Convert rounded decimal to (approximate) radical value? - algorithm

I've made a lot of random math programs to help me with my homework (synthetic division being the most fun) and now I'm wanting to reverse a radical expression.
For instance, in my handy TI calculator I get
.2360679775
Well, I want to convert that number to it's equivalent irrational expression, which is
sqrt(5)-2
I realize I could brute force it... but that takes out the fun, and isn't nearly so easy when you consider the significant round-off error of floating point.
So how would you do it? Is there is a trivial algorithm?

Inverse Symbolic Calculator
(I originally linked to this which seems to be gone.)

Well, your example hasn't actually transformed the input to the equivalent irrational expression, but to an equivalent irrational expression. As the Inverse Symbolic Calculator indicates, there are many candidate irrational expressions within a tolerance of the decimal number in your example, and there will be just as many irrationals within any degree of tolerance of any decimal number you specify. It's all to do with the density of irrationals along the number line.
So to answer your questions:
I would limit myself to a number of terms such as sqrt(2), sqrt(3), sqrt(small prime numbers), e, pi, and integers, plus rationals with small prime denominators and approximate the decimals with a few terms based on those plus the four basic arithmetical operators;
Is this algorithm trivial ? You decide. In general, though, I think it will be impossible to find an algorithm for determining a canonical representation of any decimal fraction as a series of irrational terms and integers, for the simple reason that no such canonical representation exists.
But then, my real and irrational maths is very rusty, I look forward to proofs that I am wrong and counter-examples.

Related

Ordering equations in the face of sometimes-unordered terms

Superposition calculus is used for reasoning with equations; it reduces the size of the search space by applying an order to equations, based on an ordering of terms.
A suitable ordering of terms, such as Knuth-Bendix, must sometimes answer 'unordered'. For example, f(x) vs f(y) where x and y are variables; a suitable order must be stable under substitution of terms for variables, so no matter which answer you might give for f(x) vs f(y) (less, same, greater), some substitution of terms for the two variables, would turn out to be inconsistent with the initial answer. In this domain, comparison needs a fourth possible answer, 'unordered'.
Superposition calculus orders equations relative to each other, based on the constituent terms and the polarity. There are ways of constructing this based on the multiset extension of term order, but perhaps the simplest correct algorithm is:
Compare the larger terms; if they are unequal, that's the answer.
Compare the polarities; if they are unequal, negative is greater than positive.
Compare the smaller terms.
It is tempting to implement this by first sorting each equation, larger term first, then implementing the above algorithm directly. The problem is that each equation may not have a larger term; it is quite possible that the component terms of one or both equations are unordered relative to each other, so a correct algorithm for comparing equations, must take that into account.
This could be derived from first principles by going through all the possibilities, but it also looks like there would be many opportunities to make a subtle error that would take a while to track down.
Is there a known/canonical algorithm already worked out, for comparing equations in this context?

fast algorithm for computing 1/d?(SRT, goldsmidt, newton raphson,...)

I want to find a fast algorithm for computing 1/d , where d is double ( albeit it can be converted to integer) what is the best algorithm of many algorithms(SRT , goldschmidt,newton raphson, ...)?I'm writing my program in c language.
thanks in advance.
The fastest program is: double result = 1 / d;
CPU:s already use a root finding iterative algorithm like the ones you describe, to find the reciprocal 1/d. So you should find it difficult to beat it using a software implementation of the same algorithm.
If you have few/known denominators then try a lookup table. This is the usual approach for even slower functions such as trig functions.
Otherwise: just compute 1/d. It will be the fastest you can do. And there is an endless list of things you can do to speed up arithmetic if you have to
use 32 bit (single) instead of 64bit (double) precision. FP Division on takes a number of cycles proportional to the number of bits.
vectorize the operations. For example I believe you can compute four 32bit float divisions in parallel with SSE2, or even more in parallel by doing it on the GPU.
I've asked it from someone and I get my answer:
So, you can't add a hardware divider to the FPGA then? Or fast reciprocal support?
Anyway it depends. Does it have fast multiplication? If not, well, that's a problem, you could only implement the slow methods then.
If you have fast multiplication and IEEE floats, you can use the weird trick I linked to in my previous post with a couple of refinement steps. That's really just Newton–Raphson division with a simpler calculation for the initial approximation (but afaik it still only takes 3 refinements for single-precision floats, just like the regular initial approximation). Fast reciprocal support works that way too - give a fast initial approximation (handling the exponent right and getting significant bits from a lookup table, if you get 12 significant bits that way you only need one refinement step for single-precision or, 13 are enough to get 2 steps for double-precision) and optionally have instructions that help implement the refinement step (like AMD's PFRCPIT1 and PFRCPIT2), for example to calculate Y = (1 - D*X) and to calculate X + X * Y.
Even without those tricks Newton–Raphson division is still not bad, with the linear approximation it takes only 4 refinements for double-precision floats, but it also takes some annoying exponent adjustments to get in the right range first (in hardware that wouldn't be half as annoying).
Goldschmidt division is, afaik, roughly equivalent in performance and might have a slightly less complex implementation. It's really the same sort of deal - trickery with the exponent to get in the right range, the "2 - something" estimation trick (which is rearranged in Newton-Raphson division, but it's really the same thing), and doing the refinement step until all the bits are right. It just looks a little different.

How do I determine whether my calculation of pi is accurate?

I was trying various methods to implement a program that gives the digits of pi sequentially. I tried the Taylor series method, but it proved to converge extremely slowly (when I compared my result with the online values after some time). Anyway, I am trying better algorithms.
So, while writing the program I got stuck on a problem, as with all algorithms: How do I know that the n digits that I've calculated are accurate?
Since I'm the current world record holder for the most digits of pi, I'll add my two cents:
Unless you're actually setting a new world record, the common practice is just to verify the computed digits against the known values. So that's simple enough.
In fact, I have a webpage that lists snippets of digits for the purpose of verifying computations against them: http://www.numberworld.org/digits/Pi/
But when you get into world-record territory, there's nothing to compare against.
Historically, the standard approach for verifying that computed digits are correct is to recompute the digits using a second algorithm. So if either computation goes bad, the digits at the end won't match.
This does typically more than double the amount of time needed (since the second algorithm is usually slower). But it's the only way to verify the computed digits once you've wandered into the uncharted territory of never-before-computed digits and a new world record.
Back in the days where supercomputers were setting the records, two different AGM algorithms were commonly used:
Gauss–Legendre algorithm
Borwein's algorithm
These are both O(N log(N)^2) algorithms that were fairly easy to implement.
However, nowadays, things are a bit different. In the last three world records, instead of performing two computations, we performed only one computation using the fastest known formula (Chudnovsky Formula):
This algorithm is much harder to implement, but it is a lot faster than the AGM algorithms.
Then we verify the binary digits using the BBP formulas for digit extraction.
This formula allows you to compute arbitrary binary digits without computing all the digits before it. So it is used to verify the last few computed binary digits. Therefore it is much faster than a full computation.
The advantage of this is:
Only one expensive computation is needed.
The disadvantage is:
An implementation of the Bailey–Borwein–Plouffe (BBP) formula is needed.
An additional step is needed to verify the radix conversion from binary to decimal.
I've glossed over some details of why verifying the last few digits implies that all the digits are correct. But it is easy to see this since any computation error will propagate to the last digits.
Now this last step (verifying the conversion) is actually fairly important. One of the previous world record holders actually called us out on this because, initially, I didn't give a sufficient description of how it worked.
So I've pulled this snippet from my blog:
N = # of decimal digits desired
p = 64-bit prime number
Compute A using base 10 arithmetic and B using binary arithmetic.
If A = B, then with "extremely high probability", the conversion is correct.
For further reading, see my blog post Pi - 5 Trillion Digits.
Undoubtedly, for your purposes (which I assume is just a programming exercise), the best thing is to check your results against any of the listings of the digits of pi on the web.
And how do we know that those values are correct? Well, I could say that there are computer-science-y ways to prove that an implementation of an algorithm is correct.
More pragmatically, if different people use different algorithms, and they all agree to (pick a number) a thousand (million, whatever) decimal places, that should give you a warm fuzzy feeling that they got it right.
Historically, William Shanks published pi to 707 decimal places in 1873. Poor guy, he made a mistake starting at the 528th decimal place.
Very interestingly, in 1995 an algorithm was published that had the property that would directly calculate the nth digit (base 16) of pi without having to calculate all the previous digits!
Finally, I hope your initial algorithm wasn't pi/4 = 1 - 1/3 + 1/5 - 1/7 + ... That may be the simplest to program, but it's also one of the slowest ways to do so. Check out the pi article on Wikipedia for faster approaches.
You could use multiple approaches and see if they converge to the same answer. Or grab some from the 'net. The Chudnovsky algorithm is usually used as a very fast method of calculating pi. http://www.craig-wood.com/nick/articles/pi-chudnovsky/
The Taylor series is one way to approximate pi. As noted it converges slowly.
The partial sums of the Taylor series can be shown to be within some multiplier of the next term away from the true value of pi.
Other means of approximating pi have similar ways to calculate the max error.
We know this because we can prove it mathematically.
You could try computing sin(pi/2) (or cos(pi/2) for that matter) using the (fairly) quickly converging power series for sin and cos. (Even better: use various doubling formulas to compute nearer x=0 for faster convergence.)
BTW, better than using series for tan(x) is, with computing say cos(x) as a black box (e.g. you could use taylor series as above) is to do root finding via Newton. There certainly are better algorithms out there, but if you don't want to verify tons of digits this should suffice (and it's not that tricky to implement, and you only need a bit of calculus to understand why it works.)
There is an algorithm for digit-wise evaluation of arctan, just to answer the question, pi = 4 arctan 1 :)

Programming Logic: Finding the smallest equation to a large number

I do not know a whole lot about math, so I don't know how to begin to google what I am looking for, so I rely on the intelligence of experts to help me understand what I am after...
I am trying to find the smallest string of equations for a particular large number. For example given the number
"39402006196394479212279040100143613805079739270465446667948293404245721771497210611414266254884915640806627990306816"
The smallest equation is 64^64 (that I know of) . It contains only 5 bytes.
Basically the program would reverse the math, instead of taking an expression and finding an answer, it takes an answer and finds the most simplistic expression. Simplistic is this case means smallest string, not really simple math.
Has this already been created? If so where can I find it? I am looking to take extremely HUGE numbers (10^10000000) and break them down to hopefully expressions that will be like 100 characters in length. Is this even possible? are modern CPUs/GPUs not capable of doing such big calculations?
Edit:
Ok. So finding the smallest equation takes WAY too much time, judging on answers. Is there anyway to bruteforce this and get the smallest found thus far?
For example given a number super super large. Sometimes taking the sqaureroot of number will result in an expression smaller than the number itself.
As far as what expressions it would start off it, well it would naturally try expressions that would the expression the smallest. I am sure there is tons of math things I dont know, but one of the ways to make a number a lot smaller is powers.
Just to throw another keyword in your Google hopper, see Kolmogorov Complexity. The Kolmogorov complexity of a string is the size of the smallest Turing machine that outputs the string, given an empty input. This is one way to formalize what you seem to be after. However, calculating the Kolmogorov complexity of a given string is known to be an undecidable problem :)
Hope this helps,
TJ
There's a good program to do that here:
http://mrob.com/pub/ries/index.html
I asked the question "what's the point of doing this", as I don't know if you're looking at this question from a mathemetics point of view, or a large number factoring point of view.
As other answers have considered the factoring point of view, I'll look at the maths angle. In particular, the problem you are describing is a compressibility problem. This is where you have a number, and want to describe it in the smallest algorithm. Highly random numbers have very poor compressibility, as to describe them you either have to write out all of the digits, or describe a deterministic algorithm which is only slightly smaller than the number itself.
There is currently no general mathemetical theorem which can determine if a representation of a number is the smallest possible for that number (although a lower bound can be discovered by understanding shannon's information theory). (I said general theorem, as special cases do exist).
As you said you don't know a whole lot of math, this is perhaps not a useful answer for you...
You're doing a form of lossless compression, and lossless compression doesn't work on random data. Suppose, to the contrary, that you had a way of compressing N-bit numbers into N-1-bit numbers. In that case, you'd have 2^N values to compress into 2^N-1 designations, which is an average of 2 values per designation, so your average designation couldn't be uncompressed. Lossless compression works well on relatively structured data, where data we're likely to get is compressed small, and data we aren't going to get actually grows some.
It's a little more complicated than that, since you're compressing partly by allowing more information per character. (There are a greater number of N-character sequences involving digits and operators than digits alone.) Still, you're not going to get lossless compression that, on the average, is better than just writing the whole numbers in binary.
It looks like you're basically wanting to do factoring on an arbitrarily large number. That is such a difficult problem that it actually serves as the cornerstone of modern-day cryptography.
This really appears to be a mathematics problem, and not programming or computer science problem. You should ask this on https://math.stackexchange.com/
While your question remains unclear, perhaps integer relation finding is what you are after.
EDIT:
There is some speculation that finding a "short" form is somehow related to the factoring problem. I don't believe that is true unless your definition requires a product as the answer. Consider the following pseudo-algorithm which is just sketch and for which no optimization is attempted.
If "shortest" is a well-defined concept, then in general you get "short" expressions by using small integers to large powers. If N is my integer, then I can find an integer nearby that is 0 mod 4. How close? Within +/- 2. I can find an integer within +/- 4 that is 0 mod 8. And so on. Now that's just the powers of 2. I can perform the same exercise with 3, 5, 7, etc. We can, for example, easily find the nearest integer that is simultaneously the product of powers of 2, 3, 5, 7, 11, 13, and 17, call it N_1. Now compute N-N_1, call it d_1. Maybe d_1 is "short". If so, then N_1 (expressed as power of the prime) + d_1 is the answer. If not, recurse to find a "short" expression for d_1.
We can also pick integers that are maybe farther away than our first choice; even though the difference d_1 is larger, it might have a shorter form.
The existence of an infinite number of primes means that there will always be numbers that cannot be simplified by factoring. What you're asking for is not possible, sorry.

What would be a good general algorithm for approaching integer sequence problems?

Say the input will always be the same number N of numbers (e.g., 5) and assume the integers actually have a mathematical relation (no lengths of the numbers 'one', 'two', days in the nth month, etc.). The output would be either the next integer and the rule discovered or a message that no rule could be detected.
I was thinking to have in one-two-three order, a module that tries to find arithmetic sequence rules by doing sums and/or differences between numbers adjacent, one away, two away, etc. looking for patterns, then having a module focused on geometric sequences by multiplying and/or dividing in the same way, and then, if there is a general approach, a module for detecting recursive sequences.
Thanks!
The On-Line Encyclopedia of Integer Sequences solves precisely this problem :-)
Given any sequence of numbers, we can come up with a formula which 'fits'!
Given a1, a2, ..., an
All you need to do is find an n-1 degree polynomial (using Polynomial interpolation) so that
P(i) = ai
and that's it, you have a formula. Polynomial interpolation can be as easy as solving a matrix equation Ax = b (with A being a Vandermonde matrix).
Check out: http://en.wikipedia.org/wiki/Polynomial_interpolation
That is one of the reasons I find these 'guess the next number' problems a bit silly (read: pathetic IQ tests). Not everyone thinks the same way.

Resources