minimal-spanning-tree), and then count the number of paths in it?

What to use for flow free-like game random level creation?

I need some advice. I'm developing a game similar to Flow Free wherein the gameboard is composed of a grid and colored dots, and the user has to connect the same colored dots together without overlapping other lines, and using up ALL the free spaces in the board.
My question is about level-creation. I wish to make the levels generated randomly (and should at least be able to solve itself so that it can give players hints) and I am in a stump as to what algorithm to use. Any suggestions?
Note: image shows the objective of Flow Free, and it is the same objective of what I am developing.
Thanks for your help. :)
Consider solving your problem with a pair of simpler, more manageable algorithms: one algorithm that reliably creates simple, pre-solved boards and another that rearranges flows to make simple boards more complex.
The first part, building a simple pre-solved board, is trivial (if you want it to be) if you're using n flows on an nxn grid:
For each flow...
Place the head dot at the top of the first open column.
Place the tail dot at the bottom of that column.
Alternatively, you could provide your own hand-made starter boards to pass to the second part. The only goal of this stage is to get a valid board built, even if it's just trivial or predetermined, so it's worth keeping it simple.
The second part, rearranging the flows, involves looping over each flow, seeing which one can work with its neighboring flow to grow and shrink:
For some number of iterations...
Choose a random flow f.
If f is at the minimum length (say 3 squares long), skip to the next iteration because we can't shrink f right now.
If the head dot of f is next to a dot from another flow g (if more than one g to choose from, pick one at random)...
Move f's head dot one square along its flow (i.e., walk it one square towards the tail). f is now one square shorter and there's an empty square. (The puzzle is now unsolved.)
Move the neighboring dot from g into the empty square vacated by f. Now there's an empty square where g's dot moved from.
Fill in that empty spot with flow from g. Now g is one square longer than it was at the beginning of this iteration. (The puzzle is back to being solved as well.)
Repeat the previous step for f's tail dot.
The approach as it stands is limited (dots will always be neighbors) but it's easy to expand upon:
Add a step to loop through the body of flow f, looking for trickier ways to swap space with other flows...
Add a step that prevents a dot from moving to an old location...
Add any other ideas that you come up with.
The overall solution here is probably less than the ideal one that you're aiming for, but now you have two simple algorithms that you can flesh out further to serve the role of one large, all-encompassing algorithm. In the end, I think this approach is manageable, not cryptic, and easy to tweek, and, if nothing else, a good place to start.
Update: I coded a proof-of-concept based on the steps above. Starting with the first 5x5 grid below, the process produced the subsequent 5 different boards. Some are interesting, some are not, but they're always valid with one known solution.
Starting Point
5 Random Results (sorry for the misaligned screenshots)
And a random 8x8 for good measure. The starting point was the same simple columns approach as above.
Updated answer: I implemented a new generator using the idea of "dual puzzles". This allows much sparser and higher quality puzzles than any previous method I know of. The code is on github. I'll try to write more details about how it works, but here is an example puzzle:
Old answer:
I have implemented the following algorithm in my numberlink solver and generator. In enforces the rule, that a path can never touch itself, which is normal in most 'hardcore' numberlink apps and puzzles
First the board is tiled with 2x1 dominos in a simple, deterministic way.
If this is not possible (on an odd area paper), the bottom right corner is
left as a singleton.
Then the dominos are randomly shuffled by rotating random pairs of neighbours.
This is is not done in the case of width or height equal to 1.
Now, in the case of an odd area paper, the bottom right corner is attached to
one of its neighbour dominos. This will always be possible.
Finally, we can start finding random paths through the dominos, combining them
as we pass through. Special care is taken not to connect 'neighbour flows'
which would create puzzles that 'double back on themselves'.
Before the puzzle is printed we 'compact' the range of colours used, as much as possible.
The puzzle is printed by replacing all positions that aren't flow-heads with a .
My numberlink format uses ascii characters instead of numbers. Here is an example:
$ bin/numberlink --generate=35x20
Warning: Including non-standard characters in puzzle
35 20
....bcd.......efg...i......i......j
.kka........l....hm.n....n.o.......
.b...q..q...l..r.....h.....t..uvvu.
....w.....d.e..xx....m.yy..t.......
..z.w.A....A....r.s....BB.....p....
.D.........E.F..F.G...H.........IC.
.z.D...JKL.......g....G..N.j.......
P...a....L.QQ.RR...N....s.....S.T..
U........K......V...............T..
WW...X.......Z0..M.................
1....X...23..Z0..........M....44...
5.......Y..Y....6.........C.......p
5...P...2..3..6..VH.......O.S..99.I
........E.!!......o...."....O..$$.%
.U..&&..J.\\.(.)......8...*.......+
..1.......,..-...(/:.."...;;.%+....
..c<<.==........)./..8>>.*.?......#
.[..[....]........:..........?..^..
..._.._.f...,......-.`..`.7.^......
{{......].....|....|....7.......#..
And here I run it through my solver (same seed):
$ bin/numberlink --generate=35x20 | bin/numberlink --tubes
Found a solution!
┌──┐bcd───┐┌──efg┌─┐i──────i┌─────j
│kka│└───┐││l┌─┘│hm│n────n┌o│┌────┐
│b──┘q──q│││l│┌r└┐│└─h┌──┐│t││uvvu│
└──┐w┌───┘d└e││xx│└──m│yy││t││└──┘│
┌─z│w│A────A┌┘└─r│s───┘BB││┌┘└p┌─┐│
│D┐└┐│┌────E│F──F│G──┐H┐┌┘││┌──┘IC│
└z└D│││JKL┌─┘┌──┐g┌─┐└G││N│j│┌─┐└┐│
P──┐a││││L│QQ│RR└┐│N└──┘s││┌┘│S│T││
U─┐│┌┘││└K└─┐└─┐V││└─────┘││┌┘││T││
WW│││X││┌──┐│Z0││M│┌──────┘││┌┘└┐││
1┐│││X│││23││Z0│└┐││┌────M┌┘││44│││
5│││└┐││Y││Y│┌─┘6││││┌───┐C┌┘│┌─┘│p
5││└P│││2┘└3││6─┘VH│││┌─┐│O┘S┘│99└I
┌┘│┌─┘││E┐!!│└───┐o┘│││"│└─┐O─┘$$┌%
│U┘│&&│└J│\\│(┐)┐└──┘│8││┌*└┐┌───┘+
└─1└─┐└──┘,┐│-└┐│(/:┌┘"┘││;;│%+───┘
┌─c<<│==┌─┐││└┐│)│/││8>>│*┌?│┌───┐#
│[──[└─┐│]││└┐│└─┘:┘│└──┘┌┘┌┘?┌─^││
└─┐_──_│f││└,│└────-│`──`│7┘^─┘┌─┘│
{{└────┘]┘└──┘|────|└───7└─────┘#─┘
I've tested replacing step (4) with a function that iteratively, randomly merges two neighboring paths. However it game much denser puzzles, and I already think the above is nearly too dense to be difficult.
Here is a list of problems I've generated of different size: https://github.com/thomasahle/numberlink/blob/master/puzzles/inputs3
The most straightforward way to create such a level is to find a way to solve it. This way, you can basically generate any random starting configuration and determine if it is a valid level by trying to have it solved. This will generate the most diverse levels.
And even if you find a way to generate the levels some other way, you'll still want to apply this solving algorithm to prove that the generated level is any good ;)
Brute-force enumerating
If the board has a size of NxN cells, and there are also N colours available, brute-force enumerating all possible configurations (regardless of wether they form actual paths between start and end nodes) would take:
N^2 cells total
2N cells already occupied with start and end nodes
N^2 - 2N cells for which the color has yet to be determined
N colours available.
N^(N^2 - 2N) possible combinations.
So,
For N=5, this means 5^15 = 30517578125 combinations.
For N=6, this means 6^24 = 4738381338321616896 combinations.
In other words, the number of possible combinations is pretty high to start with, but also grows ridiculously fast once you start making the board larger.
Constraining the number of cells per color
Obviously, we should try to reduce the number of configurations as much as possible. One way of doing that is to consider the minimum distance ("dMin") between each color's start and end cell - we know that there should at least be this much cells with that color. Calculating the minimum distance can be done with a simple flood fill or Dijkstra's algorithm.
(N.B. Note that this entire next section only discusses the number of cells, but does not say anything about their locations)
In your example, this means (not counting the start and end cells)
dMin(orange) = 1
dMin(red) = 1
dMin(green) = 5
dMin(yellow) = 3
dMin(blue) = 5
This means that, of the 15 cells for which the color has yet to be determined, there have to be at least 1 orange, 1 red, 5 green, 3 yellow and 5 blue cells, also making a total of 15 cells.
For this particular example this means that connecting each color's start and end cell by (one of) the shortest paths fills the entire board - i.e. after filling the board with the shortest paths no uncoloured cells remain. (This should be considered "luck", not every starting configuration of the board will cause this to happen).
Usually, after this step, we have a number of cells that can be freely coloured, let's call this number U. For N=5,
U = 15 - (dMin(orange) + dMin(red) + dMin(green) + dMin(yellow) + dMin(blue))
Because these cells can take any colour, we can also determine the maximum number of cells that can have a particular colour:
dMax(orange) = dMin(orange) + U
dMax(red) = dMin(red) + U
dMax(green) = dMin(green) + U
dMax(yellow) = dMin(yellow) + U
dMax(blue) = dMin(blue) + U
(In this particular example, U=0, so the minimum number of cells per colour is also the maximum).
Path-finding using the distance constraints
If we were to brute force enumerate all possible combinations using these color constraints, we would have a lot less combinations to worry about. More specifically, in this particular example we would have:
15! / (1! * 1! * 5! * 3! * 5!)
= 1307674368000 / 86400
= 15135120 combinations left, about a factor 2000 less.
However, this still doesn't give us the actual paths. so a better idea would be to a backtracking search, where we process each colour in turn and attempt to find all paths that:
doesn't cross an already coloured cell
Is not shorter than dMin(colour) and not longer than dMax(colour).
The second criteria will reduce the number of paths reported per colour, which causes the total number of paths to be tried to be greatly reduced (due to the combinatorial effect).
In pseudo-code:
function SolveLevel(initialBoard of size NxN)
{
foreach(colour on initialBoard)
{
Find startCell(colour) and endCell(colour)
minDistance(colour) = Length(ShortestPath(initialBoard, startCell(colour), endCell(colour)))
}
//Determine the number of uncoloured cells remaining after all shortest paths have been applied.
U = N^(N^2 - 2N) - (Sum of all minDistances)
firstColour = GetFirstColour(initialBoard)
ExplorePathsForColour(
initialBoard,
firstColour,
startCell(firstColour),
endCell(firstColour),
minDistance(firstColour),
U)
}
}
function ExplorePathsForColour(board, colour, startCell, endCell, minDistance, nrOfUncolouredCells)
{
maxDistance = minDistance + nrOfUncolouredCells
paths = FindAllPaths(board, colour, startCell, endCell, minDistance, maxDistance)
foreach(path in paths)
{
//Render all cells in 'path' on a copy of the board
boardCopy = Copy(board)
boardCopy = ApplyPath(boardCopy, path)
uRemaining = nrOfUncolouredCells - (Length(path) - minDistance)
//Recursively explore all paths for the next colour.
nextColour = NextColour(board, colour)
if(nextColour exists)
{
ExplorePathsForColour(
boardCopy,
nextColour,
startCell(nextColour),
endCell(nextColour),
minDistance(nextColour),
uRemaining)
}
else
{
//No more colours remaining to draw
if(uRemaining == 0)
{
//No more uncoloured cells remaining
Report boardCopy as a result
}
}
}
}
FindAllPaths
This only leaves FindAllPaths(board, colour, startCell, endCell, minDistance, maxDistance) to be implemented. The tricky thing here is that we're not searching for the shortest paths, but for any paths that fall in the range determined by minDistance and maxDistance. Hence, we can't just use Dijkstra's or A*, because they will only record the shortest path to each cell, not any possible detours.
One way of finding these paths would be to use a multi-dimensional array for the board, where
each cell is capable of storing multiple waypoints, and a waypoint is defined as the pair (previous waypoint, distance to origin). The previous waypoint is needed to be able to reconstruct the entire path once we've reached the destination, and the distance to origin
prevents us from exceeding the maxDistance.
Finding all paths can then be done by using a flood-fill like exploration from the startCell outwards, where for a given cell, each uncoloured or same-as-the-current-color-coloured neigbour is recursively explored (except the ones that form our current path to the origin) until we reach either the endCell or exceed the maxDistance.
An improvement on this strategy is that we don't explore from the startCell outwards to the endCell, but that we explore from both the startCell and endCell outwards in parallel, using Floor(maxDistance / 2) and Ceil(maxDistance / 2) as the respective maximum distances. For large values of maxDistance, this should reduce the number of explored cells from 2 * maxDistance^2 to maxDistance^2.
I think you'll want to do this in two steps. Step 1) find a set of non-intersecting paths that connect all your points, then 2) Grow/shift those paths to fill the entire board
My thoughts on Step 1 are to essentially perform Dijkstra like algorithm on all points simultaneously, growing together the paths. Similar to Dijkstra, I think you'll want to flood-fill out from each of your points, chosing which node to search next using some heuristic (My hunch says chosing points with the least degrees of freedom first, then by distance, might be a good one). Very differently from Dijkstra though I think we might be stuck with having to backtrack when we have multiple paths attempting to grow into the same node. (This could of course be fairly problematic on bigger maps, but might not be a big deal on small maps like the one you have above.)
You may also solve for some of the easier paths before you start the above algorithm, mainly to cut down on the number of backtracks needed. In specific, if you can make a trace between points along the edge of the board, you can guarantee that connecting those two points in that fashion would never interfere with other paths, so you can simply fill those in and take those guys out of the equation. You could then further iterate on this until all of these "quick and easy" paths are found by tracing along the borders of the board, or borders of existing paths. That algorithm would actually completely solve the above example board, but would undoubtedly fail elsewhere .. still, it would be very cheap to perform and would reduce your search time for the previous algorithm.
Alternatively
You could simply do a real Dijkstra's algorithm between each set of points, pathing out the closest points first (or trying them in some random orders a few times). This would probably work for a fair number of cases, and when it fails simply throw out the map and generate a new one.
Once you have Step 1 solved, Step 2 should be easier, though not necessarily trivial. To grow your paths, I think you'll want to grow your paths outward (so paths closest to walls first, growing towards the walls, then other inner paths outwards, etc.). To grow, I think you'll have two basic operations, flipping corners, and expanding into into adjacent pairs of empty squares.. that is to say, if you have a line like
.v<<.
v<...
v....
v....
First you'll want to flip the corners to fill in your edge spaces
v<<<.
v....
v....
v....
Then you'll want to expand into neighboring pairs of open space
v<<v.
v.^<.
v....
v....
v<<v.
>v^<.
v<...
v....
etc..
Note that what I've outlined wont guarantee a solution if one exists, but I think you should be able to find one most of the time if one exists, and then in the cases where the map has no solution, or the algorithm fails to find one, just throw out the map and try a different one :)
You have two choices:
Write a custom solver
Brute force it.
I used option (2) to generate Boggle type boards and it is VERY successful. If you go with Option (2), this is how you do it:
Tools needed:
Write a A* solver.
Write a random board creator
To solve:
Generate a random board consisting of only endpoints
while board is not solved:
get two endpoints closest to each other that are not yet solved
run A* to generate path
update board so next A* knows new board layout with new path marked as un-traversable.
At exit of loop, check success/fail (is whole board used/etc) and run again if needed
The A* on a 10x10 should run in hundredths of a second. You can probably solve 1k+ boards/second. So a 10 second run should get you several 'usable' boards.
Bonus points:
When generating levels for a IAP (in app purchase) level pack, remember to check for mirrors/rotations/reflections/etc so you don't have one board a copy of another (which is just lame).
Come up with a metric that will figure out if two boards are 'similar' and if so, ditch one of them.

How to find the best possible answer to a really large seeming problem?

First off, this is NOT a homework problem. I haven't had to do homework since 1988!
I have a list of words of length N
I have a max of 13 characters to choose from.
There can be multiples of the same letter
Given the list of words, which 13 characters would spell the most possible words. I can throw out words that make the problem harder to solve, for example:
speedometer has 4 e's in it, something MOST words don't have,
so I could toss that word due to a poor fit characteristic, or it might just
go away based on the algorithm
I've looked # letter distributions, I've built a graph of the words (letter by letter). There is something I'm missing, or this problem is a lot harder than I thought. I'd rather not totally brute force it if that is possible, but I'm down to about that point right now.
Genetic algorithms come to mind, but I've never tried them before....
Seems like I need a way to score each letter based upon its association with other letters in the words it is in....
It sounds like a hard combinatorial problem. You are given a dictionary D of words, and you can select N letters (possible with repeats) to cover / generate as many of the words in D as possible. I'm 99.9% certain it can be shown to be an NP-complete optimization problem in general (assuming possibly alphabet i.e. set of letters that contains more than 26 items) by reduction of SETCOVER to it, but I'm leaving the actual reduction as an exercise to the reader :)
Assuming it's hard, you have the usual routes:
branch and bound
stochastic search
approximation algorithms
Best I can come up with is branch and bound. Make an "intermediate state" data structure that consists of
Letters you've already used (with multiplicity)
Number of characters you still get to use
Letters still available
Words still in your list
Number of words still in your list (count of the previous set)
Number of words that are not possible in this state
Number of words that are already covered by your choice of letters
You'd start with
Empty set
13
{A, B, ..., Z}
Your whole list
N
0
0
Put that data structure into a queue.
At each step
Pop an item from the queue
Split into possible next states (branch)
Bound & delete extraneous possibilities
From a state, I'd generate possible next states as follows:
For each letter L in the set of letters left
Generate a new state where:
you've added L to the list of chosen letters
the least letter is L
so you remove anything less than L from the allowed letters
So, for example, if your left-over set is {W, X, Y, Z}, I'd generate one state with W added to my choice, {W, X, Y, Z} still possible, one with X as my choice, {X, Y, Z} still possible (but not W), one with Y as my choice and {Y, Z} still possible, and one with Z as my choice and {Z} still possible.
Do all the various accounting to figure out the new states.
Each state has at minimum "Number of words that are already covered by your choice of letters" words, and at maximum that number plus "Number of words still in your list." Of all the states, find the highest minimum, and delete any states with maximum higher than that.
No special handling for speedometer required.
I can't imagine this would be fast, but it'd work.
There are probably some optimizations (e.g., store each word in your list as an array of A-Z of number of occurrances, and combine words with the same structure: 2 occurrances of AB.....T => BAT and TAB). How you sort and keep track of minimum and maximum can also probably help things somewhat. Probably not enough to make an asymptotic difference, but maybe for a problem this big enough to make it run in a reasonable time instead of an extreme time.
Total brute forcing should work, although the implementation would become quite confusing.
Instead of throwing words like speedometer out, can't you generate the association graphs considering only if the character appears in the word or not (irrespective of the no. of times it appears as it should not have any bearing on the final best-choice of 13 characters). And this would also make it fractionally simpler than total brute force.
Comments welcome. :)
Removing the bounds on each parameter including alphabet size, there's an easy objective-preserving reduction from the maximum coverage problem, which is NP-hard and hard to approximate with a ratio better than (e - 1) / e ≈ 0.632 . It's fixed-parameter tractable in the alphabet size by brute force.
I agree with Nick Johnson's suggestion of brute force; at worst, there are only (13 + 26 - 1) choose (26 - 1) multisets, which is only about 5 billion. If you limit the multiplicity of each letter to what could ever be useful, this number gets a lot smaller. Even if it's too slow, you should be able to recycle the data structures.
I did not understand this completely "I have a max of 13 characters to choose from.". If you have a list of 1000 words, then did you mean you have to reduce that to just 13 chars?!
Some thoughts based on my (mis)understanding:
If you are only handling English lang words, then you can skip vowels because consonants are just as descriptive. Our brains can sort of fill in the vowels - a.k.a SMS/Twitter language :)
Perhaps for 1-3 letter words, stripping off vowels would loose too much info. But still:
spdmtr hs 4 's n t, smthng
MST wrds dn't hv, s cld
tss tht wrd d t pr ft
chrctrstc, r t mght jst g
wy bsd n th lgrthm
Stemming will cut words even shorter. Stemming first, then strip vowels. Then do a histogram....

Resources