Implement Number division by multiplication method [duplicate] - algorithm

I was asked this question in a job interview, and I'd like to know how others would solve it. I'm most comfortable with Java, but solutions in other languages are welcome.
Given an array of numbers, nums, return an array of numbers products, where products[i] is the product of all nums[j], j != i.
Input : [1, 2, 3, 4, 5]
Output: [(2*3*4*5), (1*3*4*5), (1*2*4*5), (1*2*3*5), (1*2*3*4)]
= [120, 60, 40, 30, 24]
You must do this in O(N) without using division.

An explanation of polygenelubricants method is:
The trick is to construct the arrays (in the case for 4 elements):
{ 1, a[0], a[0]*a[1], a[0]*a[1]*a[2], }
{ a[1]*a[2]*a[3], a[2]*a[3], a[3], 1, }
Both of which can be done in O(n) by starting at the left and right edges respectively.
Then, multiplying the two arrays element-by-element gives the required result.
My code would look something like this:
int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
products_below[i] = p;
p *= a[i];
}
int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
products_above[i] = p;
p *= a[i];
}
int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
products[i] = products_below[i] * products_above[i];
}
If you need the solution be O(1) in space as well, you can do this (which is less clear in my opinion):
int a[N] // This is the input
int products[N];
// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
products[i] = p;
p *= a[i];
}
// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
products[i] *= p;
p *= a[i];
}

Here is a small recursive function (in C++) to do the modification in-place. It requires O(n) extra space (on stack) though. Assuming the array is in a and N holds the array length, we have:
int multiply(int *a, int fwdProduct, int indx) {
int revProduct = 1;
if (indx < N) {
revProduct = multiply(a, fwdProduct*a[indx], indx+1);
int cur = a[indx];
a[indx] = fwdProduct * revProduct;
revProduct *= cur;
}
return revProduct;
}

Here's my attempt to solve it in Java. Apologies for the non-standard formatting, but the code has a lot of duplication, and this is the best I can do to make it readable.
import java.util.Arrays;
public class Products {
static int[] products(int... nums) {
final int N = nums.length;
int[] prods = new int[N];
Arrays.fill(prods, 1);
for (int
i = 0, pi = 1 , j = N-1, pj = 1 ;
(i < N) && (j >= 0) ;
pi *= nums[i++] , pj *= nums[j--] )
{
prods[i] *= pi ; prods[j] *= pj ;
}
return prods;
}
public static void main(String[] args) {
System.out.println(
Arrays.toString(products(1, 2, 3, 4, 5))
); // prints "[120, 60, 40, 30, 24]"
}
}
The loop invariants are pi = nums[0] * nums[1] *.. nums[i-1] and pj = nums[N-1] * nums[N-2] *.. nums[j+1]. The i part on the left is the "prefix" logic, and the j part on the right is the "suffix" logic.
Recursive one-liner
Jasmeet gave a (beautiful!) recursive solution; I've turned it into this (hideous!) Java one-liner. It does in-place modification, with O(N) temporary space in the stack.
static int multiply(int[] nums, int p, int n) {
return (n == nums.length) ? 1
: nums[n] * (p = multiply(nums, nums[n] * (nums[n] = p), n + 1))
+ 0*(nums[n] *= p);
}
int[] arr = {1,2,3,4,5};
multiply(arr, 1, 0);
System.out.println(Arrays.toString(arr));
// prints "[120, 60, 40, 30, 24]"

Translating Michael Anderson's solution into Haskell:
otherProducts xs = zipWith (*) below above
where below = scanl (*) 1 $ init xs
above = tail $ scanr (*) 1 xs

Sneakily circumventing the "no divisions" rule:
sum = 0.0
for i in range(a):
sum += log(a[i])
for i in range(a):
output[i] = exp(sum - log(a[i]))

Here you go, simple and clean solution with O(N) complexity:
int[] a = {1,2,3,4,5};
int[] r = new int[a.length];
int x = 1;
r[0] = 1;
for (int i=1;i<a.length;i++){
r[i]=r[i-1]*a[i-1];
}
for (int i=a.length-1;i>0;i--){
x=x*a[i];
r[i-1]=x*r[i-1];
}
for (int i=0;i<r.length;i++){
System.out.println(r[i]);
}

Travel Left->Right and keep saving product. Call it Past. -> O(n)
Travel Right -> left keep the product. Call it Future. -> O(n)
Result[i] = Past[i-1] * future[i+1] -> O(n)
Past[-1] = 1; and Future[n+1]=1;
O(n)

C++, O(n):
long long prod = accumulate(in.begin(), in.end(), 1LL, multiplies<int>());
transform(in.begin(), in.end(), back_inserter(res),
bind1st(divides<long long>(), prod));

Here is my solution in modern C++. It makes use of std::transform and is pretty easy to remember.
Online code (wandbox).
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
vector<int>& multiply_up(vector<int>& v){
v.insert(v.begin(),1);
transform(v.begin()+1, v.end()
,v.begin()
,v.begin()+1
,[](auto const& a, auto const& b) { return b*a; }
);
v.pop_back();
return v;
}
int main() {
vector<int> v = {1,2,3,4,5};
auto vr = v;
reverse(vr.begin(),vr.end());
multiply_up(v);
multiply_up(vr);
reverse(vr.begin(),vr.end());
transform(v.begin(),v.end()
,vr.begin()
,v.begin()
,[](auto const& a, auto const& b) { return b*a; }
);
for(auto& i: v) cout << i << " ";
}

Precalculate the product of the numbers to the left and to the right of each element.
For every element the desired value is the product of it's neigbors's products.
#include <stdio.h>
unsigned array[5] = { 1,2,3,4,5};
int main(void)
{
unsigned idx;
unsigned left[5]
, right[5];
left[0] = 1;
right[4] = 1;
/* calculate products of numbers to the left of [idx] */
for (idx=1; idx < 5; idx++) {
left[idx] = left[idx-1] * array[idx-1];
}
/* calculate products of numbers to the right of [idx] */
for (idx=4; idx-- > 0; ) {
right[idx] = right[idx+1] * array[idx+1];
}
for (idx=0; idx <5 ; idx++) {
printf("[%u] Product(%u*%u) = %u\n"
, idx, left[idx] , right[idx] , left[idx] * right[idx] );
}
return 0;
}
Result:
$ ./a.out
[0] Product(1*120) = 120
[1] Product(1*60) = 60
[2] Product(2*20) = 40
[3] Product(6*5) = 30
[4] Product(24*1) = 24
(UPDATE: now I look closer, this uses the same method as Michael Anderson, Daniel Migowski and polygenelubricants above)

Tricky:
Use the following:
public int[] calc(int[] params) {
int[] left = new int[n-1]
in[] right = new int[n-1]
int fac1 = 1;
int fac2 = 1;
for( int i=0; i<n; i++ ) {
fac1 = fac1 * params[i];
fac2 = fac2 * params[n-i];
left[i] = fac1;
right[i] = fac2;
}
fac = 1;
int[] results = new int[n];
for( int i=0; i<n; i++ ) {
results[i] = left[i] * right[i];
}
Yes, I am sure i missed some i-1 instead of i, but thats the way to solve it.

This is O(n^2) but f# is soooo beautiful:
List.fold (fun seed i -> List.mapi (fun j x -> if i=j+1 then x else x*i) seed)
[1;1;1;1;1]
[1..5]

There also is a O(N^(3/2)) non-optimal solution. It is quite interesting, though.
First preprocess each partial multiplications of size N^0.5(this is done in O(N) time complexity). Then, calculation for each number's other-values'-multiple can be done in 2*O(N^0.5) time(why? because you only need to multiple the last elements of other ((N^0.5) - 1) numbers, and multiply the result with ((N^0.5) - 1) numbers that belong to the group of the current number). Doing this for each number, one can get O(N^(3/2)) time.
Example:
4 6 7 2 3 1 9 5 8
partial results:
4*6*7 = 168
2*3*1 = 6
9*5*8 = 360
To calculate the value of 3, one needs to multiply the other groups' values 168*360, and then with 2*1.

public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4, 5 };
int[] result = { 1, 1, 1, 1, 1 };
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
result[i] *= arr[j];
}
for (int k = arr.length - 1; k > i; k--) {
result[i] *= arr[k];
}
}
for (int i : result) {
System.out.println(i);
}
}
This solution i came up with and i found it so clear what do you think!?

Based on Billz answer--sorry I can't comment, but here is a scala version that correctly handles duplicate items in the list, and is probably O(n):
val list1 = List(1, 7, 3, 3, 4, 4)
val view = list1.view.zipWithIndex map { x => list1.view.patch(x._2, Nil, 1).reduceLeft(_*_)}
view.force
returns:
List(1008, 144, 336, 336, 252, 252)

Adding my javascript solution here as I didn't find anyone suggesting this.
What is to divide, except to count the number of times you can extract a number from another number? I went through calculating the product of the whole array, and then iterate over each element, and substracting the current element until zero:
//No division operation allowed
// keep substracting divisor from dividend, until dividend is zero or less than divisor
function calculateProducsExceptCurrent_NoDivision(input){
var res = [];
var totalProduct = 1;
//calculate the total product
for(var i = 0; i < input.length; i++){
totalProduct = totalProduct * input[i];
}
//populate the result array by "dividing" each value
for(var i = 0; i < input.length; i++){
var timesSubstracted = 0;
var divisor = input[i];
var dividend = totalProduct;
while(divisor <= dividend){
dividend = dividend - divisor;
timesSubstracted++;
}
res.push(timesSubstracted);
}
return res;
}

Just 2 passes up and down. Job done in O(N)
private static int[] multiply(int[] numbers) {
int[] multiplied = new int[numbers.length];
int total = 1;
multiplied[0] = 1;
for (int i = 1; i < numbers.length; i++) {
multiplied[i] = numbers[i - 1] * multiplied[i - 1];
}
for (int j = numbers.length - 2; j >= 0; j--) {
total *= numbers[j + 1];
multiplied[j] = total * multiplied[j];
}
return multiplied;
}

def productify(arr, prod, i):
if i < len(arr):
prod.append(arr[i - 1] * prod[i - 1]) if i > 0 else prod.append(1)
retval = productify(arr, prod, i + 1)
prod[i] *= retval
return retval * arr[i]
return 1
if __name__ == "__main__":
arr = [1, 2, 3, 4, 5]
prod = []
productify(arr, prod, 0)
print(prod)

Well,this solution can be considered that of C/C++.
Lets say we have an array "a" containing n elements
like a[n],then the pseudo code would be as below.
for(j=0;j<n;j++)
{
prod[j]=1;
for (i=0;i<n;i++)
{
if(i==j)
continue;
else
prod[j]=prod[j]*a[i];
}

One more solution, Using division. with twice traversal.
Multiply all the elements and then start dividing it by each element.

{-
Recursive solution using sqrt(n) subsets. Runs in O(n).
Recursively computes the solution on sqrt(n) subsets of size sqrt(n).
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.
Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
Suppose that T(n) ≤ cn in O(n).
T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
≤ c*n + c*sqrt(n) + n
≤ (2c+1)*n
&in; O(n)
Note that ceiling(sqrt(n)) can be computed using a binary search
and O(logn) iterations, if the sqrt instruction is not permitted.
-}
otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
where
n = length a
-- Subset size. Require that 1 < s < n.
s = ceiling $ sqrt $ fromIntegral n
solvedSubsets = map otherProducts subsets
subsetOtherProducts = otherProducts $ map product subsets
subsets = reverse $ loop a []
where loop [] acc = acc
loop a acc = loop (drop s a) ((take s a):acc)

Here is my code:
int multiply(int a[],int n,int nextproduct,int i)
{
int prevproduct=1;
if(i>=n)
return prevproduct;
prevproduct=multiply(a,n,nextproduct*a[i],i+1);
printf(" i=%d > %d\n",i,prevproduct*nextproduct);
return prevproduct*a[i];
}
int main()
{
int a[]={2,4,1,3,5};
multiply(a,5,1,0);
return 0;
}

Here's a slightly functional example, using C#:
Func<long>[] backwards = new Func<long>[input.Length];
Func<long>[] forwards = new Func<long>[input.Length];
for (int i = 0; i < input.Length; ++i)
{
var localIndex = i;
backwards[i] = () => (localIndex > 0 ? backwards[localIndex - 1]() : 1) * input[localIndex];
forwards[i] = () => (localIndex < input.Length - 1 ? forwards[localIndex + 1]() : 1) * input[localIndex];
}
var output = new long[input.Length];
for (int i = 0; i < input.Length; ++i)
{
if (0 == i)
{
output[i] = forwards[i + 1]();
}
else if (input.Length - 1 == i)
{
output[i] = backwards[i - 1]();
}
else
{
output[i] = forwards[i + 1]() * backwards[i - 1]();
}
}
I'm not entirely certain that this is O(n), due to the semi-recursion of the created Funcs, but my tests seem to indicate that it's O(n) in time.

To be complete here is the code in Scala:
val list1 = List(1, 2, 3, 4, 5)
for (elem <- list1) println(list1.filter(_ != elem) reduceLeft(_*_))
This will print out the following:
120
60
40
30
24
The program will filter out the current elem (_ != elem); and multiply the new list with reduceLeft method. I think this will be O(n) if you use scala view or Iterator for lazy eval.

// This is the recursive solution in Java
// Called as following from main product(a,1,0);
public static double product(double[] a, double fwdprod, int index){
double revprod = 1;
if (index < a.length){
revprod = product2(a, fwdprod*a[index], index+1);
double cur = a[index];
a[index] = fwdprod * revprod;
revprod *= cur;
}
return revprod;
}

A neat solution with O(n) runtime:
For each element calculate the product of all the elements that occur before that and it store in an array "pre".
For each element calculate the product of all the elements that occur after that element and store it in an array "post"
Create a final array "result", for an element i,
result[i] = pre[i-1]*post[i+1];

Here is the ptyhon version
# This solution use O(n) time and O(n) space
def productExceptSelf(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
N = len(nums)
if N == 0: return
# Initialzie list of 1, size N
l_prods, r_prods = [1]*N, [1]*N
for i in range(1, N):
l_prods[i] = l_prods[i-1] * nums[i-1]
for i in reversed(range(N-1)):
r_prods[i] = r_prods[i+1] * nums[i+1]
result = [x*y for x,y in zip(l_prods,r_prods)]
return result
# This solution use O(n) time and O(1) space
def productExceptSelfSpaceOptimized(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
N = len(nums)
if N == 0: return
# Initialzie list of 1, size N
result = [1]*N
for i in range(1, N):
result[i] = result[i-1] * nums[i-1]
r_prod = 1
for i in reversed(range(N)):
result[i] *= r_prod
r_prod *= nums[i]
return result

I'm use to C#:
public int[] ProductExceptSelf(int[] nums)
{
int[] returnArray = new int[nums.Length];
List<int> auxList = new List<int>();
int multTotal = 0;
// If no zeros are contained in the array you only have to calculate it once
if(!nums.Contains(0))
{
multTotal = nums.ToList().Aggregate((a, b) => a * b);
for (int i = 0; i < nums.Length; i++)
{
returnArray[i] = multTotal / nums[i];
}
}
else
{
for (int i = 0; i < nums.Length; i++)
{
auxList = nums.ToList();
auxList.RemoveAt(i);
if (!auxList.Contains(0))
{
returnArray[i] = auxList.Aggregate((a, b) => a * b);
}
else
{
returnArray[i] = 0;
}
}
}
return returnArray;
}

Here is simple Scala version in Linear O(n) time:
def getProductEff(in:Seq[Int]):Seq[Int] = {
//create a list which has product of every element to the left of this element
val fromLeft = in.foldLeft((1, Seq.empty[Int]))((ac, i) => (i * ac._1, ac._2 :+ ac._1))._2
//create a list which has product of every element to the right of this element, which is the same as the previous step but in reverse
val fromRight = in.reverse.foldLeft((1,Seq.empty[Int]))((ac,i) => (i * ac._1,ac._2 :+ ac._1))._2.reverse
//merge the two list by product at index
in.indices.map(i => fromLeft(i) * fromRight(i))
}
This works because essentially the answer is an array which has product of all elements to the left and to the right.

import java.util.Arrays;
public class Pratik
{
public static void main(String[] args)
{
int[] array = {2, 3, 4, 5, 6}; // OUTPUT: 360 240 180 144 120
int[] products = new int[array.length];
arrayProduct(array, products);
System.out.println(Arrays.toString(products));
}
public static void arrayProduct(int array[], int products[])
{
double sum = 0, EPSILON = 1e-9;
for(int i = 0; i < array.length; i++)
sum += Math.log(array[i]);
for(int i = 0; i < array.length; i++)
products[i] = (int) (EPSILON + Math.exp(sum - Math.log(array[i])));
}
}
OUTPUT:
[360, 240, 180, 144, 120]
Time complexity : O(n)
Space complexity: O(1)

Related

Super Ugly Number

So the problem is:
Write a program to find the nth super ugly number.
Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] is the sequence of the first 12 super ugly numbers given primes = [2, 7, 13, 19] of size 4.
So my algorithm basically finds all possible factors using the pattern they follow, pushes them to an array, sorts that array and then returns the nth value in the array. It accurately calculates all of them, however, is too slow with high nth values.
My question is what the proper way to do this is as I'm sure there has to be a more straightforward solution. I'm mostly curious about the theory behind finding it and if there's some kind of closed formula for this.
var nthSuperUglyNumber = function(n, primes) {
xprimes = primes;
var uglies = [1];
uglies = getUglyNumbers(n, primes, uglies);
// return uglies[n-1];
return uglies[n - 1];
};
// 3 4
//1, 2,3,5, || 4,6,10, 9,15, 25, || 8,12,20,18,30,50, 27,45,75, 125 ||
// 3,2,1 6,3,1, 10,4,1
// 1 1 1
//1, 2,3 || 4,6, 9, || 8,12,18, 27 || 16,24,36,54, 81
// 2,1 3,1 4,1 5,1
//
//1, 2,3,5,7 || 4,6,10,14 9,15,21 25,35, 49 ||
// 4,3,2,1 || 10,6,3,1
var getUglyNumbers = function(n, primes, uglies) {
if (n == 1) {
return uglies;
}
var incrFactor = [];
var j = 0;
// Initial factor and uglies setup
for (; j < primes.length; j += 1) {
incrFactor[j] = primes.length - j;
uglies.push(primes[j]);
}
//recrusive algo
uglies = calcUglies(n, uglies, incrFactor);
uglies.sort(function(a, b) {
return a - b;
});
return uglies;
};
var calcUglies = function(n, uglies, incrFactor) {
if (uglies.length >= 5 * n) return uglies;
var currlength = uglies.length;
var j = 0;
for (j = 0; j < xprimes.length; j += 1) {
var i = 0;
var start = currlength - incrFactor[j];
for (i = start; i < currlength; i += 1) {
uglies.push(xprimes[j] * uglies[i]);
}
}
// Upgrades the factors to level 2
for (j = 1; j < xprimes.length; j += 1) {
incrFactor[xprimes.length - 1 - j] = incrFactor[xprimes.length - j] + incrFactor[xprimes.length - 1 - j];
}
return calcUglies(n, uglies, incrFactor);
};
public static ArrayList<Integer> superUgly(int[] primes,int size)
{
Arrays.sort(primes);
int pLen = primes.length;
ArrayList<Integer> ans = new ArrayList<>();
ans.add(1);
PriorityQueue<pair> priorityQueue = new PriorityQueue<>(Comparator.comparingInt(p -> p.value));
HashSet<Integer> hashSet = new HashSet<>();
int next_ugly_number;
int[] indices = new int[pLen];
for(int i=0;i<pLen;i++) {
hashSet.add(primes[i]);
priorityQueue.add(new pair(i,primes[i]));
}
while(ans.size()!=size+1)
{
pair pair = priorityQueue.poll();
next_ugly_number = pair.value;
ans.add(next_ugly_number);
indices[pair.index]+=1;
int temp = ans.get(indices[pair.index])*primes[pair.index];
if (!hashSet.contains(temp))
{
priorityQueue.add(new pair(pair.index,temp));
hashSet.add(temp);
}
else {
while(hashSet.contains(temp))
{
indices[pair.index]+=1;
temp = ans.get(indices[pair.index])*primes[pair.index];
}
priorityQueue.add(new pair(pair.index,temp));
hashSet.add(temp);
}
}
ans.remove(0);
return ans;
}
Pair class is
class pair
{
int index,value;
public pair(int i,int v)
{
index = i;
value = v;
}
}
It returns a list of ugly numbers of size 'size'.
I am using priority queue to find minimum for every loop and also a hashset to avoid duplicate entries in priorityQueue.
So its time complexity is O(n log(k)) where n is size and k is primes array size.
This is the most optimal solution I could write using Dynamic Programming in Python.
Time complexity: O(n * k)
Space Complexity: O(n)
from typing import List
def super_ugly_numbers(n: int, primes: List[int]) -> int:
# get nth super ugly number
ugly_nums = [0] * n
ugly_nums[0] = 1
length = len(primes)
mul_indices = [0] * length
multipliers = primes[:]
for index in range(1, n):
ugly_nums[index] = min(multipliers)
for in_index in range(length):
if ugly_nums[index] == multipliers[in_index]:
mul_indices[in_index] += 1
multipliers[in_index] = ugly_nums[mul_indices[in_index]] * primes[in_index]
return ugly_nums[n-1]
This algorithm performs better for large n.
primes := {2, 7, 13, 19}
set list := {1}
for i in 1..n-1:
set k = list[0]
for p in primes:
insert p*k into list unless p*k is in list
remove list[0] from list
return list[0]
If inserting in order is hard, you can just insert the elements into the list at the end and sort the list just after removing list[0].
import java.util.*;
import java.lang.*;
import java.io.*;
public class Solution{
public static void main(String[] args) {
Scanner fi = new Scanner(System.in);
int n=fi.nextInt();
int i;
int primes[] ={2,3,5};
HashSet<Integer> hm=new HashSet<>();
PriorityQueue<Integer> pq=new PriorityQueue<>();
TreeSet<Integer> tr=new TreeSet<>();
tr.add(1);
pq.add(1);
hm.add(1);
for (i=0;i<primes.length;i++){
tr.add(primes[i]);
pq.add(primes[i]);
hm.add(primes[i]);
}
int size=tr.size();
while (size < n){
int curr=pq.poll();
for (i=0;i<primes.length;i++){
if (!hm.contains(curr*primes[i])) {
tr.add(curr * primes[i]);
hm.add(curr*primes[i]);
pq.add(curr*primes[i]);
size++;
}
}
}
System.out.println(tr);
}
}
This might as Help as TreeSet maintains element in sorted order so need to worry about index.

How to calculate maximum product of M elements of an array with N elements

The question is
Given an array of integers and a length L, find a sub-array of length L such that the products of all integers are the biggest.
Example:
Input: {4, 1, -7, -8, 9}, 3
Output: {-7,-8,9}
I wrote a very crude and logically flawed code which does not give any reasonable output. Perhaps someone can point me in the right direction
public class ProductProblem {
/*
* Given an array of integers and a length L, find a sub-array of length L such that the products of all integers are the biggest.
Example:
Input: {4, 1, -7, -8, 9}, 3
Output: {-7,-8,9}
*/
int a[];
int l;
int maxProduct;
public int findProduct(int[] input, int len,int product){
int[] output=new int[len];
for (int i=0;i<input.length;i++){
if(len>=1){
System.out.println(product);
System.out.println("input[i]="+input[i]);
product= product*input[i];
findProduct(input,len-1,product);
System.out.println("len="+len);
}
else {
return product;
}
}
if (product>maxProduct){
maxProduct=product;
}
return product;
}
public static void main(String[] args){
ProductProblem pp=new ProductProblem();
int[] a={1,3,-6,3,5};
pp.a=a;
int max=pp.findProduct(a,3,1);
System.out.println(max);
}
}
Assuming that the subset is not necessarily contiguous, the following algorithm can solve it in O(n*Log(n)) time, where n is the array length.
The key observation is that the solution must be composed of the top 2*k negative numbers, and the top L - 2*k positive numbers, for some value of k.
Sort the positive numbers into array P, in descending order
Sort the negative numbers into array N, in descending absolute value order
Special case: if P is empty and L is odd (meaning a negative result), return the L items from N's tail. Otherwise:
Compute the cumulative product of P and N, and store in P' and N' respectively. That is, P'[i] = P[1] * P[2] * ... * P[i]. set P'[0]=N'[0]=1.
Loop on k from 0 to L/2, and calculate P'[L-2*k] * N'[2*k]. The maximum result corresponds to the best subset, which can then be reproduced from P and N.
public int[] findProduct(int[] integers, int L) {
int maxProduct = Integer.MIN_VALUE;
int start = 0;
for (int i = 0; i + L < integers.length; i++) {
int tmp = 1;
for (int j = i; j < i + L; j++) tmp *= array[j];
if (tmp > maxProduct) {
maxProduct = tmp;
start = i;
}
}
int[] retVal = new int[L];
for (int i = start; i < start + L; i++) retVal[i - start] = integers[i];
return retVal;
}
The principle here is that the product of each consecutive subarray of length L (L specified as the method parameter) is recorded, with the maximum product stored in a variable. At the end of the function, the maximum product subarray is re-created and returned.
You can find the set of non-contiguous subarrays as follows (and then find max product in a similar fashion):
int[] subarrayL = new int[L];
public int[] findSubarrays(int[] integers, int L) {
for (int i = 0; i < L; i++) {
setSubarray(i, L);
}
}
public void setSubarray(int[] integers, int i, int L) {
for (int j = i; j < Math.min(integers.length, integers.length - L + i + 1); j++) {
subarrayL[i] = integers[j];
if (i + 1 < L) setSubarray(integers, i + 1, L);
}
}
If the subarray should be contiguous then we can get the resultant sub array in O(N) time. Code below:
public int[] findProduct(int[] input, int L) {
if( L < input.length || L == 0 ) {
//invalid case
return 0;
}
int max_product = -2e9;
int result_start = 0;
int temp_result = 1;
for(int i = 0; i < L - 1; i++) {
temp_result *= input[i];
}
int left = 0;
for (int right = L - 1; right < input.length; right++) {
temp_result *= input[right];
if (temp_result > max_product) {
max_product = temp_result;
result_start = left;
}
temp_result /= input[left]; // removing the leftmost item as that will not be included in next sub array.
left ++;
}
int[] sub_array = new int[L];
for (int i = 0; i < L; i++) sub_array[i] = integers[result_start + i];
return sub_array;
}
Most languages allow you to sort by array value (or key value) and then you can slice the array to the top N elements.
var array = sort(array)
var length = 10
var biggest = array_slice(array, 0, length);

Dividing array in two equal parts such that difference if sum of numbers of each array is minimum [duplicate]

Given a set of numbers, divide the numbers into two subsets such that difference between the sum of numbers in two subsets is minimal.
This is the idea that I have, but I am not sure if this is a correct solution:
Sort the array
Take the first 2 elements. Consider them as 2 sets (each having 1 element)
Take the next element from the array.
Decide in which set should this element go (by computing the sum => it should be minimum)
Repeat
Is this the correct solution? Can we do better?
The decision version of the problem you are describing is an NP-complete problem and it is called the partition problem. There are a number of approximations which provide, in many cases, optimal or, at least, good enough solutions.
The simple algorithm you described is a way playground kids would pick teams. This greedy algorithm performs remarkably well if the numbers in the set are of similar orders of magnitude.
The article The Easiest Hardest Problem, by American Scientist, gives an excellent analysis of the problem. You should go through and read it!
No, that doesn't work. There is no polynomial time solution (unless P=NP). The best you can do is just look at all different subsets. Have a look at the subset sum problem.
Consider the list [0, 1, 5, 6]. You will claim {0, 5} and {1, 6}, when the best answer is actually {0, 1, 5} and {6}.
No, Your algorithm is wrong. Your algo follows a greedy approach.
I implemented your approach and it failed over this test case:
(You may try here)
A greedy algorithm:
#include<bits/stdc++.h>
#define rep(i,_n) for(int i=0;i<_n;i++)
using namespace std;
#define MXN 55
int a[MXN];
int main() {
//code
int t,n,c;
cin>>t;
while(t--){
cin>>n;
rep(i,n) cin>>a[i];
sort(a, a+n);
reverse(a, a+n);
ll sum1 = 0, sum2 = 0;
rep(i,n){
cout<<a[i]<<endl;
if(sum1<=sum2)
sum1 += a[i];
else
sum2 += a[i];
}
cout<<abs(sum1-sum2)<<endl;
}
return 0;
}
Test case:
1
8
16 14 13 13 12 10 9 3
Wrong Ans: 6
16 13 10 9
14 13 12 3
Correct Ans: 0
16 13 13 3
14 12 10 9
The reason greedy algorithm fails is that it does not consider cases when taking a larger element in current larger sum set and later a much smaller in the larger sum set may result much better results. It always try to minimize current difference without exploring or knowing further possibilities, while in a correct solution you might include an element in a larger set and include a much smaller element later to compensate this difference, same as in above test case.
Correct Solution:
To understand the solution, you will need to understand all below problems in order:
0/1 Knapsack with Dynamic Programming
Partition Equal Subset Sum with DP
Solution
My Code (Same logic as this):
#include<bits/stdc++.h>
#define rep(i,_n) for(int i=0;i<_n;i++)
using namespace std;
#define MXN 55
int arr[MXN];
int dp[MXN][MXN*MXN];
int main() {
//code
int t,N,c;
cin>>t;
while(t--){
rep(i,MXN) fill(dp[i], dp[i]+MXN*MXN, 0);
cin>>N;
rep(i,N) cin>>arr[i];
int sum = accumulate(arr, arr+N, 0);
dp[0][0] = 1;
for(int i=1; i<=N; i++)
for(int j=sum; j>=0; j--)
dp[i][j] |= (dp[i-1][j] | (j>=arr[i-1] ? dp[i-1][j-arr[i-1]] : 0));
int res = sum;
for(int i=0; i<=sum/2; i++)
if(dp[N][i]) res = min(res, abs(i - (sum-i)));
cout<<res<<endl;
}
return 0;
}
Combinations over combinations approach:
import itertools as it
def min_diff_sets(data):
"""
Parameters:
- `data`: input list.
Return:
- min diff between sum of numbers in two sets
"""
if len(data) == 1:
return data[0]
s = sum(data)
# `a` is list of all possible combinations of all possible lengths (from 1
# to len(data) )
a = []
for i in range(1, len(data)):
a.extend(list(it.combinations(data, i)))
# `b` is list of all possible pairs (combinations) of all elements from `a`
b = it.combinations(a, 2)
# `c` is going to be final correct list of combinations.
# Let's apply 2 filters:
# 1. leave only pairs where: sum of all elements == sum(data)
# 2. leave only pairs where: flat list from pairs == data
c = filter(lambda x: sum(x[0])+sum(x[1])==s, b)
c = filter(lambda x: sorted([i for sub in x for i in sub])==sorted(data), c)
# `res` = [min_diff_between_sum_of_numbers_in_two_sets,
# ((set_1), (set_2))
# ]
res = sorted([(abs(sum(i[0]) - sum(i[1])), i) for i in c],
key=lambda x: x[0])
return min([i[0] for i in res])
if __name__ == '__main__':
assert min_diff_sets([10, 10]) == 0, "1st example"
assert min_diff_sets([10]) == 10, "2nd example"
assert min_diff_sets([5, 8, 13, 27, 14]) == 3, "3rd example"
assert min_diff_sets([5, 5, 6, 5]) == 1, "4th example"
assert min_diff_sets([12, 30, 30, 32, 42, 49]) == 9, "5th example"
assert min_diff_sets([1, 1, 1, 3]) == 0, "6th example"
The recursive approach is to generate all possible sums from all the values of array and to check
which solution is the most optimal one.
To generate sums we either include the i’th item in set 1 or don’t include, i.e., include in
set 2.
The time complexity is O(n*sum) for both time and space.T
public class MinimumSubsetSum {
static int dp[][];
public static int minDiffSubsets(int arr[], int i, int calculatedSum, int totalSum) {
if(dp[i][calculatedSum] != -1) return dp[i][calculatedSum];
/**
* If i=0, then the sum of one subset has been calculated as we have reached the last
* element. The sum of another subset is totalSum - calculated sum. We need to return the
* difference between them.
*/
if(i == 0) {
return Math.abs((totalSum - calculatedSum) - calculatedSum);
}
//Including the ith element
int iElementIncluded = minDiffSubsets(arr, i-1, arr[i-1] + calculatedSum,
totalSum);
//Excluding the ith element
int iElementExcluded = minDiffSubsets(arr, i-1, calculatedSum, totalSum);
int res = Math.min(iElementIncluded, iElementExcluded);
dp[i][calculatedSum] = res;
return res;
}
public static void util(int arr[]) {
int totalSum = 0;
int n = arr.length;
for(Integer e : arr) totalSum += e;
dp = new int[n+1][totalSum+1];
for(int i=0; i <= n; i++)
for(int j=0; j <= totalSum; j++)
dp[i][j] = -1;
int res = minDiffSubsets(arr, n, 0, totalSum);
System.out.println("The min difference between two subset is " + res);
}
public static void main(String[] args) {
util(new int[]{3, 1, 4, 2, 2, 1});
}
}
We can use Dynamic Programming (similar to the way we find if a set can be partitioned into two equal sum subsets). Then we find the max possible sum, which will be our first partition.
Second partition will be the difference of the total sum and firstSum.
Answer will be the difference of the first and second partitions.
public int minDiffernce(int set[]) {
int sum = 0;
int n = set.length;
for(int i=0; i<n; i++)
sum+=set[i];
//finding half of total sum, because min difference can be at max 0, if one subset reaches half
int target = sum/2;
boolean[][] dp = new boolean[n+1][target+1];//2
for(int i = 0; i<=n; i++)
dp[i][0] = true;
for(int i= 1; i<=n; i++){
for(int j = 1; j<=target;j++){
if(set[i-1]>j) dp[i][j] = dp[i-1][j];
else dp[i][j] = dp[i-1][j] || dp[i-1][j-set[i-1]];
}
}
// we now find the max sum possible starting from target
int firstPart = 0;
for(int j = target; j>=0; j--){
if(dp[n][j] == true) {
firstPart = j; break;
}
}
int secondPart = sum - firstPart;
return Math.abs(firstPart - secondPart);
}
One small change: reverse the order - start with the largest number and work down. This will minimize the error.
Are you sorting your subset into decending order or ascending order?
Think about it like this, the array {1, 3, 5, 8, 9, 25}
if you were to divide, you would have {1,8,9} =18 {3,5,25} =33
If it were sorted into descending order it would work out a lot better
{25,1}=26 {9,8,5,3}=25
So your solution is basically correct, it just needs to make sure to take the largest values first.
EDIT: Read tskuzzy's post. Mine does not work
This is a variation of the knapsack and subset sum problem.
In subset sum problem, given n positive integers and a value k and we have to find the sum of subset whose value is less than or equal to k.
In the above problem we have given an array, here we have to find the subset whose sum is less than or equal to total_sum(sum of array values).
So the
subset sum can be found using a variation in knapsack algorithm,by
taking profits as given array values. And the final answer is
total_sum-dp[n][total_sum/2]. Have a look at the below code for clear
understanding.
#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
int n;
cin>>n;
int arr[n],sum=0;
for(int i=1;i<=n;i++)
cin>>arr[i],sum+=arr[i];
int temp=sum/2;
int dp[n+1][temp+2];
for(int i=0;i<=n;i++)
{
for(int j=0;j<=temp;j++)
{
if(i==0 || j==0)
dp[i][j]=0;
else if(arr[i]<=j)
dp[i][j]=max(dp[i-1][j],dp[i-1][j-arr[i]]+arr[i]);
else
{
dp[i][j]=dp[i-1][j];
}
}
}
cout<<sum-2*dp[n][temp]<<endl;
}
This can be solve using BST.
First sort the array say arr1
To start create another arr2 with the last element of arr1 (remove this ele from arr1)
Now:Repeat the steps till no swap happens.
Check arr1 for an element which can be moved to arr2 using BST such that the diff is less MIN diff found till now.
if we find an element move this element to arr2 and go to step1 again.
if we don't find any element in above steps do steps 1 & 2 for arr2 & arr1.
i.e. now check if we have any element in arr2 which can be moved to arr1
continue steps 1-4 till we don't need any swap..
we get the solution.
Sample Java Code:
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* Divide an array so that the difference between these 2 is min
*
* #author shaikhjamir
*
*/
public class DivideArrayForMinDiff {
/**
* Create 2 arrays and try to find the element from 2nd one so that diff is
* min than the current one
*/
private static int sum(List<Integer> arr) {
int total = 0;
for (int i = 0; i < arr.size(); i++) {
total += arr.get(i);
}
return total;
}
private static int diff(ArrayList<Integer> arr, ArrayList<Integer> arr2) {
int diff = sum(arr) - sum(arr2);
if (diff < 0)
diff = diff * -1;
return diff;
}
private static int MIN = Integer.MAX_VALUE;
private static int binarySearch(int low, int high, ArrayList<Integer> arr1, int arr2sum) {
if (low > high || low < 0)
return -1;
int mid = (low + high) / 2;
int midVal = arr1.get(mid);
int sum1 = sum(arr1);
int resultOfMoveOrg = (sum1 - midVal) - (arr2sum + midVal);
int resultOfMove = (sum1 - midVal) - (arr2sum + midVal);
if (resultOfMove < 0)
resultOfMove = resultOfMove * -1;
if (resultOfMove < MIN) {
// lets do the swap
return mid;
}
// this is positive number greater than min
// which mean we should move left
if (resultOfMoveOrg < 0) {
// 1,10, 19 ==> 30
// 100
// 20, 110 = -90
// 29, 111 = -83
return binarySearch(low, mid - 1, arr1, arr2sum);
} else {
// resultOfMoveOrg > 0
// 1,5,10, 15, 19, 20 => 70
// 21
// For 10
// 60, 31 it will be 29
// now if we move 1
// 71, 22 ==> 49
// but now if we move 20
// 50, 41 ==> 9
return binarySearch(mid + 1, high, arr1, arr2sum);
}
}
private static int findMin(ArrayList<Integer> arr1) {
ArrayList<Integer> list2 = new ArrayList<>(arr1.subList(arr1.size() - 1, arr1.size()));
arr1.remove(arr1.size() - 1);
while (true) {
int index = binarySearch(0, arr1.size(), arr1, sum(list2));
if (index != -1) {
int val = arr1.get(index);
arr1.remove(index);
list2.add(val);
Collections.sort(list2);
MIN = diff(arr1, list2);
} else {
// now try for arr2
int index2 = binarySearch(0, list2.size(), list2, sum(arr1));
if (index2 != -1) {
int val = list2.get(index2);
list2.remove(index2);
arr1.add(val);
Collections.sort(arr1);
MIN = diff(arr1, list2);
} else {
// no switch in both the cases
break;
}
}
}
System.out.println("MIN==>" + MIN);
System.out.println("arr1==>" + arr1 + ":" + sum(arr1));
System.out.println("list2==>" + list2 + ":" + sum(list2));
return 0;
}
public static void main(String args[]) {
ArrayList<Integer> org = new ArrayList<>();
org = new ArrayList<>();
org.add(1);
org.add(2);
org.add(3);
org.add(7);
org.add(8);
org.add(10);
findMin(org);
}
}
you can use bits to solve this problem by looping over all the possible combinations using bits:
main algorithm:
for(int i = 0; i < 1<<n; i++) {
int s = 0;
for(int j = 0; j < n; j++) {
if(i & 1<<j) s += arr[j];
}
int curr = abs((total-s)-s);
ans = min(ans, curr);
}
use long long for greater inputs.
but here I found a recursive and dynamic programming solution and I used both the approaches to solve the question and both worked for greater inputs perfectly fine. Hope this helps :) link to solution
Please check this logic which I have written for this problem. It worked for few scenarios I checked. Please comment on the solution,
Approach :
Sort the main array and divide it into 2 teams.
Then start making the team equal by shift and swapping elements from one array to other, based on the conditions mentioned in the code.
If the difference is difference of sum is less than the minimum number of the larger array(array with bigger sum), then shift the elements from the bigger array to smaller array.Shifting happens with the condition, that element from the bigger array with value less than or equal to the difference.When all the elements from the bigger array is greater than the difference, the shifting stops and swapping happens. I m just swapping the last elements of the array (It can be made more efficient by finding which two elements to swap), but still this worked. Let me know if this logic failed in any scenario.
public class SmallestDifference {
static int sum1 = 0, sum2 = 0, diff, minDiff;
private static List<Integer> minArr1;
private static List<Integer> minArr2;
private static List<Integer> biggerArr;
/**
* #param args
*/
public static void main(String[] args) {
SmallestDifference sm = new SmallestDifference();
Integer[] array1 = { 2, 7, 1, 4, 5, 9, 10, 11 };
List<Integer> array = new ArrayList<Integer>();
for (Integer val : array1) {
array.add(val);
}
Collections.sort(array);
CopyOnWriteArrayList<Integer> arr1 = new CopyOnWriteArrayList<>(array.subList(0, array.size() / 2));
CopyOnWriteArrayList<Integer> arr2 = new CopyOnWriteArrayList<>(array.subList(array.size() / 2, array.size()));
diff = Math.abs(sm.getSum(arr1) - sm.getSum(arr2));
minDiff = array.get(0);
sm.updateSum(arr1, arr2);
System.out.println(arr1 + " : " + arr2);
System.out.println(sum1 + " - " + sum2 + " = " + diff + " : minDiff = " + minDiff);
int k = arr2.size();
biggerArr = arr2;
while (diff != 0 && k >= 0) {
while (diff != 0 && sm.findMin(biggerArr) < diff) {
sm.swich(arr1, arr2);
int sum1 = sm.getSum(arr1), sum2 = sm.getSum(arr2);
diff = Math.abs(sum1 - sum2);
if (sum1 > sum2) {
biggerArr = arr1;
} else {
biggerArr = arr2;
}
if (minDiff > diff || sm.findMin(biggerArr) > diff) {
minDiff = diff;
minArr1 = new CopyOnWriteArrayList<>(arr1);
minArr2 = new CopyOnWriteArrayList<>(arr2);
}
sm.updateSum(arr1, arr2);
System.out.println("Shifting : " + sum1 + " - " + sum2 + " = " + diff + " : minDiff = " + minDiff);
}
while (k >= 0 && minDiff > array.get(0) && minDiff != 0) {
sm.swap(arr1, arr2);
diff = Math.abs(sm.getSum(arr1) - sm.getSum(arr2));
if (minDiff > diff) {
minDiff = diff;
minArr1 = new CopyOnWriteArrayList<>(arr1);
minArr2 = new CopyOnWriteArrayList<>(arr2);
}
sm.updateSum(arr1, arr2);
System.out.println("Swapping : " + sum1 + " - " + sum2 + " = " + diff + " : minDiff = " + minDiff);
k--;
}
k--;
}
System.out.println(minArr1 + " : " + minArr2 + " = " + minDiff);
}
private void updateSum(CopyOnWriteArrayList<Integer> arr1, CopyOnWriteArrayList<Integer> arr2) {
SmallestDifference sm1 = new SmallestDifference();
sum1 = sm1.getSum(arr1);
sum2 = sm1.getSum(arr2);
}
private int findMin(List<Integer> biggerArr2) {
Integer min = biggerArr2.get(0);
for (Integer integer : biggerArr2) {
if(min > integer) {
min = integer;
}
}
return min;
}
private int getSum(CopyOnWriteArrayList<Integer> arr) {
int sum = 0;
for (Integer val : arr) {
sum += val;
}
return sum;
}
private void swap(CopyOnWriteArrayList<Integer> arr1, CopyOnWriteArrayList<Integer> arr2) {
int l1 = arr1.size(), l2 = arr2.size(), temp2 = arr2.get(l2 - 1), temp1 = arr1.get(l1 - 1);
arr1.remove(l1 - 1);
arr1.add(temp2);
arr2.remove(l2 - 1);
arr2.add(temp1);
System.out.println(arr1 + " : " + arr2);
}
private void swich(CopyOnWriteArrayList<Integer> arr1, CopyOnWriteArrayList<Integer> arr2) {
Integer e;
if (sum1 > sum2) {
e = this.findElementJustLessThanMinDiff(arr1);
arr1.remove(e);
arr2.add(e);
} else {
e = this.findElementJustLessThanMinDiff(arr2);
arr2.remove(e);
arr1.add(e);
}
System.out.println(arr1 + " : " + arr2);
}
private Integer findElementJustLessThanMinDiff(CopyOnWriteArrayList<Integer> arr1) {
Integer e = arr1.get(0);
int tempDiff = diff - e;
for (Integer integer : arr1) {
if (diff > integer && (diff - integer) < tempDiff) {
e = integer;
tempDiff = diff - e;
}
}
return e;
}
}
A possible solution here- https://stackoverflow.com/a/31228461/4955513
This Java program seems to solve this problem, provided one condition is fulfilled- that there is one and only one solution to the problem.
I'll convert this problem to subset sum problem
let's take array int[] A = { 10,20,15,5,25,33 };
it should be divided into {25 20 10} and { 33 20 } and answer is 55-53=2
Notations : SUM == sum of whole array
sum1 == sum of subset1
sum2 == sum of subset1
step 1: get sum of whole array SUM=108
step 2: whichever way we divide our array into two part one thing will remain true
sum1+ sum2= SUM
step 3: if our intention is to get minimum sum difference then sum1 and sum2 should be near SUM/2 (example sum1=54 and sum2=54 then diff=0 )
steon 4: let's try combinations
sum1 = 54 AND sum2 = 54 (not possible to divide like this)
sum1 = 55 AND sum2 = 53 (possible and our solution, should break here)
sum1 = 56 AND sum2 = 52
sum1 = 57 AND sum2 = 51 .......so on
pseudo code
SUM=Array.sum();
sum1 = SUM/2;
sum2 = SUM-sum1;
while(true){
if(subSetSuMProblem(A,sum1) && subSetSuMProblem(A,sum2){
print "possible"
break;
}
else{
sum1++;
sum2--;
}
}
Java code for the same
import java.util.ArrayList;
import java.util.List;
public class MinimumSumSubsetPrint {
public static void main(String[] args) {
int[] A = {10, 20, 15, 5, 25, 32};
int sum = 0;
for (int i = 0; i < A.length; i++) {
sum += A[i];
}
subsetSumDynamic(A, sum);
}
private static boolean subsetSumDynamic(int[] A, int sum) {
int n = A.length;
boolean[][] T = new boolean[n + 1][sum + 1];
// sum2[0][0]=true;
for (int i = 0; i <= n; i++) {
T[i][0] = true;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= sum; j++) {
if (A[i - 1] > j) {
T[i][j] = T[i - 1][j];
} else {
T[i][j] = T[i - 1][j] || T[i - 1][j - A[i - 1]];
}
}
}
int sum1 = sum / 2;
int sum2 = sum - sum1;
while (true) {
if (T[n][sum1] && T[n][sum2]) {
printSubsets(T, sum1, n, A);
printSubsets(T, sum2, n, A);
break;
} else {
sum1 = sum1 - 1;
sum2 = sum - sum1;
System.out.println(sum1 + ":" + sum2);
}
}
return T[n][sum];
}
private static void printSubsets(boolean[][] T, int sum, int n, int[] A) {
List<Integer> sumvals = new ArrayList<Integer>();
int i = n;
int j = sum;
while (i > 0 && j > 0) {
if (T[i][j] == T[i - 1][j]) {
i--;
} else {
sumvals.add(A[i - 1]);
j = j - A[i - 1];
i--;
}
}
System.out.println();
for (int p : sumvals) {
System.out.print(p + " ");
}
System.out.println();
}
}
Here is recursive approach
def helper(arr,sumCal,sumTot,n):
if n==0:
return abs(abs(sumCal-sumTot)-sumCal)
return min(helper(arr,sumCal+arr[n-1],sumTot,n-1),helper(arr,sumCal,sumTot,n-1))
def minimum_subset_diff(arr,n):
sum=0
for i in range(n):
sum+=arr[i]
return helper(arr,0,sum,n)
Here is a Top down Dynamic approach to reduce the time complexity
dp=[[-1]*100 for i in range(100)]
def helper_dp(arr,sumCal,sumTot,n):
if n==0:
return abs(abs(sumCal-sumTot)-sumCal)
if dp[n][sumTot]!=-1:
return dp[n][sumTot]
return min(helper_dp(arr,sumCal+arr[n-1],sumTot,n-1),helper_dp(arr,sumCal,sumTot,n-1))
def minimum_subset_diff_dp(arr,n):
sum=0
for i in range(n):
sum+=arr[i]
return helper_dp(arr,0,sum,n)
int ModDiff(int a, int b)
{
if(a < b)return b - a;
return a-b;
}
int EqDiv(int *a, int l, int *SumI, int *SumE)
{
static int tc = 0;
int min = ModDiff(*SumI,*SumE);
for(int i = 0; i < l; i++)
{
swap(a,0,i);
a++;
int m1 = EqDiv(a, l-1, SumI,SumE);
a--;
swap(a,0,i);
*SumI = *SumI + a[i];
*SumE = *SumE - a[i];
swap(a,0,i);
a++;
int m2 = EqDiv(a,l-1, SumI,SumE);
a--;
swap(a,0,i);
*SumI = *SumI - a[i];
*SumE = *SumE + a[i];
min = min3(min,m1,m2);
}
return min;
}
call the function with SumI =0 and SumE= sumof all the elements in a.
This O(n!) solution does compute the way we can divide the given array into 2 parts such the difference is minimum.
But definitely not practical due to the n! time complexity looking to improve this using DP.
#include<bits/stdc++.h>
using namespace std;
bool ison(int i,int x)
{
if((i>>x) & 1)return true;
return false;
}
int main()
{
// cout<<"enter the number of elements : ";
int n;
cin>>n;
int a[n];
for(int i=0;i<n;i++)
cin>>a[i];
int sumarr1[(1<<n)-1];
int sumarr2[(1<<n)-1];
memset(sumarr1,0,sizeof(sumarr1));
memset(sumarr2,0,sizeof(sumarr2));
int index=0;
vector<int>v1[(1<<n)-1];
vector<int>v2[(1<<n)-1];
for(int i=1;i<(1<<n);i++)
{
for(int j=0;j<n;j++)
{
if(ison(i,j))
{
sumarr1[index]+=a[j];
v1[index].push_back(a[j]);
}
else
{
sumarr2[index]+=a[j];
v2[index].push_back(a[j]);
}
}index++;
}
int ans=INT_MAX;
int ii;
for(int i=0;i<index;i++)
{
if(abs(sumarr1[i]-sumarr2[i])<ans)
{
ii=i;
ans=abs(sumarr1[i]-sumarr2[i]);
}
}
cout<<"first partitioned array : ";
for(int i=0;i<v1[ii].size();i++)
{
cout<<v1[ii][i]<<" ";
}
cout<<endl;
cout<<"2nd partitioned array : ";
for(int i=0;i<v2[ii].size();i++)
{
cout<<v2[ii][i]<<" ";
}
cout<<endl;
cout<<"minimum difference is : "<<ans<<endl;
}
Many answers mentioned about getting an 'approximate' solution in a very acceptable time bound . But since it is asked in an interview , I dont expect they need an approximation algorithm. Also I dont expect they need a naive exponential algorithm either.
Coming to the problem , assuming the maximum value of sum of numbers is known , it can infact be solved in polynomial time using dynamic programming. Refer this link
https://people.cs.clemson.edu/~bcdean/dp_practice/dp_4.swf
HI I think This Problem can be solved in Linear Time on a sorted array , no Polynomial Time is required , rather than Choosing Next Element u can choose nest two Element and decide which side which element to go. in This Way
in this way minimize the difference, let suppose
{0,1,5,6} ,
choose {0,1}
{0} , {1}
choose 5,6
{0,6}, {1,5}
but still that is not exact solution , now at the end there will be difference of sum in 2 array let suppose x
but there can be better solution of difference of (less than x)
for that Find again 1 greedy approach over sorted half sized array
and move x/2(or nearby) element from 1 set to another or exchange element of(difference x/2) so that difference can be minimized***

Find a pair of elements from an array whose sum equals a given number

Given array of n integers and given a number X, find all the unique pairs of elements (a,b), whose summation is equal to X.
The following is my solution, it is O(nLog(n)+n), but I am not sure whether or not it is optimal.
int main(void)
{
int arr [10] = {1,2,3,4,5,6,7,8,9,0};
findpair(arr, 10, 7);
}
void findpair(int arr[], int len, int sum)
{
std::sort(arr, arr+len);
int i = 0;
int j = len -1;
while( i < j){
while((arr[i] + arr[j]) <= sum && i < j)
{
if((arr[i] + arr[j]) == sum)
cout << "(" << arr[i] << "," << arr[j] << ")" << endl;
i++;
}
j--;
while((arr[i] + arr[j]) >= sum && i < j)
{
if((arr[i] + arr[j]) == sum)
cout << "(" << arr[i] << "," << arr[j] << ")" << endl;
j--;
}
}
}
There are 3 approaches to this solution:
Let the sum be T and n be the size of array
Approach 1:
The naive way to do this would be to check all combinations (n choose 2). This exhaustive search is O(n2).
Approach 2:
A better way would be to sort the array. This takes O(n log n)
Then for each x in array A,
use binary search to look for T-x. This will take O(nlogn).
So, overall search is O(n log n)
Approach 3 :
The best way
would be to insert every element into a hash table (without sorting). This takes O(n) as constant time insertion.
Then for every x,
we can just look up its complement, T-x, which is O(1).
Overall the run time of this approach is O(n).
You can refer more here.Thanks.
# Let arr be the given array.
# And K be the give sum
for i=0 to arr.length - 1 do
# key is the element and value is its index.
hash(arr[i]) = i
end-for
for i=0 to arr.length - 1 do
# if K-th element exists and it's different then we found a pair
if hash(K - arr[i]) != i
print "pair i , hash(K - arr[i]) has sum K"
end-if
end-for
Implementation in Java : Using codaddict's algorithm (Maybe slightly different)
import java.util.HashMap;
public class ArrayPairSum {
public static void main(String[] args) {
int []a = {2,45,7,3,5,1,8,9};
printSumPairs(a,10);
}
public static void printSumPairs(int []input, int k){
Map<Integer, Integer> pairs = new HashMap<Integer, Integer>();
for(int i=0;i<input.length;i++){
if(pairs.containsKey(input[i]))
System.out.println(input[i] +", "+ pairs.get(input[i]));
else
pairs.put(k-input[i], input[i]);
}
}
}
For input = {2,45,7,3,5,1,8,9} and if Sum is 10
Output pairs:
3,7
8,2
9,1
Some notes about the solution :
We iterate only once through the array --> O(n) time
Insertion and lookup time in Hash is O(1).
Overall time is O(n), although it uses extra space in terms of hash.
Solution in java. You can add all the String elements to an ArrayList of strings and return the list. Here I am just printing it out.
void numberPairsForSum(int[] array, int sum) {
HashSet<Integer> set = new HashSet<Integer>();
for (int num : array) {
if (set.contains(sum - num)) {
String s = num + ", " + (sum - num) + " add up to " + sum;
System.out.println(s);
}
set.add(num);
}
}
Python Implementation:
import itertools
list = [1, 1, 2, 3, 4, 5,]
uniquelist = set(list)
targetsum = 5
for n in itertools.combinations(uniquelist, 2):
if n[0] + n[1] == targetsum:
print str(n[0]) + " + " + str(n[1])
Output:
1 + 4
2 + 3
C++11, run time complexity O(n):
#include <vector>
#include <unordered_map>
#include <utility>
std::vector<std::pair<int, int>> FindPairsForSum(
const std::vector<int>& data, const int& sum)
{
std::unordered_map<int, size_t> umap;
std::vector<std::pair<int, int>> result;
for (size_t i = 0; i < data.size(); ++i)
{
if (0 < umap.count(sum - data[i]))
{
size_t j = umap[sum - data[i]];
result.push_back({data[i], data[j]});
}
else
{
umap[data[i]] = i;
}
}
return result;
}
Here is a solution witch takes into account duplicate entries. It is written in javascript and assumes array is sorted. The solution runs in O(n) time and does not use any extra memory aside from variable.
var count_pairs = function(_arr,x) {
if(!x) x = 0;
var pairs = 0;
var i = 0;
var k = _arr.length-1;
if((k+1)<2) return pairs;
var halfX = x/2;
while(i<k) {
var curK = _arr[k];
var curI = _arr[i];
var pairsThisLoop = 0;
if(curK+curI==x) {
// if midpoint and equal find combinations
if(curK==curI) {
var comb = 1;
while(--k>=i) pairs+=(comb++);
break;
}
// count pair and k duplicates
pairsThisLoop++;
while(_arr[--k]==curK) pairsThisLoop++;
// add k side pairs to running total for every i side pair found
pairs+=pairsThisLoop;
while(_arr[++i]==curI) pairs+=pairsThisLoop;
} else {
// if we are at a mid point
if(curK==curI) break;
var distK = Math.abs(halfX-curK);
var distI = Math.abs(halfX-curI);
if(distI > distK) while(_arr[++i]==curI);
else while(_arr[--k]==curK);
}
}
return pairs;
}
I solved this during an interview for a large corporation. They took it but not me.
So here it is for everyone.
Start at both side of the array and slowly work your way inwards making sure to count duplicates if they exist.
It only counts pairs but can be reworked to
find the pairs
find pairs < x
find pairs > x
Enjoy!
O(n)
def find_pairs(L,sum):
s = set(L)
edgeCase = sum/2
if L.count(edgeCase) ==2:
print edgeCase, edgeCase
s.remove(edgeCase)
for i in s:
diff = sum-i
if diff in s:
print i, diff
L = [2,45,7,3,5,1,8,9]
sum = 10
find_pairs(L,sum)
Methodology: a + b = c, so instead of looking for (a,b) we look for a = c -
b
Implementation in Java : Using codaddict's algorithm:
import java.util.Hashtable;
public class Range {
public static void main(String[] args) {
// TODO Auto-generated method stub
Hashtable mapping = new Hashtable();
int a[]= {80,79,82,81,84,83,85};
int k = 160;
for (int i=0; i < a.length; i++){
mapping.put(a[i], i);
}
for (int i=0; i < a.length; i++){
if (mapping.containsKey(k - a[i]) && (Integer)mapping.get(k-a[i]) != i){
System.out.println(k-a[i]+", "+ a[i]);
}
}
}
}
Output:
81, 79
79, 81
If you want duplicate pairs (eg: 80,80) also then just remove && (Integer)mapping.get(k-a[i]) != i from the if condition and you are good to go.
Just attended this question on HackerRank and here's my 'Objective C' Solution:
-(NSNumber*)sum:(NSArray*) a andK:(NSNumber*)k {
NSMutableDictionary *dict = [NSMutableDictionary dictionary];
long long count = 0;
for(long i=0;i<a.count;i++){
if(dict[a[i]]) {
count++;
NSLog(#"a[i]: %#, dict[array[i]]: %#", a[i], dict[a[i]]);
}
else{
NSNumber *calcNum = #(k.longLongValue-((NSNumber*)a[i]).longLongValue);
dict[calcNum] = a[i];
}
}
return #(count);
}
Hope it helps someone.
this is the implementation of O(n*lg n) using binary search implementation inside a loop.
#include <iostream>
using namespace std;
bool *inMemory;
int pairSum(int arr[], int n, int k)
{
int count = 0;
if(n==0)
return count;
for (int i = 0; i < n; ++i)
{
int start = 0;
int end = n-1;
while(start <= end)
{
int mid = start + (end-start)/2;
if(i == mid)
break;
else if((arr[i] + arr[mid]) == k && !inMemory[i] && !inMemory[mid])
{
count++;
inMemory[i] = true;
inMemory[mid] = true;
}
else if(arr[i] + arr[mid] >= k)
{
end = mid-1;
}
else
start = mid+1;
}
}
return count;
}
int main()
{
int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
inMemory = new bool[10];
for (int i = 0; i < 10; ++i)
{
inMemory[i] = false;
}
cout << pairSum(arr, 10, 11) << endl;
return 0;
}
In python
arr = [1, 2, 4, 6, 10]
diff_hash = {}
expected_sum = 3
for i in arr:
if diff_hash.has_key(i):
print i, diff_hash[i]
key = expected_sum - i
diff_hash[key] = i
Nice solution from Codeaddict. I took the liberty of implementing a version of it in Ruby:
def find_sum(arr,sum)
result ={}
h = Hash[arr.map {|i| [i,i]}]
arr.each { |l| result[l] = sum-l if h[sum-l] && !result[sum-l] }
result
end
To allow duplicate pairs (1,5), (5,1) we just have to remove the && !result[sum-l] instruction
Here is Java code for three approaches:
1. Using Map O(n), HashSet can also be used here.
2. Sort array and then use BinarySearch to look for complement O(nLog(n))
3. Traditional BruteForce two loops O(n^2)
public class PairsEqualToSum {
public static void main(String[] args) {
int a[] = {1,10,5,8,2,12,6,4};
findPairs1(a,10);
findPairs2(a,10);
findPairs3(a,10);
}
//Method1 - O(N) use a Map to insert values as keys & check for number's complement in map
static void findPairs1(int[]a, int sum){
Map<Integer, Integer> pairs = new HashMap<Integer, Integer>();
for(int i=0; i<a.length; i++){
if(pairs.containsKey(sum-a[i]))
System.out.println("("+a[i]+","+(sum-a[i])+")");
else
pairs.put(a[i], 0);
}
}
//Method2 - O(nlog(n)) using Sort
static void findPairs2(int[]a, int sum){
Arrays.sort(a);
for(int i=0; i<a.length/2; i++){
int complement = sum - a[i];
int foundAtIndex = Arrays.binarySearch(a,complement);
if(foundAtIndex >0 && foundAtIndex != i) //to avoid situation where binarySearch would find the original and not the complement like "5"
System.out.println("("+a[i]+","+(sum-a[i])+")");
}
}
//Method 3 - Brute Force O(n^2)
static void findPairs3(int[]a, int sum){
for(int i=0; i<a.length; i++){
for(int j=i; j<a.length;j++){
if(a[i]+a[j] == sum)
System.out.println("("+a[i]+","+a[j]+")");
}
}
}
}
A Simple program in java for arrays having unique elements:
import java.util.*;
public class ArrayPairSum {
public static void main(String[] args) {
int []a = {2,4,7,3,5,1,8,9,5};
sumPairs(a,10);
}
public static void sumPairs(int []input, int k){
Set<Integer> set = new HashSet<Integer>();
for(int i=0;i<input.length;i++){
if(set.contains(input[i]))
System.out.println(input[i] +", "+(k-input[i]));
else
set.add(k-input[i]);
}
}
}
A simple Java code snippet for printing the pairs below:
public static void count_all_pairs_with_given_sum(int arr[], int S){
if(arr.length < 2){
return;
}
HashSet values = new HashSet(arr.length);
for(int value : arr)values.add(value);
for(int value : arr){
int difference = S - value;
if(values.contains(difference) && value<difference){
System.out.printf("(%d, %d) %n", value, difference);
}
}
}
Another solution in Swift: the idea is to create an hash that store values of (sum - currentValue) and compare this to the current value of the loop. The complexity is O(n).
func findPair(list: [Int], _ sum: Int) -> [(Int, Int)]? {
var hash = Set<Int>() //save list of value of sum - item.
var dictCount = [Int: Int]() //to avoid the case A*2 = sum where we have only one A in the array
var foundKeys = Set<Int>() //to avoid duplicated pair in the result.
var result = [(Int, Int)]() //this is for the result.
for item in list {
//keep track of count of each element to avoid problem: [2, 3, 5], 10 -> result = (5,5)
if (!dictCount.keys.contains(item)) {
dictCount[item] = 1
} else {
dictCount[item] = dictCount[item]! + 1
}
//if my hash does not contain the (sum - item) value -> insert to hash.
if !hash.contains(sum-item) {
hash.insert(sum-item)
}
//check if current item is the same as another hash value or not, if yes, return the tuple.
if hash.contains(item) &&
(dictCount[item] > 1 || sum != item*2) // check if we have item*2 = sum or not.
{
if !foundKeys.contains(item) && !foundKeys.contains(sum-item) {
foundKeys.insert(item) //add to found items in order to not to add duplicated pair.
result.append((item, sum-item))
}
}
}
return result
}
//test:
let a = findPair([2,3,5,4,1,7,6,8,9,5,3,3,3,3,3,3,3,3,3], 14) //will return (8,6) and (9,5)
My Solution - Java - Without duplicates
public static void printAllPairSum(int[] a, int x){
System.out.printf("printAllPairSum(%s,%d)\n", Arrays.toString(a),x);
if(a==null||a.length==0){
return;
}
int length = a.length;
Map<Integer,Integer> reverseMapOfArray = new HashMap<>(length,1.0f);
for (int i = 0; i < length; i++) {
reverseMapOfArray.put(a[i], i);
}
for (int i = 0; i < length; i++) {
Integer j = reverseMapOfArray.get(x - a[i]);
if(j!=null && i<j){
System.out.printf("a[%d] + a[%d] = %d + %d = %d\n",i,j,a[i],a[j],x);
}
}
System.out.println("------------------------------");
}
This prints the pairs and avoids duplicates using bitwise manipulation.
public static void findSumHashMap(int[] arr, int key) {
Map<Integer, Integer> valMap = new HashMap<Integer, Integer>();
for(int i=0;i<arr.length;i++)
valMap.put(arr[i], i);
int indicesVisited = 0;
for(int i=0;i<arr.length;i++) {
if(valMap.containsKey(key - arr[i]) && valMap.get(key - arr[i]) != i) {
if(!((indicesVisited & ((1<<i) | (1<<valMap.get(key - arr[i])))) > 0)) {
int diff = key-arr[i];
System.out.println(arr[i] + " " +diff);
indicesVisited = indicesVisited | (1<<i) | (1<<valMap.get(key - arr[i]));
}
}
}
}
I bypassed the bit manuplation and just compared the index values. This is less than the loop iteration value (i in this case). This will not print the duplicate pairs and duplicate array elements also.
public static void findSumHashMap(int[] arr, int key) {
Map<Integer, Integer> valMap = new HashMap<Integer, Integer>();
for (int i = 0; i < arr.length; i++) {
valMap.put(arr[i], i);
}
for (int i = 0; i < arr.length; i++) {
if (valMap.containsKey(key - arr[i])
&& valMap.get(key - arr[i]) != i) {
if (valMap.get(key - arr[i]) < i) {
int diff = key - arr[i];
System.out.println(arr[i] + " " + diff);
}
}
}
}
in C#:
int[] array = new int[] { 1, 5, 7, 2, 9, 8, 4, 3, 6 }; // given array
int sum = 10; // given sum
for (int i = 0; i <= array.Count() - 1; i++)
if (array.Contains(sum - array[i]))
Console.WriteLine("{0}, {1}", array[i], sum - array[i]);
One Solution can be this, but not optimul (The complexity of this code is O(n^2)):
public class FindPairsEqualToSum {
private static int inputSum = 0;
public static List<String> findPairsForSum(int[] inputArray, int sum) {
List<String> list = new ArrayList<String>();
List<Integer> inputList = new ArrayList<Integer>();
for (int i : inputArray) {
inputList.add(i);
}
for (int i : inputArray) {
int tempInt = sum - i;
if (inputList.contains(tempInt)) {
String pair = String.valueOf(i + ", " + tempInt);
list.add(pair);
}
}
return list;
}
}
A simple python version of the code that find a pair sum of zero and can be modify to find k:
def sumToK(lst):
k = 0 # <- define the k here
d = {} # build a dictionary
# build the hashmap key = val of lst, value = i
for index, val in enumerate(lst):
d[val] = index
# find the key; if a key is in the dict, and not the same index as the current key
for i, val in enumerate(lst):
if (k-val) in d and d[k-val] != i:
return True
return False
The run time complexity of the function is O(n) and Space: O(n) as well.
public static int[] f (final int[] nums, int target) {
int[] r = new int[2];
r[0] = -1;
r[1] = -1;
int[] vIndex = new int[0Xfff];
for (int i = 0; i < nums.length; i++) {
int delta = 0Xff;
int gapIndex = target - nums[i] + delta;
if (vIndex[gapIndex] != 0) {
r[0] = vIndex[gapIndex];
r[1] = i + 1;
return r;
} else {
vIndex[nums[i] + delta] = i + 1;
}
}
return r;
}
less than o(n) solution will be=>
function(array,k)
var map = {};
for element in array
map(element) = true;
if(map(k-element))
return {k,element}
Solution in Python using list comprehension
f= [[i,j] for i in list for j in list if j+i==X];
O(N2)
also gives two ordered pairs- (a,b) and (b,a) as well
I can do it in O(n). Let me know when you want the answer. Note it involves simply traversing the array once with no sorting, etc... I should mention too that it exploits commutativity of addition and doesn't use hashes but wastes memory.
using System;
using System.Collections.Generic;
/*
An O(n) approach exists by using a lookup table. The approach is to store the value in a "bin" that can easily be looked up(e.g., O(1)) if it is a candidate for an appropriate sum.
e.g.,
for each a[k] in the array we simply put the it in another array at the location x - a[k].
Suppose we have [0, 1, 5, 3, 6, 9, 8, 7] and x = 9
We create a new array,
indexes value
9 - 0 = 9 0
9 - 1 = 8 1
9 - 5 = 4 5
9 - 3 = 6 3
9 - 6 = 3 6
9 - 9 = 0 9
9 - 8 = 1 8
9 - 7 = 2 7
THEN the only values that matter are the ones who have an index into the new table.
So, say when we reach 9 or equal we see if our new array has the index 9 - 9 = 0. Since it does we know that all the values it contains will add to 9. (note in this cause it's obvious there is only 1 possible one but it might have multiple index values in it which we need to store).
So effectively what we end up doing is only having to move through the array once. Because addition is commutative we will end up with all the possible results.
For example, when we get to 6 we get the index into our new table as 9 - 6 = 3. Since the table contains that index value we know the values.
This is essentially trading off speed for memory.
*/
namespace sum
{
class Program
{
static void Main(string[] args)
{
int num = 25;
int X = 10;
var arr = new List<int>();
for(int i = 0; i <= num; i++) arr.Add((new Random((int)(DateTime.Now.Ticks + i*num))).Next(0, num*2));
Console.Write("["); for (int i = 0; i < num - 1; i++) Console.Write(arr[i] + ", "); Console.WriteLine(arr[arr.Count-1] + "] - " + X);
var arrbrute = new List<Tuple<int,int>>();
var arrfast = new List<Tuple<int,int>>();
for(int i = 0; i < num; i++)
for(int j = i+1; j < num; j++)
if (arr[i] + arr[j] == X)
arrbrute.Add(new Tuple<int, int>(arr[i], arr[j]));
int M = 500;
var lookup = new List<List<int>>();
for(int i = 0; i < 1000; i++) lookup.Add(new List<int>());
for(int i = 0; i < num; i++)
{
// Check and see if we have any "matches"
if (lookup[M + X - arr[i]].Count != 0)
{
foreach(var j in lookup[M + X - arr[i]])
arrfast.Add(new Tuple<int, int>(arr[i], arr[j]));
}
lookup[M + arr[i]].Add(i);
}
for(int i = 0; i < arrbrute.Count; i++)
Console.WriteLine(arrbrute[i].Item1 + " + " + arrbrute[i].Item2 + " = " + X);
Console.WriteLine("---------");
for(int i = 0; i < arrfast.Count; i++)
Console.WriteLine(arrfast[i].Item1 + " + " + arrfast[i].Item2 + " = " + X);
Console.ReadKey();
}
}
}
I implemented logic in Scala with out a Map. It gives duplicate pairs since the counter loops thru entire elements of the array. If duplicate pairs are needed, you can simply return the value pc
val arr = Array[Int](8, 7, 2, 5, 3, 1, 5)
val num = 10
var pc = 0
for(i <- arr.indices) {
if(arr.contains(Math.abs(arr(i) - num))) pc += 1
}
println(s"Pairs: ${pc/2}")
It is working with duplicates values in the array as well.
GOLANG Implementation
func findPairs(slice1 []int, sum int) [][]int {
pairMap := make(map[int]int)
var SliceOfPairs [][]int
for i, v := range slice1 {
if valuei, ok := pairMap[v]; ok {
//fmt.Println("Pair Found", i, valuei)
SliceOfPairs = append(SliceOfPairs, []int{i, valuei})
} else {
pairMap[sum-v] = i
}
}
return SliceOfPairs
}
function findPairOfNumbers(arr, targetSum) {
arr = arr.sort();
var low = 0, high = arr.length - 1, sum, result = [];
while(low < high) {
sum = arr[low] + arr[high];
if(sum < targetSum)
low++;
else if(sum > targetSum)
high--;
else if(sum === targetSum) {
result.push({val1: arr[low], val2: arr[high]});
high--;
}
}
return (result || false);
}
var pairs = findPairOfNumbers([1,2,3,4,5,6,7,8,9,0], 7);
if(pairs.length) {
console.log(pairs);
} else {
console.log("No pair of numbers found that sums to " + 7);
}

Getting the submatrix with maximum sum?

Input: A 2-dimensional array NxN - Matrix - with positive and negative elements.Output: A submatrix of any size such that its summation is the maximum among all possible submatrices.
Requirement: Algorithm complexity to be of O(N^3)
History: With the help of the Algorithmist, Larry and a modification of Kadane's Algorithm, i managed to solve the problem partly which is determining the summation only - below in Java.
Thanks to Ernesto who managed to solve the rest of the problem which is determining the boundaries of the matrix i.e. top-left, bottom-right corners - below in Ruby.
Here's an explanation to go with the posted code. There are two key tricks to make this work efficiently: (I) Kadane's algorithm and (II) using prefix sums. You also need to (III) apply the tricks to the matrix.
Part I: Kadane's algorithm
Kadane's algorithm is a way to find a contiguous subsequence with maximum sum. Let's start with a brute force approach for finding the max contiguous subsequence and then consider optimizing it to get Kadane's algorithm.
Suppose you have the sequence:
-1, 2, 3, -2
For the brute force approach, walk along the sequence generating all possible subsequences as shown below. Considering all possibilities, we can start, extend, or end a list with each step.
At index 0, we consider appending the -1
-1, 2, 3, -2
^
Possible subsequences:
-1 [sum -1]
At index 1, we consider appending the 2
-1, 2, 3, -2
^
Possible subsequences:
-1 (end) [sum -1]
-1, 2 [sum 1]
2 [sum 2]
At index 2, we consider appending the 3
-1, 2, 3, -2
^
Possible subsequences:
-1, (end) [sum -1]
-1, 2 (end) [sum -1]
2 (end) [sum 2]
-1, 2, 3 [sum 4]
2, 3 [sum 5]
3 [sum 3]
At index 3, we consider appending the -2
-1, 2, 3, -2
^
Possible subsequences:
-1, (end) [sum -1]
-1, 2 (end) [sum 1]
2 (end) [sum 2]
-1, 2 3 (end) [sum 4]
2, 3 (end) [sum 5]
3, (end) [sum 3]
-1, 2, 3, -2 [sum 2]
2, 3, -2 [sum 3]
3, -2 [sum 1]
-2 [sum -2]
For this brute force approach, we finally pick the list with the best sum, (2, 3), and that's the answer. However, to make this efficient, consider that you really don't need to keep every one of the lists. Out of the lists that have not ended, you only need to keep the best one, the others cannot do any better. Out of the lists that have ended, you only might need to keep the best one, and only if it's better than ones that have not ended.
So, you can keep track of what you need with just a position array and a sum array. The position array is defined like this: position[r] = s keeps track of the list which ends at r and starts at s. And, sum[r] gives a sum for the subsequence ending at index r. This is optimized approach is Kadane's algorithm.
Running through the example again keeping track of our progress this way:
At index 0, we consider appending the -1
-1, 2, 3, -2
^
We start a new subsequence for the first element.
position[0] = 0
sum[0] = -1
At index 1, we consider appending the 2
-1, 2, 3, -2
^
We choose to start a new subsequence because that gives a higher sum than extending.
position[0] = 0 sum[0] = -1
position[1] = 1 sum[1] = 2
At index 2, we consider appending the 3
-1, 2, 3, -2
^
We choose to extend a subsequence because that gives a higher sum than starting a new one.
position[0] = 0 sum[0] = -1
position[1] = 1 sum[1] = 2
position[2] = 1 sum[2] = 5
Again, we choose to extend because that gives a higher sum that starting a new one.
-1, 2, 3, -2
^
position[0] = 0 sum[0] = -1
position[1] = 1 sum[1] = 2
position[2] = 1 sum[2] = 5
positions[3] = 3 sum[3] = 3
Again, the best sum is 5 and the list is from index 1 to index 2, which is (2, 3).
Part II: Prefix sums
We want to have a way to compute the sum along a row, for any start point to any endpoint. I want to compute that sum in O(1) time rather than just adding, which takes O(m) time where m is the number of elements in the sum. With some precomputing, this can be achieved. Here's how. Suppose you have a matrix:
a d g
b e h
c f i
You can precompute this matrix:
a d g
a+b d+e g+h
a+b+c d+e+f g+h+i
Once that is done you can get the sum running along any column from any start to endpoint in the column just by subtracting two values.
Part III: Bringing tricks together to find the max submatrix
Assume that you know the top and bottom row of the max submatrix. You could do this:
Ignore rows above your top row and ignore rows below your bottom
row.
With what matrix remains, consider the using sum of each column to
form a sequence (sort of like a row that represents multiple rows).
(You can compute any element of this sequence rapidly with the prefix
sums approach.)
Use Kadane's approach to figure out best subsequence in this
sequence. The indexes you get will tell you the left and right
positions of the best submatrix.
Now, what about actually figuring out the top and bottom row? Just try all possibilities. Try putting the top anywhere you can and putting the bottom anywhere you can, and run the Kadane-base procedure described previously for every possibility. When you find a max, you keep track of the top and bottom position.
Finding the row and column takes O(M^2) where M is the number of rows. Finding the column takes O(N) time where N is the number of columns. So total time is O(M^2 * N). And, if M=N, the time required is O(N^3).
About recovering the actual submatrix, and not just the maximum sum, here's what I got. Sorry I do not have time to translate my code to your java version, so I'm posting my Ruby code with some comments in the key parts
def max_contiguous_submatrix_n3(m)
rows = m.count
cols = rows ? m.first.count : 0
vps = Array.new(rows)
for i in 0..rows
vps[i] = Array.new(cols, 0)
end
for j in 0...cols
vps[0][j] = m[0][j]
for i in 1...rows
vps[i][j] = vps[i-1][j] + m[i][j]
end
end
max = [m[0][0],0,0,0,0] # this is the result, stores [max,top,left,bottom,right]
# these arrays are used over Kadane
sum = Array.new(cols) # obvious sum array used in Kadane
pos = Array.new(cols) # keeps track of the beginning position for the max subseq ending in j
for i in 0...rows
for k in i...rows
# Kadane over all columns with the i..k rows
sum.fill(0) # clean both the sum and pos arrays for the upcoming Kadane
pos.fill(0)
local_max = 0 # we keep track of the position of the max value over each Kadane's execution
# notice that we do not keep track of the max value, but only its position
sum[0] = vps[k][0] - (i==0 ? 0 : vps[i-1][0])
for j in 1...cols
value = vps[k][j] - (i==0 ? 0 : vps[i-1][j])
if sum[j-1] > 0
sum[j] = sum[j-1] + value
pos[j] = pos[j-1]
else
sum[j] = value
pos[j] = j
end
if sum[j] > sum[local_max]
local_max = j
end
end
# Kadane ends here
# Here's the key thing
# If the max value obtained over the past Kadane's execution is larger than
# the current maximum, then update the max array with sum and bounds
if sum[local_max] > max[0]
# sum[local_max] is the new max value
# the corresponding submatrix goes from rows i..k.
# and from columns pos[local_max]..local_max
# the array below contains [max_sum,top,left,bottom,right]
max = [sum[local_max], i, pos[local_max], k, local_max]
end
end
end
return max # return the array with [max_sum,top,left,bottom,right]
end
Some notes for clarification:
I use an array to store all the values pertaining to the result for convenience. You can just use five standalone variables: max, top, left, bottom, right. It's just easier to assign in one line to the array and then the subroutine returns the array with all the needed information.
If you copy and paste this code in a text-highlight-enabled editor with Ruby support you'll obviously understand it better. Hope this helps!
There are already plenty of answers, but here is another Java implementation I wrote. It compares 3 solutions:
Naïve (brute force) - O(n^6) time
The obvious DP solution - O(n^4) time and O(n^3) space
The more clever DP solution based on Kadane's algorithm - O(n^3) time and O(n^2) space
There are sample runs for n = 10 thru n = 70 in increments of 10 with a nice output comparing run time and space requirements.
Code:
public class MaxSubarray2D {
static int LENGTH;
final static int MAX_VAL = 10;
public static void main(String[] args) {
for (int i = 10; i <= 70; i += 10) {
LENGTH = i;
int[][] a = new int[LENGTH][LENGTH];
for (int row = 0; row < LENGTH; row++) {
for (int col = 0; col < LENGTH; col++) {
a[row][col] = (int) (Math.random() * (MAX_VAL + 1));
if (Math.random() > 0.5D) {
a[row][col] = -a[row][col];
}
//System.out.printf("%4d", a[row][col]);
}
//System.out.println();
}
System.out.println("N = " + LENGTH);
System.out.println("-------");
long start, end;
start = System.currentTimeMillis();
naiveSolution(a);
end = System.currentTimeMillis();
System.out.println(" run time: " + (end - start) + " ms no auxiliary space requirements");
start = System.currentTimeMillis();
dynamicProgammingSolution(a);
end = System.currentTimeMillis();
System.out.println(" run time: " + (end - start) + " ms requires auxiliary space for "
+ ((int) Math.pow(LENGTH, 4)) + " integers");
start = System.currentTimeMillis();
kadane2D(a);
end = System.currentTimeMillis();
System.out.println(" run time: " + (end - start) + " ms requires auxiliary space for " +
+ ((int) Math.pow(LENGTH, 2)) + " integers");
System.out.println();
System.out.println();
}
}
// O(N^2) !!!
public static void kadane2D(int[][] a) {
int[][] s = new int[LENGTH + 1][LENGTH]; // [ending row][sum from row zero to ending row] (rows 1-indexed!)
for (int r = 0; r < LENGTH + 1; r++) {
for (int c = 0; c < LENGTH; c++) {
s[r][c] = 0;
}
}
for (int r = 1; r < LENGTH + 1; r++) {
for (int c = 0; c < LENGTH; c++) {
s[r][c] = s[r - 1][c] + a[r - 1][c];
}
}
int maxSum = Integer.MIN_VALUE;
int maxRowStart = -1;
int maxColStart = -1;
int maxRowEnd = -1;
int maxColEnd = -1;
for (int r1 = 1; r1 < LENGTH + 1; r1++) { // rows 1-indexed!
for (int r2 = r1; r2 < LENGTH + 1; r2++) { // rows 1-indexed!
int[] s1 = new int[LENGTH];
for (int c = 0; c < LENGTH; c++) {
s1[c] = s[r2][c] - s[r1 - 1][c];
}
int max = 0;
int c1 = 0;
for (int c = 0; c < LENGTH; c++) {
max = s1[c] + max;
if (max <= 0) {
max = 0;
c1 = c + 1;
}
if (max > maxSum) {
maxSum = max;
maxRowStart = r1 - 1;
maxColStart = c1;
maxRowEnd = r2 - 1;
maxColEnd = c;
}
}
}
}
System.out.print("KADANE SOLUTION | Max sum: " + maxSum);
System.out.print(" Start: (" + maxRowStart + ", " + maxColStart +
") End: (" + maxRowEnd + ", " + maxColEnd + ")");
}
// O(N^4) !!!
public static void dynamicProgammingSolution(int[][] a) {
int[][][][] dynTable = new int[LENGTH][LENGTH][LENGTH + 1][LENGTH + 1]; // [row][col][height][width]
int maxSum = Integer.MIN_VALUE;
int maxRowStart = -1;
int maxColStart = -1;
int maxRowEnd = -1;
int maxColEnd = -1;
for (int r = 0; r < LENGTH; r++) {
for (int c = 0; c < LENGTH; c++) {
for (int h = 0; h < LENGTH + 1; h++) {
for (int w = 0; w < LENGTH + 1; w++) {
dynTable[r][c][h][w] = 0;
}
}
}
}
for (int r = 0; r < LENGTH; r++) {
for (int c = 0; c < LENGTH; c++) {
for (int h = 1; h <= LENGTH - r; h++) {
int rowTotal = 0;
for (int w = 1; w <= LENGTH - c; w++) {
rowTotal += a[r + h - 1][c + w - 1];
dynTable[r][c][h][w] = rowTotal + dynTable[r][c][h - 1][w];
}
}
}
}
for (int r = 0; r < LENGTH; r++) {
for (int c = 0; c < LENGTH; c++) {
for (int h = 0; h < LENGTH + 1; h++) {
for (int w = 0; w < LENGTH + 1; w++) {
if (dynTable[r][c][h][w] > maxSum) {
maxSum = dynTable[r][c][h][w];
maxRowStart = r;
maxColStart = c;
maxRowEnd = r + h - 1;
maxColEnd = c + w - 1;
}
}
}
}
}
System.out.print(" DP SOLUTION | Max sum: " + maxSum);
System.out.print(" Start: (" + maxRowStart + ", " + maxColStart +
") End: (" + maxRowEnd + ", " + maxColEnd + ")");
}
// O(N^6) !!!
public static void naiveSolution(int[][] a) {
int maxSum = Integer.MIN_VALUE;
int maxRowStart = -1;
int maxColStart = -1;
int maxRowEnd = -1;
int maxColEnd = -1;
for (int rowStart = 0; rowStart < LENGTH; rowStart++) {
for (int colStart = 0; colStart < LENGTH; colStart++) {
for (int rowEnd = 0; rowEnd < LENGTH; rowEnd++) {
for (int colEnd = 0; colEnd < LENGTH; colEnd++) {
int sum = 0;
for (int row = rowStart; row <= rowEnd; row++) {
for (int col = colStart; col <= colEnd; col++) {
sum += a[row][col];
}
}
if (sum > maxSum) {
maxSum = sum;
maxRowStart = rowStart;
maxColStart = colStart;
maxRowEnd = rowEnd;
maxColEnd = colEnd;
}
}
}
}
}
System.out.print(" NAIVE SOLUTION | Max sum: " + maxSum);
System.out.print(" Start: (" + maxRowStart + ", " + maxColStart +
") End: (" + maxRowEnd + ", " + maxColEnd + ")");
}
}
Here is a Java version of Ernesto implementation with some modifications:
public int[][] findMaximumSubMatrix(int[][] matrix){
int dim = matrix.length;
//computing the vertical prefix sum for columns
int[][] ps = new int[dim][dim];
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
if (j == 0) {
ps[j][i] = matrix[j][i];
} else {
ps[j][i] = matrix[j][i] + ps[j - 1][i];
}
}
}
int maxSum = matrix[0][0];
int top = 0, left = 0, bottom = 0, right = 0;
//Auxiliary variables
int[] sum = new int[dim];
int[] pos = new int[dim];
int localMax;
for (int i = 0; i < dim; i++) {
for (int k = i; k < dim; k++) {
// Kadane over all columns with the i..k rows
reset(sum);
reset(pos);
localMax = 0;
//we keep track of the position of the max value over each Kadane's execution
// notice that we do not keep track of the max value, but only its position
sum[0] = ps[k][0] - (i==0 ? 0 : ps[i-1][0]);
for (int j = 1; j < dim; j++) {
if (sum[j-1] > 0){
sum[j] = sum[j-1] + ps[k][j] - (i==0 ? 0 : ps[i-1][j]);
pos[j] = pos[j-1];
}else{
sum[j] = ps[k][j] - (i==0 ? 0 : ps[i-1][j]);
pos[j] = j;
}
if (sum[j] > sum[localMax]){
localMax = j;
}
}//Kadane ends here
if (sum[localMax] > maxSum){
/* sum[localMax] is the new max value
the corresponding submatrix goes from rows i..k.
and from columns pos[localMax]..localMax
*/
maxSum = sum[localMax];
top = i;
left = pos[localMax];
bottom = k;
right = localMax;
}
}
}
System.out.println("Max SubMatrix determinant = " + maxSum);
//composing the required matrix
int[][] output = new int[bottom - top + 1][right - left + 1];
for(int i = top, k = 0; i <= bottom; i++, k++){
for(int j = left, l = 0; j <= right ; j++, l++){
output[k][l] = matrix[i][j];
}
}
return output;
}
private void reset(int[] a) {
for (int index = 0; index < a.length; index++) {
a[index] = 0;
}
}
With the help of the Algorithmist and Larry and a modification of Kadane's Algorithm, here is my solution:
int dim = matrix.length;
//computing the vertical prefix sum for columns
int[][] ps = new int[dim][dim];
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
if (j == 0) {
ps[j][i] = matrix[j][i];
} else {
ps[j][i] = matrix[j][i] + ps[j - 1][i];
}
}
}
int maxSoFar = 0;
int min , subMatrix;
//iterate over the possible combinations applying Kadane's Alg.
for (int i = 0; i < dim; i++) {
for (int j = i; j < dim; j++) {
min = 0;
subMatrix = 0;
for (int k = 0; k < dim; k++) {
if (i == 0) {
subMatrix += ps[j][k];
} else {
subMatrix += ps[j][k] - ps[i - 1 ][k];
}
if(subMatrix < min){
min = subMatrix;
}
if((subMatrix - min) > maxSoFar){
maxSoFar = subMatrix - min;
}
}
}
}
The only thing left is to determine the submatrix elements, i.e: the top left and the bottom right corner of the submatrix. Anyone suggestion?
this is my implementation of 2D Kadane algorithm. I think it is more clear. The concept is based on just kadane algorithm. The first and second loop of the main part (that is in the bottom of the code) is to pick every combination of the rows and 3rd loop is to use 1D kadane algorithm by every following column sum (that can be computed in const time because of preprocessing of matrix by subtracting values from two picked (from combintation) rows). Here is the code:
int [][] m = {
{1,-5,-5},
{1,3,-5},
{1,3,-5}
};
int N = m.length;
// summing columns to be able to count sum between two rows in some column in const time
for (int i=0; i<N; ++i)
m[0][i] = m[0][i];
for (int j=1; j<N; ++j)
for (int i=0; i<N; ++i)
m[j][i] = m[j][i] + m[j-1][i];
int total_max = 0, sum;
for (int i=0; i<N; ++i) {
for (int k=i; k<N; ++k) { //for each combination of rows
sum = 0;
for (int j=0; j<N; j++) { //kadane algorithm for every column
sum += i==0 ? m[k][j] : m[k][j] - m[i-1][j]; //for first upper row is exception
total_max = Math.max(sum, total_max);
}
}
}
System.out.println(total_max);
I am going to post an answer here and can add actual c++ code if it is requested because I had recently worked through this. Some rumors of a divide and conqueror that can solve this in O(N^2) are out there but I haven't seen any code to support this. In my experience the following is what I have found.
O(i^3j^3) -- naive brute force method
o(i^2j^2) -- dynamic programming with memoization
O(i^2j) -- using max contiguous sub sequence for an array
if ( i == j )
O(n^6) -- naive
O(n^4) -- dynamic programming
O(n^3) -- max contiguous sub sequence
Have a look at JAMA package; I believe it will make your life easier.
Here is the C# solution. Ref: http://www.algorithmist.com/index.php/UVa_108
public static MaxSumMatrix FindMaxSumSubmatrix(int[,] inMtrx)
{
MaxSumMatrix maxSumMtrx = new MaxSumMatrix();
// Step 1. Create SumMatrix - do the cumulative columnar summation
// S[i,j] = S[i-1,j]+ inMtrx[i-1,j];
int m = inMtrx.GetUpperBound(0) + 2;
int n = inMtrx.GetUpperBound(1)+1;
int[,] sumMatrix = new int[m, n];
for (int i = 1; i < m; i++)
{
for (int j = 0; j < n; j++)
{
sumMatrix[i, j] = sumMatrix[i - 1, j] + inMtrx[i - 1, j];
}
}
PrintMatrix(sumMatrix);
// Step 2. Create rowSpans starting each rowIdx. For these row spans, create a 1-D array r_ij
for (int x = 0; x < n; x++)
{
for (int y = x; y < n; y++)
{
int[] r_ij = new int[n];
for (int k = 0; k < n; k++)
{
r_ij[k] = sumMatrix[y + 1,k] - sumMatrix[x, k];
}
// Step 3. Find MaxSubarray of this r_ij. If the sum is greater than the last recorded sum =>
// capture Sum, colStartIdx, ColEndIdx.
// capture current x as rowTopIdx, y as rowBottomIdx.
MaxSum currMaxSum = KadanesAlgo.FindMaxSumSubarray(r_ij);
if (currMaxSum.maxSum > maxSumMtrx.sum)
{
maxSumMtrx.sum = currMaxSum.maxSum;
maxSumMtrx.colStart = currMaxSum.maxStartIdx;
maxSumMtrx.colEnd = currMaxSum.maxEndIdx;
maxSumMtrx.rowStart = x;
maxSumMtrx.rowEnd = y;
}
}
}
return maxSumMtrx;
}
public static void PrintMatrix(int[,] matrix)
{
int endRow = matrix.GetUpperBound(0);
int endCol = matrix.GetUpperBound(1);
PrintMatrix(matrix, 0, endRow, 0, endCol);
}
public static void PrintMatrix(int[,] matrix, int startRow, int endRow, int startCol, int endCol)
{
StringBuilder sb = new StringBuilder();
for (int i = startRow; i <= endRow; i++)
{
sb.Append(Environment.NewLine);
for (int j = startCol; j <= endCol; j++)
{
sb.Append(string.Format("{0} ", matrix[i,j]));
}
}
Console.WriteLine(sb.ToString());
}
// Given an NxN matrix of positive and negative integers, write code to find the sub-matrix with the largest possible sum
public static MaxSum FindMaxSumSubarray(int[] inArr)
{
int currMax = 0;
int currStartIndex = 0;
// initialize maxSum to -infinity, maxStart and maxEnd idx to 0.
MaxSum mx = new MaxSum(int.MinValue, 0, 0);
// travers through the array
for (int currEndIndex = 0; currEndIndex < inArr.Length; currEndIndex++)
{
// add element value to the current max.
currMax += inArr[currEndIndex];
// if current max is more that the last maxSum calculated, set the maxSum and its idx
if (currMax > mx.maxSum)
{
mx.maxSum = currMax;
mx.maxStartIdx = currStartIndex;
mx.maxEndIdx = currEndIndex;
}
if (currMax < 0) // if currMax is -ve, change it back to 0
{
currMax = 0;
currStartIndex = currEndIndex + 1;
}
}
return mx;
}
struct MaxSum
{
public int maxSum;
public int maxStartIdx;
public int maxEndIdx;
public MaxSum(int mxSum, int mxStart, int mxEnd)
{
this.maxSum = mxSum;
this.maxStartIdx = mxStart;
this.maxEndIdx = mxEnd;
}
}
class MaxSumMatrix
{
public int sum = int.MinValue;
public int rowStart = -1;
public int rowEnd = -1;
public int colStart = -1;
public int colEnd = -1;
}
Here is my solution. It's O(n^3) in time and O(n^2) space.
https://gist.github.com/toliuweijing/6097144
// 0th O(n) on all candidate bottoms #B.
// 1th O(n) on candidate tops #T.
// 2th O(n) on finding the maximum #left/#right match.
int maxRect(vector<vector<int> >& mat) {
int n = mat.size();
vector<vector<int> >& colSum = mat;
for (int i = 1 ; i < n ; ++i)
for (int j = 0 ; j < n ; ++j)
colSum[i][j] += colSum[i-1][j];
int optrect = 0;
for (int b = 0 ; b < n ; ++b) {
for (int t = 0 ; t <= b ; ++t) {
int minLeft = 0;
int rowSum[n];
for (int i = 0 ; i < n ; ++i) {
int col = t == 0 ? colSum[b][i] : colSum[b][i] - colSum[t-1][i];
rowSum[i] = i == 0? col : col + rowSum[i-1];
optrect = max(optrect, rowSum[i] - minLeft);
minLeft = min(minLeft, rowSum[i]);
}
}
}
return optrect;
}
I would just parse the NxN array removing the -ves whatever remains is the highest sum of a sub matrix.
The question doesn't say you have to leave the original matrix intact or that the order matters.

Resources