Getting the submatrix with maximum sum? - algorithm
Input: A 2-dimensional array NxN - Matrix - with positive and negative elements.Output: A submatrix of any size such that its summation is the maximum among all possible submatrices.
Requirement: Algorithm complexity to be of O(N^3)
History: With the help of the Algorithmist, Larry and a modification of Kadane's Algorithm, i managed to solve the problem partly which is determining the summation only - below in Java.
Thanks to Ernesto who managed to solve the rest of the problem which is determining the boundaries of the matrix i.e. top-left, bottom-right corners - below in Ruby.
Here's an explanation to go with the posted code. There are two key tricks to make this work efficiently: (I) Kadane's algorithm and (II) using prefix sums. You also need to (III) apply the tricks to the matrix.
Part I: Kadane's algorithm
Kadane's algorithm is a way to find a contiguous subsequence with maximum sum. Let's start with a brute force approach for finding the max contiguous subsequence and then consider optimizing it to get Kadane's algorithm.
Suppose you have the sequence:
-1, 2, 3, -2
For the brute force approach, walk along the sequence generating all possible subsequences as shown below. Considering all possibilities, we can start, extend, or end a list with each step.
At index 0, we consider appending the -1
-1, 2, 3, -2
^
Possible subsequences:
-1 [sum -1]
At index 1, we consider appending the 2
-1, 2, 3, -2
^
Possible subsequences:
-1 (end) [sum -1]
-1, 2 [sum 1]
2 [sum 2]
At index 2, we consider appending the 3
-1, 2, 3, -2
^
Possible subsequences:
-1, (end) [sum -1]
-1, 2 (end) [sum -1]
2 (end) [sum 2]
-1, 2, 3 [sum 4]
2, 3 [sum 5]
3 [sum 3]
At index 3, we consider appending the -2
-1, 2, 3, -2
^
Possible subsequences:
-1, (end) [sum -1]
-1, 2 (end) [sum 1]
2 (end) [sum 2]
-1, 2 3 (end) [sum 4]
2, 3 (end) [sum 5]
3, (end) [sum 3]
-1, 2, 3, -2 [sum 2]
2, 3, -2 [sum 3]
3, -2 [sum 1]
-2 [sum -2]
For this brute force approach, we finally pick the list with the best sum, (2, 3), and that's the answer. However, to make this efficient, consider that you really don't need to keep every one of the lists. Out of the lists that have not ended, you only need to keep the best one, the others cannot do any better. Out of the lists that have ended, you only might need to keep the best one, and only if it's better than ones that have not ended.
So, you can keep track of what you need with just a position array and a sum array. The position array is defined like this: position[r] = s keeps track of the list which ends at r and starts at s. And, sum[r] gives a sum for the subsequence ending at index r. This is optimized approach is Kadane's algorithm.
Running through the example again keeping track of our progress this way:
At index 0, we consider appending the -1
-1, 2, 3, -2
^
We start a new subsequence for the first element.
position[0] = 0
sum[0] = -1
At index 1, we consider appending the 2
-1, 2, 3, -2
^
We choose to start a new subsequence because that gives a higher sum than extending.
position[0] = 0 sum[0] = -1
position[1] = 1 sum[1] = 2
At index 2, we consider appending the 3
-1, 2, 3, -2
^
We choose to extend a subsequence because that gives a higher sum than starting a new one.
position[0] = 0 sum[0] = -1
position[1] = 1 sum[1] = 2
position[2] = 1 sum[2] = 5
Again, we choose to extend because that gives a higher sum that starting a new one.
-1, 2, 3, -2
^
position[0] = 0 sum[0] = -1
position[1] = 1 sum[1] = 2
position[2] = 1 sum[2] = 5
positions[3] = 3 sum[3] = 3
Again, the best sum is 5 and the list is from index 1 to index 2, which is (2, 3).
Part II: Prefix sums
We want to have a way to compute the sum along a row, for any start point to any endpoint. I want to compute that sum in O(1) time rather than just adding, which takes O(m) time where m is the number of elements in the sum. With some precomputing, this can be achieved. Here's how. Suppose you have a matrix:
a d g
b e h
c f i
You can precompute this matrix:
a d g
a+b d+e g+h
a+b+c d+e+f g+h+i
Once that is done you can get the sum running along any column from any start to endpoint in the column just by subtracting two values.
Part III: Bringing tricks together to find the max submatrix
Assume that you know the top and bottom row of the max submatrix. You could do this:
Ignore rows above your top row and ignore rows below your bottom
row.
With what matrix remains, consider the using sum of each column to
form a sequence (sort of like a row that represents multiple rows).
(You can compute any element of this sequence rapidly with the prefix
sums approach.)
Use Kadane's approach to figure out best subsequence in this
sequence. The indexes you get will tell you the left and right
positions of the best submatrix.
Now, what about actually figuring out the top and bottom row? Just try all possibilities. Try putting the top anywhere you can and putting the bottom anywhere you can, and run the Kadane-base procedure described previously for every possibility. When you find a max, you keep track of the top and bottom position.
Finding the row and column takes O(M^2) where M is the number of rows. Finding the column takes O(N) time where N is the number of columns. So total time is O(M^2 * N). And, if M=N, the time required is O(N^3).
About recovering the actual submatrix, and not just the maximum sum, here's what I got. Sorry I do not have time to translate my code to your java version, so I'm posting my Ruby code with some comments in the key parts
def max_contiguous_submatrix_n3(m)
rows = m.count
cols = rows ? m.first.count : 0
vps = Array.new(rows)
for i in 0..rows
vps[i] = Array.new(cols, 0)
end
for j in 0...cols
vps[0][j] = m[0][j]
for i in 1...rows
vps[i][j] = vps[i-1][j] + m[i][j]
end
end
max = [m[0][0],0,0,0,0] # this is the result, stores [max,top,left,bottom,right]
# these arrays are used over Kadane
sum = Array.new(cols) # obvious sum array used in Kadane
pos = Array.new(cols) # keeps track of the beginning position for the max subseq ending in j
for i in 0...rows
for k in i...rows
# Kadane over all columns with the i..k rows
sum.fill(0) # clean both the sum and pos arrays for the upcoming Kadane
pos.fill(0)
local_max = 0 # we keep track of the position of the max value over each Kadane's execution
# notice that we do not keep track of the max value, but only its position
sum[0] = vps[k][0] - (i==0 ? 0 : vps[i-1][0])
for j in 1...cols
value = vps[k][j] - (i==0 ? 0 : vps[i-1][j])
if sum[j-1] > 0
sum[j] = sum[j-1] + value
pos[j] = pos[j-1]
else
sum[j] = value
pos[j] = j
end
if sum[j] > sum[local_max]
local_max = j
end
end
# Kadane ends here
# Here's the key thing
# If the max value obtained over the past Kadane's execution is larger than
# the current maximum, then update the max array with sum and bounds
if sum[local_max] > max[0]
# sum[local_max] is the new max value
# the corresponding submatrix goes from rows i..k.
# and from columns pos[local_max]..local_max
# the array below contains [max_sum,top,left,bottom,right]
max = [sum[local_max], i, pos[local_max], k, local_max]
end
end
end
return max # return the array with [max_sum,top,left,bottom,right]
end
Some notes for clarification:
I use an array to store all the values pertaining to the result for convenience. You can just use five standalone variables: max, top, left, bottom, right. It's just easier to assign in one line to the array and then the subroutine returns the array with all the needed information.
If you copy and paste this code in a text-highlight-enabled editor with Ruby support you'll obviously understand it better. Hope this helps!
There are already plenty of answers, but here is another Java implementation I wrote. It compares 3 solutions:
Naïve (brute force) - O(n^6) time
The obvious DP solution - O(n^4) time and O(n^3) space
The more clever DP solution based on Kadane's algorithm - O(n^3) time and O(n^2) space
There are sample runs for n = 10 thru n = 70 in increments of 10 with a nice output comparing run time and space requirements.
Code:
public class MaxSubarray2D {
static int LENGTH;
final static int MAX_VAL = 10;
public static void main(String[] args) {
for (int i = 10; i <= 70; i += 10) {
LENGTH = i;
int[][] a = new int[LENGTH][LENGTH];
for (int row = 0; row < LENGTH; row++) {
for (int col = 0; col < LENGTH; col++) {
a[row][col] = (int) (Math.random() * (MAX_VAL + 1));
if (Math.random() > 0.5D) {
a[row][col] = -a[row][col];
}
//System.out.printf("%4d", a[row][col]);
}
//System.out.println();
}
System.out.println("N = " + LENGTH);
System.out.println("-------");
long start, end;
start = System.currentTimeMillis();
naiveSolution(a);
end = System.currentTimeMillis();
System.out.println(" run time: " + (end - start) + " ms no auxiliary space requirements");
start = System.currentTimeMillis();
dynamicProgammingSolution(a);
end = System.currentTimeMillis();
System.out.println(" run time: " + (end - start) + " ms requires auxiliary space for "
+ ((int) Math.pow(LENGTH, 4)) + " integers");
start = System.currentTimeMillis();
kadane2D(a);
end = System.currentTimeMillis();
System.out.println(" run time: " + (end - start) + " ms requires auxiliary space for " +
+ ((int) Math.pow(LENGTH, 2)) + " integers");
System.out.println();
System.out.println();
}
}
// O(N^2) !!!
public static void kadane2D(int[][] a) {
int[][] s = new int[LENGTH + 1][LENGTH]; // [ending row][sum from row zero to ending row] (rows 1-indexed!)
for (int r = 0; r < LENGTH + 1; r++) {
for (int c = 0; c < LENGTH; c++) {
s[r][c] = 0;
}
}
for (int r = 1; r < LENGTH + 1; r++) {
for (int c = 0; c < LENGTH; c++) {
s[r][c] = s[r - 1][c] + a[r - 1][c];
}
}
int maxSum = Integer.MIN_VALUE;
int maxRowStart = -1;
int maxColStart = -1;
int maxRowEnd = -1;
int maxColEnd = -1;
for (int r1 = 1; r1 < LENGTH + 1; r1++) { // rows 1-indexed!
for (int r2 = r1; r2 < LENGTH + 1; r2++) { // rows 1-indexed!
int[] s1 = new int[LENGTH];
for (int c = 0; c < LENGTH; c++) {
s1[c] = s[r2][c] - s[r1 - 1][c];
}
int max = 0;
int c1 = 0;
for (int c = 0; c < LENGTH; c++) {
max = s1[c] + max;
if (max <= 0) {
max = 0;
c1 = c + 1;
}
if (max > maxSum) {
maxSum = max;
maxRowStart = r1 - 1;
maxColStart = c1;
maxRowEnd = r2 - 1;
maxColEnd = c;
}
}
}
}
System.out.print("KADANE SOLUTION | Max sum: " + maxSum);
System.out.print(" Start: (" + maxRowStart + ", " + maxColStart +
") End: (" + maxRowEnd + ", " + maxColEnd + ")");
}
// O(N^4) !!!
public static void dynamicProgammingSolution(int[][] a) {
int[][][][] dynTable = new int[LENGTH][LENGTH][LENGTH + 1][LENGTH + 1]; // [row][col][height][width]
int maxSum = Integer.MIN_VALUE;
int maxRowStart = -1;
int maxColStart = -1;
int maxRowEnd = -1;
int maxColEnd = -1;
for (int r = 0; r < LENGTH; r++) {
for (int c = 0; c < LENGTH; c++) {
for (int h = 0; h < LENGTH + 1; h++) {
for (int w = 0; w < LENGTH + 1; w++) {
dynTable[r][c][h][w] = 0;
}
}
}
}
for (int r = 0; r < LENGTH; r++) {
for (int c = 0; c < LENGTH; c++) {
for (int h = 1; h <= LENGTH - r; h++) {
int rowTotal = 0;
for (int w = 1; w <= LENGTH - c; w++) {
rowTotal += a[r + h - 1][c + w - 1];
dynTable[r][c][h][w] = rowTotal + dynTable[r][c][h - 1][w];
}
}
}
}
for (int r = 0; r < LENGTH; r++) {
for (int c = 0; c < LENGTH; c++) {
for (int h = 0; h < LENGTH + 1; h++) {
for (int w = 0; w < LENGTH + 1; w++) {
if (dynTable[r][c][h][w] > maxSum) {
maxSum = dynTable[r][c][h][w];
maxRowStart = r;
maxColStart = c;
maxRowEnd = r + h - 1;
maxColEnd = c + w - 1;
}
}
}
}
}
System.out.print(" DP SOLUTION | Max sum: " + maxSum);
System.out.print(" Start: (" + maxRowStart + ", " + maxColStart +
") End: (" + maxRowEnd + ", " + maxColEnd + ")");
}
// O(N^6) !!!
public static void naiveSolution(int[][] a) {
int maxSum = Integer.MIN_VALUE;
int maxRowStart = -1;
int maxColStart = -1;
int maxRowEnd = -1;
int maxColEnd = -1;
for (int rowStart = 0; rowStart < LENGTH; rowStart++) {
for (int colStart = 0; colStart < LENGTH; colStart++) {
for (int rowEnd = 0; rowEnd < LENGTH; rowEnd++) {
for (int colEnd = 0; colEnd < LENGTH; colEnd++) {
int sum = 0;
for (int row = rowStart; row <= rowEnd; row++) {
for (int col = colStart; col <= colEnd; col++) {
sum += a[row][col];
}
}
if (sum > maxSum) {
maxSum = sum;
maxRowStart = rowStart;
maxColStart = colStart;
maxRowEnd = rowEnd;
maxColEnd = colEnd;
}
}
}
}
}
System.out.print(" NAIVE SOLUTION | Max sum: " + maxSum);
System.out.print(" Start: (" + maxRowStart + ", " + maxColStart +
") End: (" + maxRowEnd + ", " + maxColEnd + ")");
}
}
Here is a Java version of Ernesto implementation with some modifications:
public int[][] findMaximumSubMatrix(int[][] matrix){
int dim = matrix.length;
//computing the vertical prefix sum for columns
int[][] ps = new int[dim][dim];
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
if (j == 0) {
ps[j][i] = matrix[j][i];
} else {
ps[j][i] = matrix[j][i] + ps[j - 1][i];
}
}
}
int maxSum = matrix[0][0];
int top = 0, left = 0, bottom = 0, right = 0;
//Auxiliary variables
int[] sum = new int[dim];
int[] pos = new int[dim];
int localMax;
for (int i = 0; i < dim; i++) {
for (int k = i; k < dim; k++) {
// Kadane over all columns with the i..k rows
reset(sum);
reset(pos);
localMax = 0;
//we keep track of the position of the max value over each Kadane's execution
// notice that we do not keep track of the max value, but only its position
sum[0] = ps[k][0] - (i==0 ? 0 : ps[i-1][0]);
for (int j = 1; j < dim; j++) {
if (sum[j-1] > 0){
sum[j] = sum[j-1] + ps[k][j] - (i==0 ? 0 : ps[i-1][j]);
pos[j] = pos[j-1];
}else{
sum[j] = ps[k][j] - (i==0 ? 0 : ps[i-1][j]);
pos[j] = j;
}
if (sum[j] > sum[localMax]){
localMax = j;
}
}//Kadane ends here
if (sum[localMax] > maxSum){
/* sum[localMax] is the new max value
the corresponding submatrix goes from rows i..k.
and from columns pos[localMax]..localMax
*/
maxSum = sum[localMax];
top = i;
left = pos[localMax];
bottom = k;
right = localMax;
}
}
}
System.out.println("Max SubMatrix determinant = " + maxSum);
//composing the required matrix
int[][] output = new int[bottom - top + 1][right - left + 1];
for(int i = top, k = 0; i <= bottom; i++, k++){
for(int j = left, l = 0; j <= right ; j++, l++){
output[k][l] = matrix[i][j];
}
}
return output;
}
private void reset(int[] a) {
for (int index = 0; index < a.length; index++) {
a[index] = 0;
}
}
With the help of the Algorithmist and Larry and a modification of Kadane's Algorithm, here is my solution:
int dim = matrix.length;
//computing the vertical prefix sum for columns
int[][] ps = new int[dim][dim];
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
if (j == 0) {
ps[j][i] = matrix[j][i];
} else {
ps[j][i] = matrix[j][i] + ps[j - 1][i];
}
}
}
int maxSoFar = 0;
int min , subMatrix;
//iterate over the possible combinations applying Kadane's Alg.
for (int i = 0; i < dim; i++) {
for (int j = i; j < dim; j++) {
min = 0;
subMatrix = 0;
for (int k = 0; k < dim; k++) {
if (i == 0) {
subMatrix += ps[j][k];
} else {
subMatrix += ps[j][k] - ps[i - 1 ][k];
}
if(subMatrix < min){
min = subMatrix;
}
if((subMatrix - min) > maxSoFar){
maxSoFar = subMatrix - min;
}
}
}
}
The only thing left is to determine the submatrix elements, i.e: the top left and the bottom right corner of the submatrix. Anyone suggestion?
this is my implementation of 2D Kadane algorithm. I think it is more clear. The concept is based on just kadane algorithm. The first and second loop of the main part (that is in the bottom of the code) is to pick every combination of the rows and 3rd loop is to use 1D kadane algorithm by every following column sum (that can be computed in const time because of preprocessing of matrix by subtracting values from two picked (from combintation) rows). Here is the code:
int [][] m = {
{1,-5,-5},
{1,3,-5},
{1,3,-5}
};
int N = m.length;
// summing columns to be able to count sum between two rows in some column in const time
for (int i=0; i<N; ++i)
m[0][i] = m[0][i];
for (int j=1; j<N; ++j)
for (int i=0; i<N; ++i)
m[j][i] = m[j][i] + m[j-1][i];
int total_max = 0, sum;
for (int i=0; i<N; ++i) {
for (int k=i; k<N; ++k) { //for each combination of rows
sum = 0;
for (int j=0; j<N; j++) { //kadane algorithm for every column
sum += i==0 ? m[k][j] : m[k][j] - m[i-1][j]; //for first upper row is exception
total_max = Math.max(sum, total_max);
}
}
}
System.out.println(total_max);
I am going to post an answer here and can add actual c++ code if it is requested because I had recently worked through this. Some rumors of a divide and conqueror that can solve this in O(N^2) are out there but I haven't seen any code to support this. In my experience the following is what I have found.
O(i^3j^3) -- naive brute force method
o(i^2j^2) -- dynamic programming with memoization
O(i^2j) -- using max contiguous sub sequence for an array
if ( i == j )
O(n^6) -- naive
O(n^4) -- dynamic programming
O(n^3) -- max contiguous sub sequence
Have a look at JAMA package; I believe it will make your life easier.
Here is the C# solution. Ref: http://www.algorithmist.com/index.php/UVa_108
public static MaxSumMatrix FindMaxSumSubmatrix(int[,] inMtrx)
{
MaxSumMatrix maxSumMtrx = new MaxSumMatrix();
// Step 1. Create SumMatrix - do the cumulative columnar summation
// S[i,j] = S[i-1,j]+ inMtrx[i-1,j];
int m = inMtrx.GetUpperBound(0) + 2;
int n = inMtrx.GetUpperBound(1)+1;
int[,] sumMatrix = new int[m, n];
for (int i = 1; i < m; i++)
{
for (int j = 0; j < n; j++)
{
sumMatrix[i, j] = sumMatrix[i - 1, j] + inMtrx[i - 1, j];
}
}
PrintMatrix(sumMatrix);
// Step 2. Create rowSpans starting each rowIdx. For these row spans, create a 1-D array r_ij
for (int x = 0; x < n; x++)
{
for (int y = x; y < n; y++)
{
int[] r_ij = new int[n];
for (int k = 0; k < n; k++)
{
r_ij[k] = sumMatrix[y + 1,k] - sumMatrix[x, k];
}
// Step 3. Find MaxSubarray of this r_ij. If the sum is greater than the last recorded sum =>
// capture Sum, colStartIdx, ColEndIdx.
// capture current x as rowTopIdx, y as rowBottomIdx.
MaxSum currMaxSum = KadanesAlgo.FindMaxSumSubarray(r_ij);
if (currMaxSum.maxSum > maxSumMtrx.sum)
{
maxSumMtrx.sum = currMaxSum.maxSum;
maxSumMtrx.colStart = currMaxSum.maxStartIdx;
maxSumMtrx.colEnd = currMaxSum.maxEndIdx;
maxSumMtrx.rowStart = x;
maxSumMtrx.rowEnd = y;
}
}
}
return maxSumMtrx;
}
public static void PrintMatrix(int[,] matrix)
{
int endRow = matrix.GetUpperBound(0);
int endCol = matrix.GetUpperBound(1);
PrintMatrix(matrix, 0, endRow, 0, endCol);
}
public static void PrintMatrix(int[,] matrix, int startRow, int endRow, int startCol, int endCol)
{
StringBuilder sb = new StringBuilder();
for (int i = startRow; i <= endRow; i++)
{
sb.Append(Environment.NewLine);
for (int j = startCol; j <= endCol; j++)
{
sb.Append(string.Format("{0} ", matrix[i,j]));
}
}
Console.WriteLine(sb.ToString());
}
// Given an NxN matrix of positive and negative integers, write code to find the sub-matrix with the largest possible sum
public static MaxSum FindMaxSumSubarray(int[] inArr)
{
int currMax = 0;
int currStartIndex = 0;
// initialize maxSum to -infinity, maxStart and maxEnd idx to 0.
MaxSum mx = new MaxSum(int.MinValue, 0, 0);
// travers through the array
for (int currEndIndex = 0; currEndIndex < inArr.Length; currEndIndex++)
{
// add element value to the current max.
currMax += inArr[currEndIndex];
// if current max is more that the last maxSum calculated, set the maxSum and its idx
if (currMax > mx.maxSum)
{
mx.maxSum = currMax;
mx.maxStartIdx = currStartIndex;
mx.maxEndIdx = currEndIndex;
}
if (currMax < 0) // if currMax is -ve, change it back to 0
{
currMax = 0;
currStartIndex = currEndIndex + 1;
}
}
return mx;
}
struct MaxSum
{
public int maxSum;
public int maxStartIdx;
public int maxEndIdx;
public MaxSum(int mxSum, int mxStart, int mxEnd)
{
this.maxSum = mxSum;
this.maxStartIdx = mxStart;
this.maxEndIdx = mxEnd;
}
}
class MaxSumMatrix
{
public int sum = int.MinValue;
public int rowStart = -1;
public int rowEnd = -1;
public int colStart = -1;
public int colEnd = -1;
}
Here is my solution. It's O(n^3) in time and O(n^2) space.
https://gist.github.com/toliuweijing/6097144
// 0th O(n) on all candidate bottoms #B.
// 1th O(n) on candidate tops #T.
// 2th O(n) on finding the maximum #left/#right match.
int maxRect(vector<vector<int> >& mat) {
int n = mat.size();
vector<vector<int> >& colSum = mat;
for (int i = 1 ; i < n ; ++i)
for (int j = 0 ; j < n ; ++j)
colSum[i][j] += colSum[i-1][j];
int optrect = 0;
for (int b = 0 ; b < n ; ++b) {
for (int t = 0 ; t <= b ; ++t) {
int minLeft = 0;
int rowSum[n];
for (int i = 0 ; i < n ; ++i) {
int col = t == 0 ? colSum[b][i] : colSum[b][i] - colSum[t-1][i];
rowSum[i] = i == 0? col : col + rowSum[i-1];
optrect = max(optrect, rowSum[i] - minLeft);
minLeft = min(minLeft, rowSum[i]);
}
}
}
return optrect;
}
I would just parse the NxN array removing the -ves whatever remains is the highest sum of a sub matrix.
The question doesn't say you have to leave the original matrix intact or that the order matters.
Related
time complexity of expected cost of optimal BST
import java.util.Scanner; public class Main { public static int optimalBst(int[] keys, int[] p, int[] q) { int n = keys.length; int[][] w = new int[n + 1][n + 1]; int[][] cost = new int[n + 1][n + 1]; for (int i = 0; i <= n; i++) { w[i][i] = q[i]; cost[i][i] = 0; } for (int i = 1; i <= n; i++) { int j = i - 1; w[j][i] = w[j][i - 1] + p[i] + q[i]; cost[j][i] = w[j][i]; } // sum of probabilities for (int gap = 2; gap <= n; gap++) { int i = 0; int j = i + gap; while (i <= n) { int k = i; while (j <= n) { if (i != j) { if (w[k][j] == 0) { w[k][j] = w[k][j - 1] + p[j] + q[j]; } } j = j + 1; k = k + 1; } i = i + 1; } } // expected cost of optimal BST for (int gap = 2; gap <= n; gap++) { int i = 0; int j = i + gap; while (i <= n) { int k = i; while (j <= n) { if (i != j) { if (cost[k][j] == 9999) { for (int r = k + 1; r < j; r++) { int c = cost[k][j]; cost[k][j] = cost[k][r - 1] + cost[r][j] + w[k][j]; if (cost[k][j] > c) { cost[k][j] = c; } } } } j = j + 1; k = k + 1; } i = i + 1; } } return cost[0][n]; } public static void main(String[] args) { int[] keys = {10, 20, 30, 40}; int[] probSuccess = {0, 3, 3, 1, 1}; int[] probFailure = {2, 3, 1, 1, 1}; System.out.println("Cost of Optimal BST is: " + optimalBst(keys, probSuccess, probFailure)); } } I am trying to figure out what is the time complexity of above program. I am confused would the TC=O(n^3) or TC =O(n^4). In the for loop below the comment expected cost of optimal BST , we can find 2 nested while loops and 1 for loop with range(k+1 to j) inside a for loop whose range is from 2 to n+1. My confusion is whether the loop with range (k+1 to j) runs O(n) times or O(1) times. Please help me to figure this out and also if anyone has better program for expected cost of optimal BST with successful and unsuccessful probabilities.
Is it possible to limit the size of parts in the linear partitioning problem?
I have an engineering problem that requires me to partition a set of positive numbers to k parts, without changing the ordering of the numbers in the set, so that the sums of the parts are as equal as possible. I have understood that there are solutions to this 'linear partitioning problem'. In fact, I have successfully tried the dynamic programming solution already and it works. Now the question: What if there is a maximum size limitation for the parts? ("No part can have more than m items") Can it be added e.g. to the DP solution or can some other technique be used for solving this. Appreciate all comments, links and suggestions. Edit: I added a crude sketch of the original algorithm below // Partition number array seq to k parts with max number of m items in each part public void LinearPartition(double[] seq, int k, int m) { double[,] table; int[,] solution; int n = seq.Length - 1; linearPartitionTable(seq, k, m, out table, out solution); k = k - 2; while (k >= 0) { Console.WriteLine(solution[n - 1, k] + 1); n = solution[n - 1, k]; k--; } } private void linearPartitionTable(double[] seq, int k, int m, out double[,] table, out int[,] solution) { int n = seq.Length; table = new double[n, k]; solution = new int[n - 1, k - 1]; table[0, 0] = 0; for (int i = 1; i < n; i++) table[i, 0] = seq[i] + table[i - 1, 0]; for (int j = 0; j < k; j++) table[0, j] = seq[0]; for (int i = 1; i < n; i++) { for (int j = 1; j < k; j++) { double currentMin = double.MaxValue; int minX = 0; for (int x = 0; x < i; x++) { double cost = Math.Max(table[x, j - 1], table[i, 0] - table[x, 0]); if (cost < currentMin) { currentMin = cost; minX = x; } } table[i, j] = currentMin; solution[i - 1, j - 1] = minX; } } }
Find zeroes to be flipped so that number of consecutive 1’s is maximized
Find zeroes to be flipped so that number of consecutive 1’s is maximized. Input: arr[] = {1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1} m = 2 Output: 5 7 We are allowed to flip maximum 2 zeroes. If we flip arr[5] and arr[7], we get 8 consecutive 1's which is maximum possible under given constraints . Now if we were to find just the maximum number of 1's that is possible, is it possible to solve using dynamic programming approach?
This problem can be solved in linear time O(N) and linear space O(N). Its not full fledged dynamic programming, but its similar to that as it uses precomputation. Data Structures Used: 1.left: It is an integer array, of same length as given array. It is precomputed such that for every position i: left[i] = Number of consecutive 1's to the left position i 2.right: It is an integer array, of same length as given array. It is precomputed such that for every position i: right[i] = Number of consecutive 1's to the right position i These can be computed in single traversal of the array.Assuming arr is the original array, following pseudocode does the job: Pseudocode for populating left array left() { int count = 0; for(int i = 0;i < arr length; ++i) { if(i == 0) { left[i] = 0; if(arr[i] == 1) count++; continue; } else { left[i] = count; if(arr[i] == 1) count++; else count = 0; } } } Pseudocode for populating right array right() { int count = 0; for(int i = arr length - 1;i >= 0; --i) { if(i == arr length - 1) { right[i] = 0; if(arr[i] == 1) count++; continue; } else { right[i] = count; if(arr[i] == 1) count++; else count = 0; } } } Now the only thing we have to do is :check all pair of positions i and j (i < j) such that arr[i] = 0 and arr[j] = 0 and for no position between i and j arr[i] should be 0 and Keep track of the pair for which we get maximum value of the following: left[i] + right[j] + right[l] You could also use left[i] + right[j] + left[r]. left[i] tells the number of consecutive 1's to the left of position i and right[j] tells the number of consecutive 1's to the right of position j and the number of consecutive 1's between i and j can be counted be left[r] OR right[l], and therefore, we have two candidate expressions. This can also be done in single traversal, using following pseudocode: max_One() { max = 0; l = -1, r = -1; for(int i = 0;i < arr length; ++i) { if(arr[i] == 0) { if(l == -1) l = i; else { r = i; if(left[l] + right[r] + right[l] > max) { max = left[l] + right[r] + right[l]; left_pos = l; right_pos = r; } l = r; } } } }
You should use sliding window concept here - use start and end vars to store index of range. Whenever you encounter a 0, increment the counter of zeros received. Include it in current length.. If zeros encounter equals m+1, increment start till you encounter 0. public static int[] zerosToFlip(int[] input, int m) { if (m == 0) return new int[0]; int[] indices = new int[m]; int beginIndex = 0; int endIndex = 0; int maxBeginIndex=0; int maxEndIndex=0; int zerosIncluded = input[0] == 0 ? 1 : 0; for (int i = 1; i < input.length; i++) { if (input[i] == 0) { if (zerosIncluded == m) { if (endIndex - beginIndex > maxEndIndex - maxBeginIndex){ maxBeginIndex = beginIndex; maxEndIndex = endIndex; } while (input[beginIndex] != 0) beginIndex++; beginIndex++; } else { zerosIncluded++; } } endIndex++; } if (endIndex - beginIndex > maxEndIndex - maxBeginIndex){ maxBeginIndex = beginIndex; maxEndIndex = endIndex; } int j = 0; for (int i = maxBeginIndex; i <= maxEndIndex; i++) { if (input[i] == 0) { indices[j] = i; ++j; } } return indices; }
Maximum product prefix string
The following is a demo question from a coding interview site called codility: A prefix of a string S is any leading contiguous part of S. For example, "c" and "cod" are prefixes of the string "codility". For simplicity, we require prefixes to be non-empty. The product of prefix P of string S is the number of occurrences of P multiplied by the length of P. More precisely, if prefix P consists of K characters and P occurs exactly T times in S, then the product equals K * T. For example, S = "abababa" has the following prefixes: "a", whose product equals 1 * 4 = 4, "ab", whose product equals 2 * 3 = 6, "aba", whose product equals 3 * 3 = 9, "abab", whose product equals 4 * 2 = 8, "ababa", whose product equals 5 * 2 = 10, "ababab", whose product equals 6 * 1 = 6, "abababa", whose product equals 7 * 1 = 7. The longest prefix is identical to the original string. The goal is to choose such a prefix as maximizes the value of the product. In above example the maximal product is 10. Below is my poor solution in Java requiring O(N^2) time. It is apparently possible to do this in O(N). I was thinking Kadanes algorithm. But I can't think of any way that I can encode some information at each step that lets me find the running max. Can any one think of an O(N) algorithm for this? import java.util.HashMap; class Solution { public int solution(String S) { int N = S.length(); if(N<1 || N>300000){ System.out.println("Invalid length"); return(-1); } HashMap<String,Integer> prefixes = new HashMap<String,Integer>(); for(int i=0; i<N; i++){ String keystr = ""; for(int j=i; j>=0; j--) { keystr += S.charAt(j); if(!prefixes.containsKey(keystr)) prefixes.put(keystr,keystr.length()); else{ int newval = prefixes.get(keystr)+keystr.length(); if(newval > 1000000000)return 1000000000; prefixes.put(keystr,newval); } } } int maax1 = 0; for(int val : prefixes.values()) if(val>maax1) maax1 = val; return maax1; } }
Here's a O(n log n) version based on suffix arrays. There are O(n) construction algorithms for suffix arrays, I just don't have the patience to code them. Example output (this output isn't O(n), but it's only to show that we can indeed compute all the scores): 4*1 a 3*3 aba 2*5 ababa 1*7 abababa 3*2 ab 2*4 abab 1*6 ababab Basically you have to reverse the string, and compute the suffix array (SA) and the longest common prefix (LCP). Then you have traverse the SA array backwards looking for LCPs that match the entire suffix (prefix in the original string). If there's a match, increment the counter, otherwise reset it to 1. Each suffix (prefix) receive a "score" (SCR) that corresponds to the number of times it appears in the original string. #include <iostream> #include <cstring> #include <string> #define MAX 10050 using namespace std; int RA[MAX], tempRA[MAX]; int SA[MAX], tempSA[MAX]; int C[MAX]; int Phi[MAX], PLCP[MAX], LCP[MAX]; int SCR[MAX]; void suffix_sort(int n, int k) { memset(C, 0, sizeof C); for (int i = 0; i < n; i++) C[i + k < n ? RA[i + k] : 0]++; int sum = 0; for (int i = 0; i < max(256, n); i++) { int t = C[i]; C[i] = sum; sum += t; } for (int i = 0; i < n; i++) tempSA[C[SA[i] + k < n ? RA[SA[i] + k] : 0]++] = SA[i]; memcpy(SA, tempSA, n*sizeof(int)); } void suffix_array(string &s) { int n = s.size(); for (int i = 0; i < n; i++) RA[i] = s[i] - 1; for (int i = 0; i < n; i++) SA[i] = i; for (int k = 1; k < n; k *= 2) { suffix_sort(n, k); suffix_sort(n, 0); int r = tempRA[SA[0]] = 0; for (int i = 1; i < n; i++) { int s1 = SA[i], s2 = SA[i-1]; bool equal = true; equal &= RA[s1] == RA[s2]; equal &= RA[s1+k] == RA[s2+k]; tempRA[SA[i]] = equal ? r : ++r; } memcpy(RA, tempRA, n*sizeof(int)); } } void lcp(string &s) { int n = s.size(); Phi[SA[0]] = -1; for (int i = 1; i < n; i++) Phi[SA[i]] = SA[i-1]; int L = 0; for (int i = 0; i < n; i++) { if (Phi[i] == -1) { PLCP[i] = 0; continue; } while (s[i + L] == s[Phi[i] + L]) L++; PLCP[i] = L; L = max(L-1, 0); } for (int i = 1; i < n; i++) LCP[i] = PLCP[SA[i]]; } void score(string &s) { SCR[s.size()-1] = 1; int sum = 1; for (int i=s.size()-2; i>=0; i--) { if (LCP[i+1] < s.size()-SA[i]-1) { sum = 1; } else { sum++; } SCR[i] = sum; } } int main() { string s = "abababa"; s = string(s.rbegin(), s.rend()) +"."; suffix_array(s); lcp(s); score(s); for(int i=0; i<s.size(); i++) { string ns = s.substr(SA[i], s.size()-SA[i]-1); ns = string(ns.rbegin(), ns.rend()); cout << SCR[i] << "*" << ns.size() << " " << ns << endl; } } Most of this code (specially the suffix array and LCP implementations) I have been using for some years in contests. This version in special I adapted from this one I wrote some years ago.
public class Main { public static void main(String[] args) { String input = "abababa"; String prefix; int product; int maxProduct = 0; for (int i = 1; i <= input.length(); i++) { prefix = input.substring(0, i); String substr; int occurs = 0; for (int j = prefix.length(); j <= input.length(); j++) { substr = input.substring(0, j); if (substr.endsWith(prefix)) occurs++; } product = occurs*prefix.length(); System.out.println("product of " + prefix + " = " + prefix.length() + " * " + occurs +" = " + product); maxProduct = (product > maxProduct)?product:maxProduct; } System.out.println("maxProduct = " + maxProduct); } }
I was working on this challenge for more than 4 days , reading a lot of documentation, I found a solution with O(N) . I got 81%, the idea is simple using a window slide. def solution(s: String): Int = { var max = s.length // length of the string var i, j = 1 // start with i=j=1 ( is the beginning of the slide and j the end of the slide ) val len = s.length // the length of the string val count = Array.ofDim[Int](len) // to store intermediate results while (i < len - 1 || j < len) { if (i < len && s(0) != s(i)) { while (i < len && s(0) != s(i)) { // if the begin of the slide is different from // the first letter of the string skip it i = i + 1 } } j = i + 1 var k = 1 while (j < len && s(j).equals(s(k))) { // check for equality and update the array count if (count(k) == 0) { count(k) = 1 } count(k) = count(k) + 1 max = math.max((k + 1) * count(k), max) k = k + 1 j = j + 1 } i = i + 1 } max // return the max }
Implement Number division by multiplication method [duplicate]
I was asked this question in a job interview, and I'd like to know how others would solve it. I'm most comfortable with Java, but solutions in other languages are welcome. Given an array of numbers, nums, return an array of numbers products, where products[i] is the product of all nums[j], j != i. Input : [1, 2, 3, 4, 5] Output: [(2*3*4*5), (1*3*4*5), (1*2*4*5), (1*2*3*5), (1*2*3*4)] = [120, 60, 40, 30, 24] You must do this in O(N) without using division.
An explanation of polygenelubricants method is: The trick is to construct the arrays (in the case for 4 elements): { 1, a[0], a[0]*a[1], a[0]*a[1]*a[2], } { a[1]*a[2]*a[3], a[2]*a[3], a[3], 1, } Both of which can be done in O(n) by starting at the left and right edges respectively. Then, multiplying the two arrays element-by-element gives the required result. My code would look something like this: int a[N] // This is the input int products_below[N]; int p = 1; for (int i = 0; i < N; ++i) { products_below[i] = p; p *= a[i]; } int products_above[N]; p = 1; for (int i = N - 1; i >= 0; --i) { products_above[i] = p; p *= a[i]; } int products[N]; // This is the result for (int i = 0; i < N; ++i) { products[i] = products_below[i] * products_above[i]; } If you need the solution be O(1) in space as well, you can do this (which is less clear in my opinion): int a[N] // This is the input int products[N]; // Get the products below the current index int p = 1; for (int i = 0; i < N; ++i) { products[i] = p; p *= a[i]; } // Get the products above the current index p = 1; for (int i = N - 1; i >= 0; --i) { products[i] *= p; p *= a[i]; }
Here is a small recursive function (in C++) to do the modification in-place. It requires O(n) extra space (on stack) though. Assuming the array is in a and N holds the array length, we have: int multiply(int *a, int fwdProduct, int indx) { int revProduct = 1; if (indx < N) { revProduct = multiply(a, fwdProduct*a[indx], indx+1); int cur = a[indx]; a[indx] = fwdProduct * revProduct; revProduct *= cur; } return revProduct; }
Here's my attempt to solve it in Java. Apologies for the non-standard formatting, but the code has a lot of duplication, and this is the best I can do to make it readable. import java.util.Arrays; public class Products { static int[] products(int... nums) { final int N = nums.length; int[] prods = new int[N]; Arrays.fill(prods, 1); for (int i = 0, pi = 1 , j = N-1, pj = 1 ; (i < N) && (j >= 0) ; pi *= nums[i++] , pj *= nums[j--] ) { prods[i] *= pi ; prods[j] *= pj ; } return prods; } public static void main(String[] args) { System.out.println( Arrays.toString(products(1, 2, 3, 4, 5)) ); // prints "[120, 60, 40, 30, 24]" } } The loop invariants are pi = nums[0] * nums[1] *.. nums[i-1] and pj = nums[N-1] * nums[N-2] *.. nums[j+1]. The i part on the left is the "prefix" logic, and the j part on the right is the "suffix" logic. Recursive one-liner Jasmeet gave a (beautiful!) recursive solution; I've turned it into this (hideous!) Java one-liner. It does in-place modification, with O(N) temporary space in the stack. static int multiply(int[] nums, int p, int n) { return (n == nums.length) ? 1 : nums[n] * (p = multiply(nums, nums[n] * (nums[n] = p), n + 1)) + 0*(nums[n] *= p); } int[] arr = {1,2,3,4,5}; multiply(arr, 1, 0); System.out.println(Arrays.toString(arr)); // prints "[120, 60, 40, 30, 24]"
Translating Michael Anderson's solution into Haskell: otherProducts xs = zipWith (*) below above where below = scanl (*) 1 $ init xs above = tail $ scanr (*) 1 xs
Sneakily circumventing the "no divisions" rule: sum = 0.0 for i in range(a): sum += log(a[i]) for i in range(a): output[i] = exp(sum - log(a[i]))
Here you go, simple and clean solution with O(N) complexity: int[] a = {1,2,3,4,5}; int[] r = new int[a.length]; int x = 1; r[0] = 1; for (int i=1;i<a.length;i++){ r[i]=r[i-1]*a[i-1]; } for (int i=a.length-1;i>0;i--){ x=x*a[i]; r[i-1]=x*r[i-1]; } for (int i=0;i<r.length;i++){ System.out.println(r[i]); }
Travel Left->Right and keep saving product. Call it Past. -> O(n) Travel Right -> left keep the product. Call it Future. -> O(n) Result[i] = Past[i-1] * future[i+1] -> O(n) Past[-1] = 1; and Future[n+1]=1; O(n)
C++, O(n): long long prod = accumulate(in.begin(), in.end(), 1LL, multiplies<int>()); transform(in.begin(), in.end(), back_inserter(res), bind1st(divides<long long>(), prod));
Here is my solution in modern C++. It makes use of std::transform and is pretty easy to remember. Online code (wandbox). #include<algorithm> #include<iostream> #include<vector> using namespace std; vector<int>& multiply_up(vector<int>& v){ v.insert(v.begin(),1); transform(v.begin()+1, v.end() ,v.begin() ,v.begin()+1 ,[](auto const& a, auto const& b) { return b*a; } ); v.pop_back(); return v; } int main() { vector<int> v = {1,2,3,4,5}; auto vr = v; reverse(vr.begin(),vr.end()); multiply_up(v); multiply_up(vr); reverse(vr.begin(),vr.end()); transform(v.begin(),v.end() ,vr.begin() ,v.begin() ,[](auto const& a, auto const& b) { return b*a; } ); for(auto& i: v) cout << i << " "; }
Precalculate the product of the numbers to the left and to the right of each element. For every element the desired value is the product of it's neigbors's products. #include <stdio.h> unsigned array[5] = { 1,2,3,4,5}; int main(void) { unsigned idx; unsigned left[5] , right[5]; left[0] = 1; right[4] = 1; /* calculate products of numbers to the left of [idx] */ for (idx=1; idx < 5; idx++) { left[idx] = left[idx-1] * array[idx-1]; } /* calculate products of numbers to the right of [idx] */ for (idx=4; idx-- > 0; ) { right[idx] = right[idx+1] * array[idx+1]; } for (idx=0; idx <5 ; idx++) { printf("[%u] Product(%u*%u) = %u\n" , idx, left[idx] , right[idx] , left[idx] * right[idx] ); } return 0; } Result: $ ./a.out [0] Product(1*120) = 120 [1] Product(1*60) = 60 [2] Product(2*20) = 40 [3] Product(6*5) = 30 [4] Product(24*1) = 24 (UPDATE: now I look closer, this uses the same method as Michael Anderson, Daniel Migowski and polygenelubricants above)
Tricky: Use the following: public int[] calc(int[] params) { int[] left = new int[n-1] in[] right = new int[n-1] int fac1 = 1; int fac2 = 1; for( int i=0; i<n; i++ ) { fac1 = fac1 * params[i]; fac2 = fac2 * params[n-i]; left[i] = fac1; right[i] = fac2; } fac = 1; int[] results = new int[n]; for( int i=0; i<n; i++ ) { results[i] = left[i] * right[i]; } Yes, I am sure i missed some i-1 instead of i, but thats the way to solve it.
This is O(n^2) but f# is soooo beautiful: List.fold (fun seed i -> List.mapi (fun j x -> if i=j+1 then x else x*i) seed) [1;1;1;1;1] [1..5]
There also is a O(N^(3/2)) non-optimal solution. It is quite interesting, though. First preprocess each partial multiplications of size N^0.5(this is done in O(N) time complexity). Then, calculation for each number's other-values'-multiple can be done in 2*O(N^0.5) time(why? because you only need to multiple the last elements of other ((N^0.5) - 1) numbers, and multiply the result with ((N^0.5) - 1) numbers that belong to the group of the current number). Doing this for each number, one can get O(N^(3/2)) time. Example: 4 6 7 2 3 1 9 5 8 partial results: 4*6*7 = 168 2*3*1 = 6 9*5*8 = 360 To calculate the value of 3, one needs to multiply the other groups' values 168*360, and then with 2*1.
public static void main(String[] args) { int[] arr = { 1, 2, 3, 4, 5 }; int[] result = { 1, 1, 1, 1, 1 }; for (int i = 0; i < arr.length; i++) { for (int j = 0; j < i; j++) { result[i] *= arr[j]; } for (int k = arr.length - 1; k > i; k--) { result[i] *= arr[k]; } } for (int i : result) { System.out.println(i); } } This solution i came up with and i found it so clear what do you think!?
Based on Billz answer--sorry I can't comment, but here is a scala version that correctly handles duplicate items in the list, and is probably O(n): val list1 = List(1, 7, 3, 3, 4, 4) val view = list1.view.zipWithIndex map { x => list1.view.patch(x._2, Nil, 1).reduceLeft(_*_)} view.force returns: List(1008, 144, 336, 336, 252, 252)
Adding my javascript solution here as I didn't find anyone suggesting this. What is to divide, except to count the number of times you can extract a number from another number? I went through calculating the product of the whole array, and then iterate over each element, and substracting the current element until zero: //No division operation allowed // keep substracting divisor from dividend, until dividend is zero or less than divisor function calculateProducsExceptCurrent_NoDivision(input){ var res = []; var totalProduct = 1; //calculate the total product for(var i = 0; i < input.length; i++){ totalProduct = totalProduct * input[i]; } //populate the result array by "dividing" each value for(var i = 0; i < input.length; i++){ var timesSubstracted = 0; var divisor = input[i]; var dividend = totalProduct; while(divisor <= dividend){ dividend = dividend - divisor; timesSubstracted++; } res.push(timesSubstracted); } return res; }
Just 2 passes up and down. Job done in O(N) private static int[] multiply(int[] numbers) { int[] multiplied = new int[numbers.length]; int total = 1; multiplied[0] = 1; for (int i = 1; i < numbers.length; i++) { multiplied[i] = numbers[i - 1] * multiplied[i - 1]; } for (int j = numbers.length - 2; j >= 0; j--) { total *= numbers[j + 1]; multiplied[j] = total * multiplied[j]; } return multiplied; }
def productify(arr, prod, i): if i < len(arr): prod.append(arr[i - 1] * prod[i - 1]) if i > 0 else prod.append(1) retval = productify(arr, prod, i + 1) prod[i] *= retval return retval * arr[i] return 1 if __name__ == "__main__": arr = [1, 2, 3, 4, 5] prod = [] productify(arr, prod, 0) print(prod)
Well,this solution can be considered that of C/C++. Lets say we have an array "a" containing n elements like a[n],then the pseudo code would be as below. for(j=0;j<n;j++) { prod[j]=1; for (i=0;i<n;i++) { if(i==j) continue; else prod[j]=prod[j]*a[i]; }
One more solution, Using division. with twice traversal. Multiply all the elements and then start dividing it by each element.
{- Recursive solution using sqrt(n) subsets. Runs in O(n). Recursively computes the solution on sqrt(n) subsets of size sqrt(n). Then recurses on the product sum of each subset. Then for each element in each subset, it computes the product with the product sum of all other products. Then flattens all subsets. Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n Suppose that T(n) ≤ cn in O(n). T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n ≤ c*n + c*sqrt(n) + n ≤ (2c+1)*n ∈ O(n) Note that ceiling(sqrt(n)) can be computed using a binary search and O(logn) iterations, if the sqrt instruction is not permitted. -} otherProducts [] = [] otherProducts [x] = [1] otherProducts [x,y] = [y,x] otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts where n = length a -- Subset size. Require that 1 < s < n. s = ceiling $ sqrt $ fromIntegral n solvedSubsets = map otherProducts subsets subsetOtherProducts = otherProducts $ map product subsets subsets = reverse $ loop a [] where loop [] acc = acc loop a acc = loop (drop s a) ((take s a):acc)
Here is my code: int multiply(int a[],int n,int nextproduct,int i) { int prevproduct=1; if(i>=n) return prevproduct; prevproduct=multiply(a,n,nextproduct*a[i],i+1); printf(" i=%d > %d\n",i,prevproduct*nextproduct); return prevproduct*a[i]; } int main() { int a[]={2,4,1,3,5}; multiply(a,5,1,0); return 0; }
Here's a slightly functional example, using C#: Func<long>[] backwards = new Func<long>[input.Length]; Func<long>[] forwards = new Func<long>[input.Length]; for (int i = 0; i < input.Length; ++i) { var localIndex = i; backwards[i] = () => (localIndex > 0 ? backwards[localIndex - 1]() : 1) * input[localIndex]; forwards[i] = () => (localIndex < input.Length - 1 ? forwards[localIndex + 1]() : 1) * input[localIndex]; } var output = new long[input.Length]; for (int i = 0; i < input.Length; ++i) { if (0 == i) { output[i] = forwards[i + 1](); } else if (input.Length - 1 == i) { output[i] = backwards[i - 1](); } else { output[i] = forwards[i + 1]() * backwards[i - 1](); } } I'm not entirely certain that this is O(n), due to the semi-recursion of the created Funcs, but my tests seem to indicate that it's O(n) in time.
To be complete here is the code in Scala: val list1 = List(1, 2, 3, 4, 5) for (elem <- list1) println(list1.filter(_ != elem) reduceLeft(_*_)) This will print out the following: 120 60 40 30 24 The program will filter out the current elem (_ != elem); and multiply the new list with reduceLeft method. I think this will be O(n) if you use scala view or Iterator for lazy eval.
// This is the recursive solution in Java // Called as following from main product(a,1,0); public static double product(double[] a, double fwdprod, int index){ double revprod = 1; if (index < a.length){ revprod = product2(a, fwdprod*a[index], index+1); double cur = a[index]; a[index] = fwdprod * revprod; revprod *= cur; } return revprod; }
A neat solution with O(n) runtime: For each element calculate the product of all the elements that occur before that and it store in an array "pre". For each element calculate the product of all the elements that occur after that element and store it in an array "post" Create a final array "result", for an element i, result[i] = pre[i-1]*post[i+1];
Here is the ptyhon version # This solution use O(n) time and O(n) space def productExceptSelf(self, nums): """ :type nums: List[int] :rtype: List[int] """ N = len(nums) if N == 0: return # Initialzie list of 1, size N l_prods, r_prods = [1]*N, [1]*N for i in range(1, N): l_prods[i] = l_prods[i-1] * nums[i-1] for i in reversed(range(N-1)): r_prods[i] = r_prods[i+1] * nums[i+1] result = [x*y for x,y in zip(l_prods,r_prods)] return result # This solution use O(n) time and O(1) space def productExceptSelfSpaceOptimized(self, nums): """ :type nums: List[int] :rtype: List[int] """ N = len(nums) if N == 0: return # Initialzie list of 1, size N result = [1]*N for i in range(1, N): result[i] = result[i-1] * nums[i-1] r_prod = 1 for i in reversed(range(N)): result[i] *= r_prod r_prod *= nums[i] return result
I'm use to C#: public int[] ProductExceptSelf(int[] nums) { int[] returnArray = new int[nums.Length]; List<int> auxList = new List<int>(); int multTotal = 0; // If no zeros are contained in the array you only have to calculate it once if(!nums.Contains(0)) { multTotal = nums.ToList().Aggregate((a, b) => a * b); for (int i = 0; i < nums.Length; i++) { returnArray[i] = multTotal / nums[i]; } } else { for (int i = 0; i < nums.Length; i++) { auxList = nums.ToList(); auxList.RemoveAt(i); if (!auxList.Contains(0)) { returnArray[i] = auxList.Aggregate((a, b) => a * b); } else { returnArray[i] = 0; } } } return returnArray; }
Here is simple Scala version in Linear O(n) time: def getProductEff(in:Seq[Int]):Seq[Int] = { //create a list which has product of every element to the left of this element val fromLeft = in.foldLeft((1, Seq.empty[Int]))((ac, i) => (i * ac._1, ac._2 :+ ac._1))._2 //create a list which has product of every element to the right of this element, which is the same as the previous step but in reverse val fromRight = in.reverse.foldLeft((1,Seq.empty[Int]))((ac,i) => (i * ac._1,ac._2 :+ ac._1))._2.reverse //merge the two list by product at index in.indices.map(i => fromLeft(i) * fromRight(i)) } This works because essentially the answer is an array which has product of all elements to the left and to the right.
import java.util.Arrays; public class Pratik { public static void main(String[] args) { int[] array = {2, 3, 4, 5, 6}; // OUTPUT: 360 240 180 144 120 int[] products = new int[array.length]; arrayProduct(array, products); System.out.println(Arrays.toString(products)); } public static void arrayProduct(int array[], int products[]) { double sum = 0, EPSILON = 1e-9; for(int i = 0; i < array.length; i++) sum += Math.log(array[i]); for(int i = 0; i < array.length; i++) products[i] = (int) (EPSILON + Math.exp(sum - Math.log(array[i]))); } } OUTPUT: [360, 240, 180, 144, 120] Time complexity : O(n) Space complexity: O(1)