Memory management for intentionally memory intensive applications - windows

Note: I am aware of the question Memory management in memory intensive application, however that question appears to be about applications that make frequent memory allocations, whereas my question is about applications intentionally designed to consume as much physical memory as is safe.
I have a server application that uses large amounts of memory in order to perform caching and other optimisations (think SQL Server). The application runs on a dedicated machine, and so can (and should) consume as much memory as it wants / is able to in order to speed up and increase throughput and response times without worry of impacting other applications on the system.
The trouble is that if memory usage is underestimated, or if load increases its possible to end up with nasty failures as memory allocations fail - in this situation obviously the best thing to do is to free up memory in order to prevent the failure at the expense of performance.
Some assumptions:
The application is running on a dedicated machine
The memory requirements of the application exceed the physical memory on the machine (that is, if additional memory was available to the application it would always be able to use that memory to in some way improve response times or throughput)
The memory is effectively managed in a way such that memory fragmentation is not an issue.
The application knows what memory can be safely freed, and what memory should be freed first for the least performance impact.
The app runs on a Windows machine
My question is - how should I handle memory allocations in such an application? In particular:
How can I predict whether or not a memory allocation will fail?
Should I leave a certain amount of memory free in order to ensure that core OS operations remain responsive (and don't in that way adversely impact the applications performance), and how can I find out how much memory that is?
The core objective is to prevent failures as a result of using too much memory, while at the same time using up as much memory as possible.
I'm a C# developer, however my hope is that the basic concepts for any such app are the same regardless of the language.

In linux, the memory usage percentage is divided into following levels.
0 - 30% - no swapping
30 - 60% - swap dirty pages only
60 - 90% - swap clean pages also based on LRU policy.
90% - Invoke OOM(Out of memory) killer and kill the process consuming maximum memory.
check this - http://linux-mm.org/OOM_Killer
In think windows might have similar policy, so you can check the memory stats and make sure you never get to the max threshold.
One way to stop consuming more memory is to go to sleep and give more time for memory cleanup threads to run.

That is a very good question, and bound to be subjective as well, because the very nature of the fundamental of C# is that all memory management is done by the runtime, i.e. Garbage Collector. The Garbage Collector is a non-deterministic entity that manages and sweeps the memory for reclaiming, depending on how often the memory gets fragmented, the GC will kick in hence to know in advance is not easy thing to do.
To properly manage the memory sounds tedious but common sense applies, such as the using clause to ensure an object gets disposed. You could put in a single handler to trap the OutOfMemory Exception but that is an awkward way, since if the program has run out of memory, does the program just seize up, and bomb out, or should it wait patiently for the GC to kick in, again determining that is tricky.
The load of the system can adversely affect the GC's job, almost to a point of a Denial of Service, where everything just grind to a halt, again, since the specifications of the machine, or what is the nature of that machine's job is unknown, I cannot answer it fully, but I'll assume it has loads of RAM..
In essence, while an excellent question, I think you should not worry about it and leave it to the .NET CLR to handle the memory allocation/fragmentation as it seems to do a pretty good job.
Hope this helps,
Best regards,
Tom.

Your question reminds me of an old discussion "So what's wrong with 1975 programming ?". The architect of varnish-cache argues, that instead of telling the OS to get out of the way and manage all memory yourself, you should rather cooperate with the OS and let it understand what you intend to do with memory.
For example, instead of simply reading data from disk, you should use memory-mapped files. This allows the OS to apply its LRU algorithm to write-back data to disk when memory becomes scarce. At the same time, as long as there is enough memory, your data will stay in memory. Thus, your application may potentially use all memory, without risking getting killed.

Related

What is Go's memory footprint

This article on Wired about Dropbox's switch from Go to Rust for its MagicPocket product says
“memory footprint”—the amount of computer memory it demands while running Magic Pocket—was too high for the massive storage systems the company was trying to build.
Question(s): What exactly is Go's "memory footprint" (where does it come from, how is it measured etc, is it related to garbage collection,binary size, is it something that will always be high) and why is it higher than Rust's?
"It had a high memory footprint" is just another way to say their program used a lot of RAM. It is related to garbage collection in that GC'd programs only free memory periodically (because each GC cycle takes CPU time), whereas manual memory management tends to free memory more or less as soon as it's unused.
The downside of manual memory management is either that mistakes can cause crashes and security bugs (as in C++, where you can accidentally use a freed variable after the memory has been reused for something else) or you have to put effort into expressing the exact lifetimes of each variable, reference, etc. in your code so that the compiler can check that they're being used in a valid way (as in Rust, where you interact with the borrow checker to root out potentially incorrect uses of memory in your code).
The sentence in the Wired story makes it sound like "memory footprint" is a simple measurable quantity you could assign to any language (and your question takes that idea to its logical conclusion). It's not quite that simple. In different languages, doing different things has different costs in memory, performance, and so on, and you kind of have to understand languages'/runtimes' details to know how the language will work with a given sort of program.
For example, CPython has reference counting, and that frees unused memory sooner but at the cost of having to store and update reference counts. Java has, on the one hand, things like object headers that add a certain amount of memory overhead per object, but uses some tricks to speed garbage collection (like generational collection) that Go doesn't (yet). Or in Go, you might try to reduce the memory footprint of a program by recycling memory with free pools and adjusting GOGC to free unused memory more often as kostya said.
The bigger point there is not that those specific details I listed are super important, but that there can be a lot of details to consider other than "higher memory footprint" or "lower memory footprint."
So: "memory footprint" refers to the amount of RAM a particular program with a particular workload takes up. Bigger picture, it's one factor in a large set of tradeoffs that folks like you or I or Dropbox's team have to navigate.
The garbage collector requires free memory to be available to work efficiently. By default Go application needs roughly twice as much memory as size of live data set (memory occupied by application objects).
This can be tuned using GOGC environment variable. By setting it to a lower value the application will request less memory from OS but GC will run more frequently therefore will use more CPU resources. By setting it to a higher value the GC will run less frequently and use less resources but the application will have higher "memory footprint".
This is general idea but the exact memory, performance requirements and GOGC effect are highly application specific.

If we have infinite memory, then do we still be needing paging?

Paging creates illusion that each process has infinite RAM by moving pages to and from disk. So if we have infinite memory(in some hypothetical situation), do we still need Paging? If yes, then why? I faced this question in an interview.
Assuming that "infinite memory" means infinite randomly accessable memory, or RAM, we will still need paging. Although paging is often associated with the ability to swap pages in and out of RAM to a hard disk to conserve memory, this is merely one aspect of paging. Here are some other reasons to have paging:
Security. Paging is a method to enforce operating system security and memory protection by ensuring that a processes cannot access the memory of another process and that it cannot modify the resident kernel.
Multitasking. Paging aids in multitasking by virtualizing the memory space, that is, address 0xFOO in Process A can be something completely different than 0xFOO in Process B
Memory Allocation. Paging aids in memory allocation by reducing fragmentation and ensuring RAM is only allocated when accessed. What this means is that although a process needs, suppose, 100MB of continuous RAM space, this need not be continuous physically. Additionally, when a program requests 100MB of space, the operating system will tell the program it's safe to use that 100MB of space, yet it will not be actually allocated until the program uses that space to its fullest.
Admittedly, the latter would not be entirely necessary if one had infinite RAM, nonetheless; it is always good practice to be eifficient even when we are not resource constrained. It also demonstrates a use for paging that is sometimes not considered.
This is a philosophical question, so here's a philosophical answer :)
The trick in this question is that you make assumptions about the infinite memory. It's ok to say "no, no need to use paging, BUT". And follow by:
The infinite memory has to be accessible within the acceptable time limit for memory access. If it's not (because infinity takes a lot of space, and the memory sits farther away from the processing unit), there's no difference between it and the disk, both are not satisfying the readily available memory requirement, which is what caching via pages tries to solve.
Take for example Amazon's S3, which for all practical purposes is infinite. If you can rely on S3 to satisfy all your memory requirements in the sense that when you need something fetched within time x you can fetch it from S3, there's no need to page anything or even hold it in "local" memory. Just get it from S3 whenever you need it, as many times as you need it. (Obviously this would have other repercussions like cost and network, but let's ignore that for now).
Of course you can always say that optimally you want memory access to be as fast as possible, and "fast enough" is probably slower than "fastest", so local memory access would give you better performance etc.
And last, if I had to envision a memory which is infinite and has the same access time no matter how "far" the memory unit is from the fetching unit, I would have to envision a sphere where the processing unit is in the middle, so that you can't argue that one memory unit is slower than the other because of the distance. Otherwise you could say that paging would be done internally within the memory so that access is faster to the memory units that are most used (or whatever algorithm you choose to use).

is the jvm faster under load?

Lots of personal experience, anecdotal evidence, and some rudimentary analysis suggests that a Java server (running, typically, Oracle's 1.6 JVM) has faster response times when it's under a decent amount of load (only up to a point, obviously).
I don't think this is purely hotspot, since response times slow down a bit again when the traffic dies down.
In a number of cases we can demonstrate this by averaging response times from server logs ... in some cases it's as high as 20% faster, on average, and with a smaller standard deviation.
Can anyone explain why this is so? Is it likely a genuine effect, or are the averages simply misleading? I've seen this for years now, through several jobs, and tend to state it as a fact, but have no explanation for why.
Thanks,
Eric
EDIT a fairly large edit for wording and adding more detail throughout.
A few thoughts:
Hotspot kicks in when a piece of code is being executed significantly more than other pieces (it's the hot spot of the program). This makes that piece of code significantly faster (for the normal path) from that point forward. The rate of call after the hotspot compilation is not important, so I don't think this is causing the effect you are mentioning.
Is the effect real? It's very easy to trick yourself with statistics. Not saying you are, but be sure that all your runs are included in the result, and that all other effects (such as other programs, activity, and your monitoring program are the same in all cases. I have more than one had my monitoring program, such as top, cause a difference in behaviour). On one occasion, the performance of the application went up appreciably when the caches warmed up on the database - there was memory pressure from other applications on the same DB instance.
The Operating System and/or CPU may well be involved. The OS and CPU both actively and passively do things to improve the responsiveness of the main program as it moves from being mainly running to being mainly waiting for I/O and vice versa, including:
OS paging memory to disk while it's not being used, and back to RAM when the program is running
OS will cache frequently used disk blocks, which again may improve the application performance
CPU instruction and memory caches fill with the active program's instruction and data
Java applications particularly sensitive to memory paging effects because:
A typical Java application server will pre-allocate almost all free memory to Java. The large memory makes the application inherently more sensitive to memory effects
The generational garbage collector used to manage Java memory ends up creating new objects over a lot of pages, so each request to the application will need more page requests than in other languages. (this is true principally for 'new' objects that have not been through many garbage collections. Objects promoted to the permanent generation are actually very compactly stored)
As most available physical memory is allocated on the system, there is always a pressure on memory, and the largest, least recently run application is a perfect candidate to be pages out.
With these considerations, there is much more probability that there will be page misses and therefore a performance hit than environments with smaller memory requirements. These will be particularly manifest after Java has been idle for some time.
If you use Solaris or Mac, the excellent dTrace can trace memory and disk paging specific to an application. The JVM has numerous dTrace hooks that can be used as triggers to start and stop page monitoring.
On Solaris, you can use large memory pages (even over 1GB in size) and pin them to RAM so they will never be paged out. This should eliminate the memory page problem stated above. Remember to leave a good chunk of free memory for disk caching and for other system/maintenance/backup/management apps. I am sure that other OSes support similar features.
TL/DR: The currently running program in modern operating systems will appear to run faster after a few seconds as the OS brings the program and data pages back from disk, places frequently used disk pages in disk cache and the OS instruction and data caches will tend to be "warmer" for the main program. This effect is not unique to the JVM but is more visible due to the memory requirements of typical Java applications and the garbage collection memory model.

many-core CPU's: Programming techniques to avoid disappointing scalability

We've just bought a 32-core Opteron machine, and the speedups we get are a little disappointing: beyond about 24 threads we see no speedup at all (actually gets slower overall) and after about 6 threads it becomes significantly sub-linear.
Our application is very thread-friendly: our job breaks down into about 170,000 little tasks which can each be executed separately, each taking 5-10 seconds. They all read from the same memory-mapped file of size about 4Gb. They make occasional writes to it, but it might be 10,000 reads to each write - we just write a little bit of data at the end of each of the 170,000 tasks. The writes are lock-protected. Profiling shows that the locks are not a problem. The threads use a lot of JVM memory each in non-shared objects and they make very little access to shared JVM objects and of that, only a small percentage of accesses involve writes.
We're programming in Java, on Linux, with NUMA enabled. We have 128Gb RAM. We have 2 Opteron CPU's (model 6274) of 16 cores each. Each CPU has 2 NUMA nodes. The same job running on an Intel quad-core (i.e. 8 cores) scaled nearly linearly up to 8 threads.
We've tried replicating the read-only data to have one-per-thread, in the hope that most lookups can be local to a NUMA node, but we observed no speedup from this.
With 32 threads, 'top' shows the CPU's 74% "us" (user) and about 23% "id" (idle). But there are no sleeps and almost no disk i/o. With 24 threads we get 83% CPU usage. I'm not sure how to interpret 'idle' state - does this mean 'waiting for memory controller'?
We tried turning NUMA on and off (I'm referring to the Linux-level setting that requires a reboot) and saw no difference. When NUMA was enabled, 'numastat' showed only about 5% of 'allocation and access misses' (95% of cache misses were local to the NUMA node). [Edit:] But adding "-XX:+useNUMA" as a java commandline flag gave us a 10% boost.
One theory we have is that we're maxing out the memory controllers, because our application uses a lot of RAM and we think there are a lot of cache misses.
What can we do to either (a) speed up our program to approach linear scalability, or (b) diagnose what's happening?
Also: (c) how do I interpret the 'top' result - does 'idle' mean 'blocked on memory controllers'? and (d) is there any difference in the characteristics of Opteron vs Xeon's?
I also have a 32 core Opteron machine, with 8 NUMA nodes (4x6128 processors, Mangy Cours, not Bulldozer), and I have faced similar issues.
I think the answer to your problem is hinted at by the 2.3% "sys" time shown in top. In my experience, this sys time is the time the system spends in the kernel waiting for a lock. When a thread can't get a lock it then sits idle until it makes its next attempt. Both the sys and idle time are a direct result of lock contention. You say that your profiler is not showing locks to be the problem. My guess is that for some reason the code causing the lock in question is not included in the profile results.
In my case a significant cause of lock contention was not the processing I was actually doing but the work scheduler that was handing out the individual pieces of work to each thread. This code used locks to keep track of which thread was doing which piece of work. My solution to this problem was to rewrite my work scheduler avoiding mutexes, which I have read do not scale well beyond 8-12 cores, and instead use gcc builtin atomics (I program in C on Linux). Atomic operations are effectively a very fine grained lock that scales much better with high core counts. In your case if your work parcels really do take 5-10s each it seems unlikely this will be significant for you.
I also had problems with malloc, which suffers horrible lock issues in high core count situations, but I can't, off the top of my head, remember whether this also led to sys & idle figures in top, or whether it just showed up using Mike Dunlavey's debugger profiling method (How can I profile C++ code running in Linux?). I suspect it did cause sys & idle problems, but I draw the line at digging through all my old notes to find out :) I do know that I now avoid runtime mallocs as much as possible.
My best guess is that some piece of library code you are using implements locks without your knowledge, is not included in your profiling results, and is not scaling well to high core-count situations. Beware memory allocators!
I'm sure the answer will lie in a consideration of the hardware architecture. You have to think of multi core computers as if they were individual machines connected by a network. In fact that's all that Hypertransport and QPI are.
I find that to solve these scalability problems you have to stop thinking in terms of shared memory and start adopting the philosophy of Communicating Sequential Processes. It means thinking very differently, ie imagine how you would write the software if your hardware was 32 single core machines connected by a network. Modern (and ancient) CPU architectures are not designed to give unfettered scaling of the sort you're after. They are designed to allow many different processes to get on with processing their own data.
Like everything else in computing these things go in fashions. CSP dates back to the 1970s, but the very modern and Java derived Scala is a popular embodiment of the concept. See this section on Scala concurrency on Wikipedia.
What the philosophy of CSP does is force you to design a data distribution scheme that fits your data and the problem you're solving. That's not necessarily easy, but if you manage it then you have a solution that will scale very well indeed. Scala may make it easier to develop.
Personally I do everything in CSP and in C. It's allowed me to develop a signal processing application that scales perfectly linearly from 8 cores to several thousand cores (the limit being how big my room is).
The first thing you're going to have to do is actually use NUMA. It isn't a magic setting that you turn on, you have to exploit it in your software's architecture. I don't know about Java, but in C one would bind a memory allocation to a specific core's memory controller (aka memory affinity), and similarly for threads (core affinity) in cases where the OS doesn't get the hint.
I presume that your data doesn't break down into 32 neat, discrete chunks? It's difficult to give advice without knowing exactly the data flows implicit in your program. But think about it in terms of data flow. Draw it out even; Data Flow Diagrams are useful for this (another ancient graphical formal notation). If your picture shows all your data going through a single object (eg through a single memory buffer) then it's going to be slow...
I assume you have optimized your locks, and synchronization made a minimum. In such a case, it still depends a lot on what libraries you are using to program in parallel.
One issue that can happen even if you have no synchronization issue, is memory bus congestion. This is very nasty and difficult to get rid of.
All I can suggest is somehow make your tasks bigger and create fewer tasks. This depends highly on the nature of your problem. Ideally you want as many tasks as the number of cores/threads, but this is not easy (if possible) to achieve.
Something else that can help is to give more heap to your JVM. This will reduce the need to run Garbage Collector frequently, and speeds up a little.
does 'idle' mean 'blocked on memory controllers'
No. You don't see that in top. I mean if the CPU is waiting for memory access, it will be shown as busy. If you have idle periods, it is either waiting for a lock, or for IO.
I'm the Original Poster. We think we've diagnosed the issue, and it's not locks, not system calls, not memory bus congestion; we think it's level 2/3 CPU cache contention.
To reiterate, our task is embarrassingly parallel so it should scale well. However, one thread has a large amount of CPU cache it can access, but as we add more threads, the amount of CPU cache each process can access gets lower and lower (the same amount of cache divided by more processes). Some levels on some architectures are shared between cores on a die, some are even shared between dies (I think), and it may help to get "down in the weeds" with the specific machine you're using, and optimise your algorithms, but our conclusion is that there's not a lot we can do to achieve the scalability we thought we'd get.
We identified this as the cause by using 2 different algorithms. The one which accesses more level 2/3 cache scales much worse than the one which does more processing with less data. They both make frequent accesses to the main data in main memory.
If you haven't tried that yet: Look at hardware-level profilers like Oracle Studio has (for CentOS, Redhat, and Oracle Linux) or if you are stuck with Windows: Intel VTune. Then start looking at operations with suspiciously high clocks per instruction metrics. Suspiciously high mean a lot higher than the same code on a single-numa, single-L3-cache machine (like current Intel desktop CPUs).

Memory Allocation/Deallocation Bottleneck?

How much of a bottleneck is memory allocation/deallocation in typical real-world programs? Answers from any type of program where performance typically matters are welcome. Are decent implementations of malloc/free/garbage collection fast enough that it's only a bottleneck in a few corner cases, or would most performance-critical software benefit significantly from trying to keep the amount of memory allocations down or having a faster malloc/free/garbage collection implementation?
Note: I'm not talking about real-time stuff here. By performance-critical, I mean stuff where throughput matters, but latency doesn't necessarily.
Edit: Although I mention malloc, this question is not intended to be C/C++ specific.
It's significant, especially as fragmentation grows and the allocator has to hunt harder across larger heaps for the contiguous regions you request. Most performance-sensitive applications typically write their own fixed-size block allocators (eg, they ask the OS for memory 16MB at a time and then parcel it out in fixed blocks of 4kb, 16kb, etc) to avoid this issue.
In games I've seen calls to malloc()/free() consume as much as 15% of the CPU (in poorly written products), or with carefully written and optimized block allocators, as little as 5%. Given that a game has to have a consistent throughput of sixty hertz, having it stall for 500ms while a garbage collector runs occasionally isn't practical.
Nearly every high performance application now has to use threads to exploit parallel computation. This is where the real memory allocation speed killer comes in when writing C/C++ applications.
In a C or C++ application, malloc/new must take a lock on the global heap for every operation. Even without contention locks are far from free and should be avoided as much as possible.
Java and C# are better at this because threading was designed in from the start and the memory allocators work from per-thread pools. This can be done in C/C++ as well, but it isn't automatic.
First off, since you said malloc, I assume you're talking about C or C++.
Memory allocation and deallocation tend to be a significant bottleneck for real-world programs. A lot goes on "under the hood" when you allocate or deallocate memory, and all of it is system-specific; memory may actually be moved or defragmented, pages may be reorganized--there's no platform-independent way way to know what the impact will be. Some systems (like a lot of game consoles) also don't do memory defragmentation, so on those systems, you'll start to get out-of-memory errors as memory becomes fragmented.
A typical workaround is to allocate as much memory up front as possible, and hang on to it until your program exits. You can either use that memory to store big monolithic sets of data, or use a memory pool implementation to dole it out in chunks. Many C/C++ standard library implementations do a certain amount of memory pooling themselves for just this reason.
No two ways about it, though--if you have a time-sensitive C/C++ program, doing a lot of memory allocation/deallocation will kill performance.
In general the cost of memory allocation is probably dwarfed by lock contention, algorithmic complexity, or other performance issues in most applications. In general, I'd say this is probably not in the top-10 of performance issues I'd worry about.
Now, grabbing very large chunks of memory might be an issue. And grabbing but not properly getting rid of memory is something I'd worry about.
In Java and JVM-based languages, new'ing objects is now very, very, very fast.
Here's one decent article by a guy who knows his stuff with some references at the bottom to more related links:
http://www.ibm.com/developerworks/java/library/j-jtp09275.html
A Java VM will claim and release memory from the operating system pretty much indepdently of what the application code is doing. This allows it to grab and release memory in large chunks, which is hugely more efficient than doing it in tiny individual operations, as you get with manual memory management.
This article was written in 2005, and JVM-style memory management was already streets ahead. The situation has only improved since then.
Which language boasts faster raw
allocation performance, the Java
language, or C/C++? The answer may
surprise you -- allocation in modern
JVMs is far faster than the best
performing malloc implementations. The
common code path for new Object() in
HotSpot 1.4.2 and later is
approximately 10 machine instructions
(data provided by Sun; see Resources),
whereas the best performing malloc
implementations in C require on
average between 60 and 100
instructions per call (Detlefs, et.
al.; see Resources). And allocation
performance is not a trivial component
of overall performance -- benchmarks
show that many real-world C and C++
programs, such as Perl and
Ghostscript, spend 20 to 30 percent of
their total execution time in malloc
and free -- far more than the
allocation and garbage collection
overhead of a healthy Java
application.
In Java (and potentially other languages with a decent GC implementation) allocating an object is very cheap. In the SUN JVM it only needs 10 CPU Cycles. A malloc in C/c++ is much more expensive, just because it has to do more work.
Still even allocation objects in Java is very cheap, doing so for a lot of users of a web application in parallel can still lead to performance problems, because more Garbage Collector runs will be triggered.
Therefore there are those indirect costs of an allocation in Java caused by the deallocation done by the GC. These costs are difficult to quantify because they depend very much on your setup (how much memory do you have) and your application.
Allocating and releasing memory in terms of performance are relatively costly operations. The calls in modern operating systems have to go all the way down to the kernel so that the operating system is able to deal with virtual memory, paging/mapping, execution protection etc.
On the other side, almost all modern programming languages hide these operations behind "allocators" which work with pre-allocated buffers.
This concept is also used by most applications which have a focus on throughput.
I know I answered earlier, however, that was ananswer to the other answer's, not to your question.
To speak to you directly, if I understand correctly, your performance use case criteria is throughput.
This to me, means's that you should be looking almost exclusivly at NUMA aware allocators.
None of the earlier references; IBM JVM paper, Microquill C, SUN JVM. Cover this point so I am highly suspect of their application today, where, at least on the AMD ABI, NUMA is the pre-eminent memory-cpu governer.
Hands down; real world, fake world, whatever world... NUMA aware memory request/use technologies are faster. Unfortunately, I'm running Windows currently, and I have not found the "numastat" which is available in linux.
A friend of mine has written about this in depth in his implmentation for the FreeBSD kernel.
Dispite me being able to show at-hoc, the typically VERY large amount of local node memory requests on top of the remote node (underscoring the obvious performance throughput advantage), you can surly benchmark yourself, and that would likely be what you need todo as your performance charicterisitc is going to be highly specific.
I do know that in a lot of ways, at least earlier 5.x VMWARE faired rather poorly, at that time at least, for not taking advantage of NUMA, frequently demanding pages from the remote node. However, VM's are a very unique beast when it comes to memory compartmentailization or containerization.
One of the references I cited is to Microsoft's API implmentation for the AMD ABI, which has NUMA allocation specialized interfaces for user land application developers to exploit ;)
Here's a fairly recent analysis, visual and all, from some browser add-on developers who compare 4 different heap implmentations. Naturally the one they developed turns out on top (odd how the people who do the testing often exhibit the highest score's).
They do cover in some ways quantifiably, at least for their use case, what the exact trade off is between space/time, generally they had identified the LFH (oh ya and by the way LFH is simply a mode apparently of the standard heap) or similarly designed approach essentially consumes signifcantly more memory off the bat however over time, may wind up using less memory... the grafix are neat too...
I would think however that selecting a HEAP implmentation based on your typical workload after you well understand it ;) is a good idea, but to well understand your needs, first make sure your basic operations are correct before you optimize these odds and ends ;)
This is where c/c++'s memory allocation system works the best. The default allocation strategy is OK for most cases but it can be changed to suit whatever is needed. In GC systems there's not a lot you can do to change allocation strategies. Of course, there is a price to pay, and that's the need to track allocations and free them correctly. C++ takes this further and the allocation strategy can be specified per class using the new operator:
class AClass
{
public:
void *operator new (size_t size); // this will be called whenever there's a new AClass
void *operator new [] (size_t size); // this will be called whenever there's a new AClass []
void operator delete (void *memory); // if you define new, you really need to define delete as well
void operator delete [] (void *memory);define delete as well
};
Many of the STL templates allow you to define custom allocators as well.
As with all things to do with optimisation, you must first determine, through run time analysis, if memory allocation really is the bottleneck before writing your own allocators.
According to MicroQuill SmartHeap Technical Specification, "a typical application [...] spends 40% of its total execution time on managing memory". You can take this figure as an upper bound, i personally feel that a typical application spends more like 10-15% of execution time allocating/deallocating memory. It rarely is a bottleneck in single-threaded application.
In multithreaded C/C++ applications standard allocators become an issue due to lock contention. This is where you start to look for more scalable solutions. But keep in mind Amdahl's Law.
Pretty much all of you are off base if you are talking about the Microsoft heap. Syncronization is effortlessly handled as is fragmentation.
The current perferrred heap is the LFH, (LOW FRAGMENTATION HEAP), it is default in vista+ OS's and can be configured on XP, via gflag, with out much trouble
It is easy to avoid any locking/blocking/contention/bus-bandwitth issues and the lot with the
HEAP_NO_SERIALIZE
option during HeapAlloc or HeapCreate. This will allow you to create/use a heap without entering into an interlocked wait.
I would reccomend creating several heaps, with HeapCreate, and defining a macro, perhaps, mallocx(enum my_heaps_set, size_t);
would be fine, of course, you need realloc, free also to be setup as appropiate. If you want to get fancy, make free/realloc auto-detect which heap handle on it's own by evaluating the address of the pointer, or even adding some logic to allow malloc to identify which heap to use based on it's thread id, and building a heierarchy of per-thread heaps and shared global heap's/pools.
The Heap* api's are called internally by malloc/new.
Here's a nice article on some dynamic memory management issues, with some even nicer references. To instrument and analyze heap activity.
Others have covered C/C++ so I'll just add a little information on .NET.
In .NET heap allocation is generally really fast, as it it just a matter of just grabbing the memory in the generation zero part of the heap. Obviously this cannot go on forever, which is where garbage collection comes in. Garbage collection may affect the performance of your application significantly since user threads must be suspended during compaction of memory. The fewer full collects, the better.
There are various things you can do to affect the workload of the garbage collector in .NET. Generally if you have a lot of memory reference the garbage collector will have to do more work. E.g. by implementing a graph using an adjacency matrix instead of references between nodes the garbage collector will have to analyze fewer references.
Whether that is actually significant in your application or not depends on several factors and you should profile the application with actual data before turning to such optimizations.

Resources