Parallel curve like algorithm for graphs - algorithm

Is there a well know algorithm for calculating "parallel graph"? where by parallel graph I mean the same as parallel curve, vaguely called "offset curve", but with a graph instead of a curve. In the best case, it would allow for variable distance for each segment (connection).
Given following picture, where coordinates of nodes connected with red segments are known, as well as desired distance (thickness)
offset graph http://3.bp.blogspot.com/_MFJaWUFRFCk/TAEFKmfdGyI/AAAAAAAACXA/vTOBQLX4T0s/s320/screenshot2.png
how can I calculate points of black outlined polygons?

Check out the Straight Seleton strategy. There is an example implementation, here. The algorithm's complexity is documented here.
In addition, some other methods are documented here, A Survey of Polygon Offsetting Strategies.
There is a topic at GameDev as well.
Edit: The CGAL also has an implementation on this since v3.3, see the API. The author has nice presented a test file. (Not an implementation.) You can check out the source, however.

Related

Finding correspondence of edges for image matching

I have a challenging problem to solve. The Figure shows green lines, that are derived from an image and the red lines are the edges derived from another image. Both the images are taken from the same camera, so the intrinsic parameters are same. Only, the exterior parameters are different, i.e. there is a slight rotation and translation while taking the 2nd image. As it can be seen in the figure, the two sets of lines are pretty close. My task is to find correspondence between the edges derived from the 1st image and the edges derived from the second image.
I have gone through a few sources, that mention taking corresponding the nearest line segment, by calculating Euclidean distances between the endpoints of an edge of image 1 to the edges of image 2. However, this method is not acceptable for my case, as there are edges in image 1, near to other edges in image 2 that are not corresponding, and this will lead to a huge number of mismatches.
After a bit of more research, few more sources referred to Hausdorff distance. I believe that this could really be a solution to my problem and the paper
"Rucklidge, William J. "Efficiently locating objects using the
Hausdorff distance." International Journal of Computer Vision 24.3
(1997): 251-270."
seemed to be really interesting.
If, I got it correct the paper formulated a function for calculating translation of model edges to image edges. However, while implementation in MATLAB, I'm completely lost, where to begin. I will be much obliged if I can be directed to a pseudocode of the same algorithm or MATLAB implementation of the same.
Additionally, I am aware of
"Apply Hausdorff distance to tile image classification" link
and
"Hausdorff regression"
However, still, I'm unsure how to minimise Hausdorff distance.
Note1: Computational cost is not of concern now, but faster algorithm is preferred
Note2: I am open to other algorithms and methods to solve this as long as there is a pseudocode available or an open implementation.
Have you considered MATLAB's image registration tools?
With imregister(https://www.mathworks.com/help/images/ref/imregister.html), you can just insert both images, 1 as reference, one as "moving" and it will register them together using an affine transform. The function call is just
[optimizer, metric] = imregconfig('monomodal');
output_registered = imregister(moving,fixed,'affine',optimizer,metric);
For better visualization, use the RegistrationEstimator command to open up a gui in which you can import the 2 images and play around with it to register your images. From there you can export code for future images.
Furthermore if you wish to account for non-rigid transforms there is imregdemons(https://www.mathworks.com/help/images/ref/imregdemons.html) which works much the same way.
You can compute the Hausdorff distance using Matlab's bwdist function. You would compute the distance transform of one image, evaluate it at the edge points of the other, and take the maximum value. (You can also take the sum instead, in which case it is called the chamfer distance.) For this problem you'll probably want the symmetric Hausdorff distance, so you would do the computation in both directions.
Both Hausdorff and chamfer distance measure the match quality of a particular alignment. To find the best registration you'll need to try multiple alignment transformations and evaluate them all looking for the best one. As suggested in another answer, you may find it easier to use registration existing tools than to write your own.

Ray tracing: Bresenham's vs Siddon's algorithm

I'm developping a tool for radiotherapy inverse planning based in a pencil-beam approach. An important step in these methods (particularly in dose calculation) is a ray-tracing from many sources and one of the most used algorithms is Siddon's one (here there is a nice short description http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4218_CT_reconstruction_iterative_algebraic.pdf). Now, I will try to simplify my question:
The input data is a CT image (a 3D matrix with values) and some source positions around the image. You can imagine a cube and many points around, all at same distance but different orientation angles, where the radiation rays come from. Each ray will go through the volume and a value is assigned to each voxel according to the distance from the source. The advantage of Siddon's algorithm is that the length is calculated on-time during the iterative process of the ray-tracing. However, I know that Bresenham's algorithm is an efficient way to evaluate the path from one point to another in a matrix. Thus, the length from the source to a specific voxel could be easily calculated as the euclidean distance two points, even during Bresenham's iterative process.
So then, knowing that both are methods quite old already and efficient, there is a definitive advantage of using Siddon instead of Bresenham? Maybe I'm missing an important detail here but it is weird to me that in these dose calculation procedures Bresenham is not really an option and always Siddon appears as the gold standard.
Thanks for any comment or reply!
Good day.
It seems to me that in most applications involving medical ray tracing, you want not only the distance from a source to a particular voxel, but also the intersection lengths of that path with every single voxel on its way. Now, Bresenham gives you the voxels on that path, but not the intersection lengths, while Siddon does.

reference algorithm for weighted voronoi diagrams?

Can someone point me to a reference implementation on how to construct a (multiplicatively and/or additively) weighted voronoi diagram, which is preferably based on Fortune's voronoi algorithm?
My goal:
Given a set of points(each point has a weight) and a set of boundary edges(usually a rectangle) I want to construct a weighted voronoi diagram using either python or the processing.org-framework. Here is an example.
What I have worked on so far:
So far I have implemented Fortune's algorithm as well as the "centroidal voronoi tessellation" presented in Michael Balzer's paper. Algorithm 3 states how the weights need to be adjusted, however, when I implement this my geometry does not work anymore. To fix this the sweep-line algorithm has to be updated to take weights into account, but I have been unable to do this so far.
Hence I would like to see how other people solved this problem.
For additively weighted Voronoi Diagram: Remember that a power diagram in dimension n is only a(n unweighted) Voronoi diagram in dimension n+1.
For that, just recall that the Voronoi diagram of a point set is invariant if you add any constant to the coordinates, and that the weighted Voronoi diagram can thus be written as a non weighted Voronoi diagram using the coordinates, for example in 2D lifted to 3D:
(x_i, y_i, sqrt(C - w_i))
where w_i is the weight of the seed, and C is any arbitrarily large constant (in practice, one just small enough such that C-w_i is positive).
Once your diagram is computed, just discard the last component.
So, basically, you only need to find a library that is able to handle Voronoi diagrams in dimension n+1 compared to your problem. CGAL can do that. This also makes the implementation extremely easy.
This computation is not easy, but it is available in CGAL. See the manual pages here.
See also the Effective Computational Geometry project, which employs and
supports CGAL:
There is little `off-the-shelf' open source code out there, for the case where distances to the centers are weighted with a multiplicative factor.
To my knowledge, none of the current CGAL packages covers this case.
Takashi Ohyama's beautifully colorful website provides java implementations
http://www.nirarebakun.com/voro/emwvoro.html
for up to 100 points with a SIMPLE algorithm (Euclidean and Manhattan distances).
There is also a paper describing this simple intersection algorithm and an approximate implementation within O(n^3) time, as a plugin to TerraView.
However, I cannot find the source of this plugin in the TerraView / TerraLib repository:
http://www.geoinfo.info/geoinfo2011/papers/mauricio1.pdf
Aurenhammer and Edelsbrunner describe an optimal n^2 time algorithm, but I'm unaware of available code of that.
If you are comfortable digging into Octave, you could reference the code provided in their library.

Nearest neighbor zones visualized

I'm writing an app that looks up points in two-dimensional space using a k-d tree. It would be nice, during development, to be able to "see" the nearest-neighbor zones surrounding each point.
In the attached image, the red points are points in the k-d tree, and the blue lines surrounding each point bound the zone where a nearest neighbor search will return the contained point.
The image was created thusly:
for each point in the space:
da = distance to nearest neighbor
db = distance to second-nearest neighbor
if absolute_value(da - db) < 4:
draw blue pixel
This algorithm has two problems:
(more important) It's slow on my (reasonably fast Core i7) computer.
(less important) It's sloppy, as you can see by the varying widths of the blue lines.
What is this "visualization" of a set of points called?
What are some good algorithms to create such a visualization?
This is called a Voronoi Diagram and there are many excellent algorithms for generating them efficiently. The one I've heard about most is Fortune's algorithm, which runs in time O(n log n), though others algorithms exist for this problem.
Hope this helps!
Jacob,
hey, you found an interesting way of generating this Voronoi diagram, even though it is not so efficient.
The less important issue first: the varying thickness boundaries that you get, those butterfly shapes, are in fact the area between the two branches of an hyperbola. Precisely the hyperbola given by the equation |da - db| = 4. To get a thick line instead, you have to modify this criterion and replace it by the distance to the bisector of the two nearest neighbors, let A and B; using vector calculus, | PA.AB/||AB|| - ||AB||/2 | < 4.
The more important issue: there are two well known efficient solutions to the construction of the Voronoi diagram of a set of points: Fortune's sweep algorithm (as mentioned by templatetypedef) and Preparata & Shamos' Divide & Conquer solutions. Both run in optimal time O(N.Lg(N)) for N points, but aren't so easy to implement.
These algorithm will construct the Voronoi diagram as a set of line segments and half-lines. Check http://en.wikipedia.org/wiki/Voronoi_diagram.
This paper "Primitives for the manipulation of general subdivisions and the computation of Voronoi" describes both algorithms using a somewhat high-level framework, caring about all implementation details; the article is difficult but the algorithms are implementable.
You may also have a look at "A straightforward iterative algorithm for the planar Voronoi diagram", which I never tried.
A totally different approach is to directly build the distance map from the given points for example by means of Dijkstra's algorithm: starting from the given points, you grow the boundary of the area within a given distance from every point and you stop growing when two boundaries meet. [More explanations required.] See http://1.bp.blogspot.com/-O6rXggLa9fE/TnAwz4f9hXI/AAAAAAAAAPk/0vrqEKRPVIw/s1600/distmap-20-seed4-fin.jpg
Another good starting point (for efficiently computing the distance map) can be "A general algorithm for computing distance transforms in linear time".
From personal experience: Fortune's algorithm is a pain to implement. The divide and conquer algorithm presented by Guibas and Stolfi isn't too bad; they give detailed pseudocode that's easy to transcribe into a procedural programming language. Both will blow up if you have nearly degenerate inputs and use floating point, but since the primitives are quadratic, if you can represent coordinates as 32-bit integers, then you can use 64 bits to carry out the determinant computations.
Once you get it working, you might consider replacing your kd-tree algorithms, which have a Theta(√n) worst case, with algorithms that work on planar subdivisions.
You can find a great implementation for it at D3.js library: http://mbostock.github.com/d3/ex/voronoi.html

Simplified (or smooth) polygons that contain the original detailed polygon

I have a detailed 2D polygon (representing a geographic area) that is defined by a very large set of vertices. I'm looking for an algorithm that will simplify and smooth the polygon, (reducing the number of vertices) with the constraint that the area of the resulting polygon must contain all the vertices of the detailed polygon.
For context, here's an example of the edge of one complex polygon:
My research:
I found the Ramer–Douglas–Peucker algorithm which will reduce the number of vertices - but the resulting polygon will not contain all of the original polygon's vertices. See this article Ramer-Douglas-Peucker on Wikipedia
I considered expanding the polygon (I believe this is also known as outward polygon offsetting). I found these questions: Expanding a polygon (convex only) and Inflating a polygon. But I don't think this will substantially reduce the detail of my polygon.
Thanks for any advice you can give me!
Edit
As of 2013, most links below are not functional anymore. However, I've found the cited paper, algorithm included, still available at this (very slow) server.
Here you can find a project dealing exactly with your issues. Although it works primarily with an area "filled" by points, you can set it to work with a "perimeter" type definition as yours.
It uses a k-nearest neighbors approach for calculating the region.
Samples:
Here you can request a copy of the paper.
Seemingly they planned to offer an online service for requesting calculations, but I didn't test it, and probably it isn't running.
HTH!
I think Visvalingam’s algorithm can be adapted for this purpose - by skipping removal of triangles that would reduce the area.
I had a very similar problem : I needed an inflating simplification of polygons.
I did a simple algorithm, by removing concav point (this will increase the polygon size) or removing convex edge (between 2 convex points) and prolongating adjacent edges. In any case, doing one of those 2 possibilities will remove one point on the polygon.
I choosed to removed the point or the edge that leads to smallest area variation. You can repeat this process, until the simplification is ok for you (for example no more than 200 points).
The 2 main difficulties were to obtain fast algorithm (by avoiding to compute vertex/edge removal variation twice and maintaining possibilities sorted) and to avoid inserting self-intersection in the process (not very easy to do and to explain but possible with limited computational complexity).
In fact, after looking more closely it is a similar idea than the one of Visvalingam with adaptation for edge removal.
That's an interesting problem! I never tried anything like this, but here's an idea off the top of my head... apologies if it makes no sense or wouldn't work :)
Calculate a convex hull, that might be way too big / imprecise
Divide the hull into N slices, for example joining each one of the hull's vertices to the center
Calculate the intersection of your object with each slice
Repeat recursively for each intersection (calculating the intersection's hull, etc)
Each level of recursion should give a better approximation.... when you reached a satisfying level, merge all the hulls from that level to get the final polygon.
Does that sound like it could do the job?
To some degree I'm not sure what you are trying to do but it seems you have two very good answers. One is Ramer–Douglas–Peucker (DP) and the other is computing the alpha shape (also called a Concave Hull, non-convex hull, etc.). I found a more recent paper describing alpha shapes and linked it below.
I personally think DP with polygon expansion is the way to go. I'm not sure why you think it won't substantially reduce the number of vertices. With DP you supply a factor and you can make it anything you want to the point where you end up with a triangle no matter what your input. Picking this factor can be hard but in your case I think it's the best method. You should be able to determine the factor based on the size of the largest bit of detail you want to go away. You can do this with direct testing or by calculating it from your source data.
http://www.it.uu.se/edu/course/homepage/projektTDB/ht13/project10/Project-10-report.pdf
I've written a simple modification of Douglas-Peucker that might be helpful to anyone having this problem in the future: https://github.com/prakol16/rdp-expansion-only
It's identical to DP except that it pushes a line segment outwards a bit if the points that it would remove are outside the polygon. This guarantees that the resulting simplified polygon contains all the original polygon, but it has almost the same number of line segments as the original DP algorithm and is usually reasonably good at approximating the original shape.

Resources